widget/gonk/libui/InputTransport.h

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/widget/gonk/libui/InputTransport.h	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,443 @@
     1.4 +/*
     1.5 + * Copyright (C) 2010 The Android Open Source Project
     1.6 + *
     1.7 + * Licensed under the Apache License, Version 2.0 (the "License");
     1.8 + * you may not use this file except in compliance with the License.
     1.9 + * You may obtain a copy of the License at
    1.10 + *
    1.11 + *      http://www.apache.org/licenses/LICENSE-2.0
    1.12 + *
    1.13 + * Unless required by applicable law or agreed to in writing, software
    1.14 + * distributed under the License is distributed on an "AS IS" BASIS,
    1.15 + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    1.16 + * See the License for the specific language governing permissions and
    1.17 + * limitations under the License.
    1.18 + */
    1.19 +
    1.20 +#ifndef _ANDROIDFW_INPUT_TRANSPORT_H
    1.21 +#define _ANDROIDFW_INPUT_TRANSPORT_H
    1.22 +
    1.23 +/**
    1.24 + * Native input transport.
    1.25 + *
    1.26 + * The InputChannel provides a mechanism for exchanging InputMessage structures across processes.
    1.27 + *
    1.28 + * The InputPublisher and InputConsumer each handle one end-point of an input channel.
    1.29 + * The InputPublisher is used by the input dispatcher to send events to the application.
    1.30 + * The InputConsumer is used by the application to receive events from the input dispatcher.
    1.31 + */
    1.32 +
    1.33 +#include "Input.h"
    1.34 +#include <utils/Errors.h>
    1.35 +#include <utils/Timers.h>
    1.36 +#include <utils/RefBase.h>
    1.37 +#include <utils/String8.h>
    1.38 +#include <utils/Vector.h>
    1.39 +#include <utils/BitSet.h>
    1.40 +
    1.41 +namespace android {
    1.42 +
    1.43 +/*
    1.44 + * Intermediate representation used to send input events and related signals.
    1.45 + */
    1.46 +struct InputMessage {
    1.47 +    enum {
    1.48 +        TYPE_KEY = 1,
    1.49 +        TYPE_MOTION = 2,
    1.50 +        TYPE_FINISHED = 3,
    1.51 +    };
    1.52 +
    1.53 +    struct Header {
    1.54 +        uint32_t type;
    1.55 +        uint32_t padding; // 8 byte alignment for the body that follows
    1.56 +    } header;
    1.57 +
    1.58 +    union Body {
    1.59 +        struct Key {
    1.60 +            uint32_t seq;
    1.61 +            nsecs_t eventTime;
    1.62 +            int32_t deviceId;
    1.63 +            int32_t source;
    1.64 +            int32_t action;
    1.65 +            int32_t flags;
    1.66 +            int32_t keyCode;
    1.67 +            int32_t scanCode;
    1.68 +            int32_t metaState;
    1.69 +            int32_t repeatCount;
    1.70 +            nsecs_t downTime;
    1.71 +
    1.72 +            inline size_t size() const {
    1.73 +                return sizeof(Key);
    1.74 +            }
    1.75 +        } key;
    1.76 +
    1.77 +        struct Motion {
    1.78 +            uint32_t seq;
    1.79 +            nsecs_t eventTime;
    1.80 +            int32_t deviceId;
    1.81 +            int32_t source;
    1.82 +            int32_t action;
    1.83 +            int32_t flags;
    1.84 +            int32_t metaState;
    1.85 +            int32_t buttonState;
    1.86 +            int32_t edgeFlags;
    1.87 +            nsecs_t downTime;
    1.88 +            float xOffset;
    1.89 +            float yOffset;
    1.90 +            float xPrecision;
    1.91 +            float yPrecision;
    1.92 +            size_t pointerCount;
    1.93 +            struct Pointer {
    1.94 +                PointerProperties properties;
    1.95 +                PointerCoords coords;
    1.96 +            } pointers[MAX_POINTERS];
    1.97 +
    1.98 +            int32_t getActionId() const {
    1.99 +                uint32_t index = (action & AMOTION_EVENT_ACTION_POINTER_INDEX_MASK)
   1.100 +                        >> AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT;
   1.101 +                return pointers[index].properties.id;
   1.102 +            }
   1.103 +
   1.104 +            inline size_t size() const {
   1.105 +                return sizeof(Motion) - sizeof(Pointer) * MAX_POINTERS
   1.106 +                        + sizeof(Pointer) * pointerCount;
   1.107 +            }
   1.108 +        } motion;
   1.109 +
   1.110 +        struct Finished {
   1.111 +            uint32_t seq;
   1.112 +            bool handled;
   1.113 +
   1.114 +            inline size_t size() const {
   1.115 +                return sizeof(Finished);
   1.116 +            }
   1.117 +        } finished;
   1.118 +    } body;
   1.119 +
   1.120 +    bool isValid(size_t actualSize) const;
   1.121 +    size_t size() const;
   1.122 +};
   1.123 +
   1.124 +/*
   1.125 + * An input channel consists of a local unix domain socket used to send and receive
   1.126 + * input messages across processes.  Each channel has a descriptive name for debugging purposes.
