widget/gonk/libui/VelocityTracker.cpp

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/widget/gonk/libui/VelocityTracker.cpp	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,929 @@
     1.4 +/*
     1.5 + * Copyright (C) 2012 The Android Open Source Project
     1.6 + *
     1.7 + * Licensed under the Apache License, Version 2.0 (the "License");
     1.8 + * you may not use this file except in compliance with the License.
     1.9 + * You may obtain a copy of the License at
    1.10 + *
    1.11 + *      http://www.apache.org/licenses/LICENSE-2.0
    1.12 + *
    1.13 + * Unless required by applicable law or agreed to in writing, software
    1.14 + * distributed under the License is distributed on an "AS IS" BASIS,
    1.15 + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    1.16 + * See the License for the specific language governing permissions and
    1.17 + * limitations under the License.
    1.18 + */
    1.19 +
    1.20 +#define LOG_TAG "VelocityTracker"
    1.21 +//#define LOG_NDEBUG 0
    1.22 +#include "cutils_log.h"
    1.23 +
    1.24 +// Log debug messages about velocity tracking.
    1.25 +#define DEBUG_VELOCITY 0
    1.26 +
    1.27 +// Log debug messages about the progress of the algorithm itself.
    1.28 +#define DEBUG_STRATEGY 0
    1.29 +
    1.30 +#include <math.h>
    1.31 +#include <limits.h>
    1.32 +
    1.33 +#include "VelocityTracker.h"
    1.34 +#include <utils/BitSet.h>
    1.35 +#include <utils/String8.h>
    1.36 +#include <utils/Timers.h>
    1.37 +
    1.38 +#include <cutils/properties.h>
    1.39 +
    1.40 +namespace android {
    1.41 +
    1.42 +// Nanoseconds per milliseconds.
    1.43 +static const nsecs_t NANOS_PER_MS = 1000000;
    1.44 +
    1.45 +// Threshold for determining that a pointer has stopped moving.
    1.46 +// Some input devices do not send ACTION_MOVE events in the case where a pointer has
    1.47 +// stopped.  We need to detect this case so that we can accurately predict the
    1.48 +// velocity after the pointer starts moving again.
    1.49 +static const nsecs_t ASSUME_POINTER_STOPPED_TIME = 40 * NANOS_PER_MS;
    1.50 +
    1.51 +
    1.52 +static float vectorDot(const float* a, const float* b, uint32_t m) {
    1.53 +    float r = 0;
    1.54 +    while (m--) {
    1.55 +        r += *(a++) * *(b++);
    1.56 +    }
    1.57 +    return r;
    1.58 +}
    1.59 +
    1.60 +static float vectorNorm(const float* a, uint32_t m) {
    1.61 +    float r = 0;
    1.62 +    while (m--) {
    1.63 +        float t = *(a++);
    1.64 +        r += t * t;
    1.65 +    }
    1.66 +    return sqrtf(r);
    1.67 +}
    1.68 +
    1.69 +#if DEBUG_STRATEGY || DEBUG_VELOCITY
    1.70 +static String8 vectorToString(const float* a, uint32_t m) {
    1.71 +    String8 str;
    1.72 +    str.append("[");
    1.73 +    while (m--) {
    1.74 +        str.appendFormat(" %f", *(a++));
    1.75 +        if (m) {
    1.76 +            str.append(",");
    1.77 +        }
    1.78 +    }
    1.79 +    str.append(" ]");
    1.80 +    return str;
    1.81 +}
    1.82 +
    1.83 +static String8 matrixToString(const float* a, uint32_t m, uint32_t n, bool rowMajor) {
    1.84 +    String8 str;
    1.85 +    str.append("[");
    1.86 +    for (size_t i = 0; i < m; i++) {
    1.87 +        if (i) {
    1.88 +            str.append(",");
    1.89 +        }
    1.90 +        str.append(" [");
    1.91 +        for (size_t j = 0; j < n; j++) {
    1.92 +            if (j) {
    1.93 +                str.append(",");
    1.94 +            }
    1.95 +            str.appendFormat(" %f", a[rowMajor ? i * n + j : j * m + i]);
    1.96 +        }
    1.97 +        str.append(" ]");
    1.98 +    }
    1.99 +    str.append(" ]");
   1.100 +    return str;
   1.101 +}
   1.102 +#endif
   1.103 +
   1.104 +
   1.105 +// --- VelocityTracker ---
   1.106 +
   1.107 +// The default velocity tracker strategy.
   1.108 +// Although other strategies are available for testing and comparison purposes,
   1.109 +// this is the strategy that applications will actually use.  Be very careful
   1.110 +// when adjusting the default strategy because it can dramatically affect
   1.111 +// (often in a bad way) the user experience.
   1.112 +const char* VelocityTracker::DEFAULT_STRATEGY = "lsq2";
   1.113 +
   1.114 +VelocityTracker::VelocityTracker(const char* strategy) :
   1.115 +        mLastEventTime(0), mCurrentPointerIdBits(0), mActivePointerId(-1) {
   1.116 +    char value[PROPERTY_VALUE_MAX];
   1.117 +
   1.118 +    // Allow the default strategy to be overridden using a system property for debugging.