   1.127 + *
   1.128 + * Each endpoint has its own InputChannel object that specifies its file descriptor.
   1.129 + *
   1.130 + * The input channel is closed when all references to it are released.
   1.131 + */
   1.132 +class InputChannel : public RefBase {
   1.133 +protected:
   1.134 +    virtual ~InputChannel();
   1.135 +
   1.136 +public:
   1.137 +    InputChannel(const String8& name, int fd);
   1.138 +
   1.139 +    /* Creates a pair of input channels.
   1.140 +     *
   1.141 +     * Returns OK on success.
   1.142 +     */
   1.143 +    static status_t openInputChannelPair(const String8& name,
   1.144 +            sp<InputChannel>& outServerChannel, sp<InputChannel>& outClientChannel);
   1.145 +
   1.146 +    inline String8 getName() const { return mName; }
   1.147 +    inline int getFd() const { return mFd; }
   1.148 +
   1.149 +    /* Sends a message to the other endpoint.
   1.150 +     *
   1.151 +     * If the channel is full then the message is guaranteed not to have been sent at all.
   1.152 +     * Try again after the consumer has sent a finished signal indicating that it has
   1.153 +     * consumed some of the pending messages from the channel.
   1.154 +     *
   1.155 +     * Returns OK on success.
   1.156 +     * Returns WOULD_BLOCK if the channel is full.
   1.157 +     * Returns DEAD_OBJECT if the channel's peer has been closed.
   1.158 +     * Other errors probably indicate that the channel is broken.
   1.159 +     */
   1.160 +    status_t sendMessage(const InputMessage* msg);
   1.161 +
   1.162 +    /* Receives a message sent by the other endpoint.
   1.163 +     *
   1.164 +     * If there is no message present, try again after poll() indicates that the fd
   1.165 +     * is readable.
   1.166 +     *
   1.167 +     * Returns OK on success.
   1.168 +     * Returns WOULD_BLOCK if there is no message present.
   1.169 +     * Returns DEAD_OBJECT if the channel's peer has been closed.
   1.170 +     * Other errors probably indicate that the channel is broken.
   1.171 +     */
   1.172 +    status_t receiveMessage(InputMessage* msg);
   1.173 +
   1.174 +    /* Returns a new object that has a duplicate of this channel's fd. */
   1.175 +    sp<InputChannel> dup() const;
   1.176 +
   1.177 +private:
   1.178 +    String8 mName;
   1.179 +    int mFd;
   1.180 +};
   1.181 +
   1.182 +/*
   1.183 + * Publishes input events to an input channel.
   1.184 + */
   1.185 +class InputPublisher {
   1.186 +public:
   1.187 +    /* Creates a publisher associated with an input channel. */
   1.188 +    explicit InputPublisher(const sp<InputChannel>& channel);
   1.189 +
   1.190 +    /* Destroys the publisher and releases its input channel. */
   1.191 +    ~InputPublisher();
   1.192 +
   1.193 +    /* Gets the underlying input channel. */
   1.194 +    inline sp<InputChannel> getChannel() { return mChannel; }
   1.195 +
   1.196 +    /* Publishes a key event to the input channel.
   1.197 +     *
   1.198 +     * Returns OK on success.