   1.119 +    if (!strategy) {
   1.120 +        int length = property_get("debug.velocitytracker.strategy", value, NULL);
   1.121 +        if (length > 0) {
   1.122 +            strategy = value;
   1.123 +        } else {
   1.124 +            strategy = DEFAULT_STRATEGY;
   1.125 +        }
   1.126 +    }
   1.127 +
   1.128 +    // Configure the strategy.
   1.129 +    if (!configureStrategy(strategy)) {
   1.130 +        ALOGD("Unrecognized velocity tracker strategy name '%s'.", strategy);
   1.131 +        if (!configureStrategy(DEFAULT_STRATEGY)) {
   1.132 +            LOG_ALWAYS_FATAL("Could not create the default velocity tracker strategy '%s'!",
   1.133 +                    strategy);
   1.134 +        }
   1.135 +    }
   1.136 +}
   1.137 +
   1.138 +VelocityTracker::~VelocityTracker() {
   1.139 +    delete mStrategy;
   1.140 +}
   1.141 +
   1.142 +bool VelocityTracker::configureStrategy(const char* strategy) {
   1.143 +    mStrategy = createStrategy(strategy);
   1.144 +    return mStrategy != NULL;
   1.145 +}
   1.146 +
   1.147 +VelocityTrackerStrategy* VelocityTracker::createStrategy(const char* strategy) {
   1.148 +    if (!strcmp("lsq1", strategy)) {
   1.149 +        // 1st order least squares.  Quality: POOR.
   1.150 +        // Frequently underfits the touch data especially when the finger accelerates
   1.151 +        // or changes direction.  Often underestimates velocity.  The direction
   1.152 +        // is overly influenced by historical touch points.
   1.153 +        return new LeastSquaresVelocityTrackerStrategy(1);
   1.154 +    }
   1.155 +    if (!strcmp("lsq2", strategy)) {
   1.156 +        // 2nd order least squares.  Quality: VERY GOOD.
   1.157 +        // Pretty much ideal, but can be confused by certain kinds of touch data,
   1.158 +        // particularly if the panel has a tendency to generate delayed,
   1.159 +        // duplicate or jittery touch coordinates when the finger is released.
   1.160 +        return new LeastSquaresVelocityTrackerStrategy(2);
   1.161 +    }
   1.162 +    if (!strcmp("lsq3", strategy)) {
   1.163 +        // 3rd order least squares.  Quality: UNUSABLE.
   1.164 +        // Frequently overfits the touch data yielding wildly divergent estimates
   1.165 +        // of the velocity when the finger is released.
   1.166 +        return new LeastSquaresVelocityTrackerStrategy(3);
   1.167 +    }
   1.168 +    if (!strcmp("wlsq2-delta", strategy)) {
   1.169 +        // 2nd order weighted least squares, delta weighting.  Quality: EXPERIMENTAL
   1.170 +        return new LeastSquaresVelocityTrackerStrategy(2,
   1.171 +                LeastSquaresVelocityTrackerStrategy::WEIGHTING_DELTA);
   1.172 +    }
   1.173 +    if (!strcmp("wlsq2-central", strategy)) {
   1.174 +        // 2nd order weighted least squares, central weighting.  Quality: EXPERIMENTAL
   1.175 +        return new LeastSquaresVelocityTrackerStrategy(2,
   1.176 +                LeastSquaresVelocityTrackerStrategy::WEIGHTING_CENTRAL);
   1.177 +    }
   1.178 +    if (!strcmp("wlsq2-recent", strategy)) {
   1.179 +        // 2nd order weighted least squares, recent weighting.  Quality: EXPERIMENTAL
   1.180 +        return new LeastSquaresVelocityTrackerStrategy(2,
   1.181 +                LeastSquaresVelocityTrackerStrategy::WEIGHTING_RECENT);
   1.182 +    }
   1.183 +    if (!strcmp("int1", strategy)) {
   1.184 +        // 1st order integrating filter.  Quality: GOOD.
   1.185 +        // Not as good as 'lsq2' because it cannot estimate acceleration but it is
   1.186 +        // more tolerant of errors.  Like 'lsq1', this strategy tends to underestimate
   1.187 +        // the velocity of a fling but this strategy tends to respond to changes in
   1.188 +        // direction more quickly and accurately.
   1.189 +        return new IntegratingVelocityTrackerStrategy(1);
   1.190 +    }
   1.191 +    if (!strcmp("int2", strategy)) {
   1.192 +        // 2nd order integrating filter.  Quality: EXPERIMENTAL.
   1.193 +        // For comparison purposes only.  Unlike 'int1' this strategy can compensate
   1.194 +        // for acceleration but it typically overestimates the effect.
   1.195 +        return new IntegratingVelocityTrackerStrategy(2);
   1.196 +    }
   1.197 +    if (!strcmp("legacy", strategy)) {
   1.198 +        // Legacy velocity tracker algorithm.  Quality: POOR.