   1.199 +     * Returns WOULD_BLOCK if the channel is full.
   1.200 +     * Returns DEAD_OBJECT if the channel's peer has been closed.
   1.201 +     * Returns BAD_VALUE if seq is 0.
   1.202 +     * Other errors probably indicate that the channel is broken.
   1.203 +     */
   1.204 +    status_t publishKeyEvent(
   1.205 +            uint32_t seq,
   1.206 +            int32_t deviceId,
   1.207 +            int32_t source,
   1.208 +            int32_t action,
   1.209 +            int32_t flags,
   1.210 +            int32_t keyCode,
   1.211 +            int32_t scanCode,
   1.212 +            int32_t metaState,
   1.213 +            int32_t repeatCount,
   1.214 +            nsecs_t downTime,
   1.215 +            nsecs_t eventTime);
   1.216 +
   1.217 +    /* Publishes a motion event to the input channel.
   1.218 +     *
   1.219 +     * Returns OK on success.
   1.220 +     * Returns WOULD_BLOCK if the channel is full.
   1.221 +     * Returns DEAD_OBJECT if the channel's peer has been closed.
   1.222 +     * Returns BAD_VALUE if seq is 0 or if pointerCount is less than 1 or greater than MAX_POINTERS.
   1.223 +     * Other errors probably indicate that the channel is broken.
   1.224 +     */
   1.225 +    status_t publishMotionEvent(
   1.226 +            uint32_t seq,
   1.227 +            int32_t deviceId,
   1.228 +            int32_t source,
   1.229 +            int32_t action,
   1.230 +            int32_t flags,
   1.231 +            int32_t edgeFlags,
   1.232 +            int32_t metaState,
   1.233 +            int32_t buttonState,
   1.234 +            float xOffset,
   1.235 +            float yOffset,
   1.236 +            float xPrecision,
   1.237 +            float yPrecision,
   1.238 +            nsecs_t downTime,
   1.239 +            nsecs_t eventTime,
   1.240 +            size_t pointerCount,
   1.241 +            const PointerProperties* pointerProperties,
   1.242 +            const PointerCoords* pointerCoords);
   1.243 +
   1.244 +    /* Receives the finished signal from the consumer in reply to the original dispatch signal.
   1.245 +     * If a signal was received, returns the message sequence number,
   1.246 +     * and whether the consumer handled the message.
   1.247 +     *
   1.248 +     * The returned sequence number is never 0 unless the operation failed.
   1.249 +     *
   1.250 +     * Returns OK on success.
   1.251 +     * Returns WOULD_BLOCK if there is no signal present.
   1.252 +     * Returns DEAD_OBJECT if the channel's peer has been closed.
   1.253 +     * Other errors probably indicate that the channel is broken.
   1.254 +     */
   1.255 +    status_t receiveFinishedSignal(uint32_t* outSeq, bool* outHandled);
   1.256 +
   1.257 +private:
   1.258 +    sp<InputChannel> mChannel;
   1.259 +};
   1.260 +
   1.261 +/*
   1.262 + * Consumes input events from an input channel.
   1.263 + */
   1.264 +class InputConsumer {
   1.265 +public:
   1.266 +    /* Creates a consumer associated with an input channel. */
   1.267 +    explicit InputConsumer(const sp<InputChannel>& channel);
   1.268 +
   1.269 +    /* Destroys the consumer and releases its input channel. */
   1.270 +    ~InputConsumer();
   1.271 +
   1.272 +    /* Gets the underlying input channel. */
   1.273 +    inline sp<InputChannel> getChannel() { return mChannel; }
   1.274 +
   1.275 +    /* Consumes an input event from the input channel and copies its contents into
   1.276 +     * an InputEvent object created using the specified factory.
   1.277 +     *
   1.278 +     * Tries to combine a series of move events into larger batches whenever possible.
   1.279 +     *
   1.280 +     * If consumeBatches is false, then defers consuming pending batched events if it
   1.281 +     * is possible for additional samples to be added to them later.  Call hasPendingBatch()
   1.282 +     * to determine whether a pending batch is available to be consumed.
   1.283 +     *
   1.284 +     * If consumeBatches is true, then events are still batched but they are consumed
   1.285 +     * immediately as soon as the input channel is exhausted.
   1.286 +     *
   1.287 +     * The frameTime parameter specifies the time when the current display frame started
   1.288 +     * rendering in the CLOCK_MONOTONIC time base, or -1 if unknown.
   1.289 +     *
   1.290 +     * The returned sequence number is never 0 unless the operation failed.
   1.291 +     *
   1.292 +     * Returns OK on success.
   1.293 +     * Returns WOULD_BLOCK if there is no event present.
   1.294 +     * Returns DEAD_OBJECT if the channel's peer has been closed.
   1.295 +     * Returns NO_MEMORY if the event could not be created.
   1.296 +     * Other errors probably indicate that the channel is broken.
   1.297 +     */
   1.298 +    status_t consume(InputEventFactoryInterface* factory, bool consumeBatches,
   1.299 +            nsecs_t frameTime, uint32_t* outSeq, InputEvent** outEvent);
   1.300 +
   1.301 +    /* Sends a finished signal to the publisher to inform it that the message
   1.302 +     * with the specified sequence number has finished being process and whether
   1.303 +     * the message was handled by the consumer.
   1.304 +     *
   1.305 +     * Returns OK on success.
   1.306 +     * Returns BAD_VALUE if seq is 0.
   1.307 +     * Other errors probably indicate that the channel is broken.
   1.308 +     */
   1.309 +    status_t sendFinishedSignal(uint32_t seq, bool handled);
   1.310 +
   1.311 +    /* Returns true if there is a deferred event waiting.
   1.312 +     *
   1.313 +     * Should be called after calling consume() to determine whether the consumer
   1.314 +     * has a deferred event to be processed.  Deferred events are somewhat special in
   1.315 +     * that they have already been removed from the input channel.  If the input channel
   1.316 +     * becomes empty, the client may need to do extra work to ensure that it processes
   1.317 +     * the deferred event despite the fact that the input channel's file descriptor
   1.318 +     * is not readable.
   1.319 +     *
   1.320 +     * One option is simply to call consume() in a loop until it returns WOULD_BLOCK.
   1.321 +     * This guarantees that all deferred events will be processed.
   1.322 +     *
   1.323 +     * Alternately, the caller can call hasDeferredEvent() to determine whether there is
   1.324 +     * a deferred event waiting and then ensure that its event loop wakes up at least
   1.325 +     * one more time to consume the deferred event.
   1.326 +     */
   1.327 +    bool hasDeferredEvent() const;
   1.328 +
   1.329 +    /* Returns true if there is a pending batch.
   1.330 +     *
   1.331 +     * Should be called after calling consume() with consumeBatches == false to determine
   1.332 +     * whether consume() should be called again later on with consumeBatches == true.
   1.333 +     */
   1.334 +    bool hasPendingBatch() const;
   1.335 +
   1.336 +private:
   1.337 +    // True if touch resampling is enabled.
   1.338 +    const bool mResampleTouch;
   1.339 +
   1.340 +    // The input channel.
   1.341 +    sp<InputChannel> mChannel;
   1.342 +
   1.343 +    // The current input message.
   1.344 +    InputMessage mMsg;
   1.345 +
   1.346 +    // True if mMsg contains a valid input message that was deferred from the previous
   1.347 +    // call to consume and that still needs to be handled.
   1.348 +    bool mMsgDeferred;
   1.349 +
   1.350 +    // Batched motion events per device and source.
   1.351 +    struct Batch {
   1.352 +        Vector<InputMessage> samples;
   1.353 +    };
   1.354 +    Vector<Batch> mBatches;
   1.355 +
   1.356 +    // Touch state per device and source, only for sources of class pointer.
   1.357 +    struct History {
   1.358 +        nsecs_t eventTime;
   1.359 +        BitSet32 idBits;
   1.360 +        int32_t idToIndex[MAX_POINTER_ID + 1];
   1.361 +        PointerCoords pointers[MAX_POINTERS];
   1.362 +
   1.363 +        void initializeFrom(const InputMessage* msg) {
   1.364 +            eventTime = msg->body.motion.eventTime;
   1.365 +            idBits.clear();
   1.366 +            for (size_t i = 0; i < msg->body.motion.pointerCount; i++) {
   1.367 +                uint32_t id = msg->body.motion.pointers[i].properties.id;
   1.368 +                idBits.markBit(id);
   1.369 +                idToIndex[id] = i;
   1.370 +                pointers[i].copyFrom(msg->body.motion.pointers[i].coords);
   1.371 +            }
   1.372 +        }
   1.373 +
   1.374 +        const PointerCoords& getPointerById(uint32_t id) const {
   1.375 +            return pointers[idToIndex[id]];
   1.376 +        }
   1.377 +    };
   1.378 +    struct TouchState {
   1.379 +        int32_t deviceId;
   1.380 +        int32_t source;
   1.381 +        size_t historyCurrent;
   1.382 +        size_t historySize;
   1.383 +        History history[2];
   1.384 +        History lastResample;
   1.385 +
   1.386 +        void initialize(int32_t deviceId, int32_t source) {
   1.387 +            this->deviceId = deviceId;
   1.388 +            this->source = source;
   1.389 +            historyCurrent = 0;
   1.390 +            historySize = 0;
   1.391 +            lastResample.eventTime = 0;
   1.392 +            lastResample.idBits.clear();
   1.393 +        }
   1.394 +
   1.395 +        void addHistory(const InputMessage* msg) {
   1.396 +            historyCurrent ^= 1;
   1.397 +            if (historySize < 2) {
   1.398 +                historySize += 1;
   1.399 +            }
   1.400 +            history[historyCurrent].initializeFrom(msg);
   1.401 +        }
   1.402 +
   1.403 +        const History* getHistory(size_t index) const {
   1.404 +            return &history[(historyCurrent + index) & 1];
   1.405 +        }
   1.406 +    };
   1.407 +    Vector<TouchState> mTouchStates;
   1.408 +
   1.409 +    // Chain of batched sequence numbers.  When multiple input messages are combined into
   1.410 +    // a batch, we append a record here that associates the last sequence number in the
   1.411 +    // batch with the previous one.  When the finished signal is sent, we traverse the
   1.412 +    // chain to individually finish all input messages that were part of the batch.
   1.413 +    struct SeqChain {
   1.414 +        uint32_t seq;   // sequence number of batched input message
   1.415 +        uint32_t chain; // sequence number of previous batched input message
   1.416 +    };
   1.417 +    Vector<SeqChain> mSeqChains;
   1.418 +
   1.419 +    status_t consumeBatch(InputEventFactoryInterface* factory,
   1.420 +            nsecs_t frameTime, uint32_t* outSeq, InputEvent** outEvent);
   1.421 +    status_t consumeSamples(InputEventFactoryInterface* factory,
   1.422 +            Batch& batch, size_t count, uint32_t* outSeq, InputEvent** outEvent);
   1.423 +
   1.424 +    void updateTouchState(InputMessage* msg);
   1.425 +    void rewriteMessage(const TouchState& state, InputMessage* msg);
   1.426 +    void resampleTouchState(nsecs_t frameTime, MotionEvent* event,
   1.427 +            const InputMessage *next);
   1.428 +
   1.429 +    ssize_t findBatch(int32_t deviceId, int32_t source) const;
   1.430 +    ssize_t findTouchState(int32_t deviceId, int32_t source) const;
   1.431 +
   1.432 +    status_t sendUnchainedFinishedSignal(uint32_t seq, bool handled);
   1.433 +
   1.434 +    static void initializeKeyEvent(KeyEvent* event, const InputMessage* msg);
   1.435 +    static void initializeMotionEvent(MotionEvent* event, const InputMessage* msg);
   1.436 +    static void addSample(MotionEvent* event, const InputMessage* msg);
   1.437 +    static bool canAddSample(const Batch& batch, const InputMessage* msg);
   1.438 +    static ssize_t findSampleNoLaterThan(const Batch& batch, nsecs_t time);
   1.439 +    static bool shouldResampleTool(int32_t toolType);
   1.440 +
   1.441 +    static bool isTouchResamplingEnabled();
   1.442 +};
   1.443 +
   1.444 +} // namespace android
   1.445 +
   1.446 +#endif // _ANDROIDFW_INPUT_TRANSPORT_H

mercurial