   1.199 +        // For comparison purposes only.  This algorithm is strongly influenced by
   1.200 +        // old data points, consistently underestimates velocity and takes a very long
   1.201 +        // time to adjust to changes in direction.
   1.202 +        return new LegacyVelocityTrackerStrategy();
   1.203 +    }
   1.204 +    return NULL;
   1.205 +}
   1.206 +
   1.207 +void VelocityTracker::clear() {
   1.208 +    mCurrentPointerIdBits.clear();
   1.209 +    mActivePointerId = -1;
   1.210 +
   1.211 +    mStrategy->clear();
   1.212 +}
   1.213 +
   1.214 +void VelocityTracker::clearPointers(BitSet32 idBits) {
   1.215 +    BitSet32 remainingIdBits(mCurrentPointerIdBits.value & ~idBits.value);
   1.216 +    mCurrentPointerIdBits = remainingIdBits;
   1.217 +
   1.218 +    if (mActivePointerId >= 0 && idBits.hasBit(mActivePointerId)) {
   1.219 +        mActivePointerId = !remainingIdBits.isEmpty() ? remainingIdBits.firstMarkedBit() : -1;
   1.220 +    }
   1.221 +
   1.222 +    mStrategy->clearPointers(idBits);
   1.223 +}
   1.224 +
   1.225 +void VelocityTracker::addMovement(nsecs_t eventTime, BitSet32 idBits, const Position* positions) {
   1.226 +    while (idBits.count() > MAX_POINTERS) {
   1.227 +        idBits.clearLastMarkedBit();
   1.228 +    }
   1.229 +
   1.230 +    if ((mCurrentPointerIdBits.value & idBits.value)
   1.231 +            && eventTime >= mLastEventTime + ASSUME_POINTER_STOPPED_TIME) {
   1.232 +#if DEBUG_VELOCITY
   1.233 +        ALOGD("VelocityTracker: stopped for %0.3f ms, clearing state.",
   1.234 +                (eventTime - mLastEventTime) * 0.000001f);
   1.235 +#endif
   1.236 +        // We have not received any movements for too long.  Assume that all pointers
   1.237 +        // have stopped.
   1.238 +        mStrategy->clear();
   1.239 +    }
   1.240 +    mLastEventTime = eventTime;
   1.241 +
   1.242 +    mCurrentPointerIdBits = idBits;
   1.243 +    if (mActivePointerId < 0 || !idBits.hasBit(mActivePointerId)) {
   1.244 +        mActivePointerId = idBits.isEmpty() ? -1 : idBits.firstMarkedBit();
   1.245 +    }
   1.246 +
   1.247 +    mStrategy->addMovement(eventTime, idBits, positions);
   1.248 +
   1.249 +#if DEBUG_VELOCITY
   1.250 +    ALOGD("VelocityTracker: addMovement eventTime=%lld, idBits=0x%08x, activePointerId=%d",
   1.251 +            eventTime, idBits.value, mActivePointerId);
   1.252 +    for (BitSet32 iterBits(idBits); !iterBits.isEmpty(); ) {
   1.253 +        uint32_t id = iterBits.firstMarkedBit();
   1.254 +        uint32_t index = idBits.getIndexOfBit(id);
   1.255 +        iterBits.clearBit(id);
   1.256 +        Estimator estimator;
   1.257 +        getEstimator(id, &estimator);
   1.258 +        ALOGD("  %d: position (%0.3f, %0.3f), "
   1.259 +                "estimator (degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f)",
   1.260 +                id, positions[index].x, positions[index].y,
   1.261 +                int(estimator.degree),
   1.262 +                vectorToString(estimator.xCoeff, estimator.degree + 1).string(),
   1.263 +                vectorToString(estimator.yCoeff, estimator.degree + 1).string(),
   1.264 +                estimator.confidence);
   1.265 +    }
   1.266 +#endif
   1.267 +}
   1.268 +
   1.269 +void VelocityTracker::addMovement(const MotionEvent* event) {
   1.270 +    int32_t actionMasked = event->getActionMasked();
   1.271 +
   1.272 +    switch (actionMasked) {
   1.273 +    case AMOTION_EVENT_ACTION_DOWN:
   1.274 +    case AMOTION_EVENT_ACTION_HOVER_ENTER:
   1.275 +        // Clear all pointers on down before adding the new movement.
   1.276 +        clear();
   1.277 +        break;
   1.278 +    case AMOTION_EVENT_ACTION_POINTER_DOWN: {
   1.279 +        // Start a new movement trace for a pointer that just went down.
   1.280 +        // We do this on down instead of on up because the client may want to query the
   1.281 +        // final velocity for a pointer that just went up.
   1.282 +        BitSet32 downIdBits;
   1.283 +        downIdBits.markBit(event->getPointerId(event->getActionIndex()));
   1.284 +        clearPointers(downIdBits);
   1.285 +        break;
   1.286 +    }
   1.287 +    case AMOTION_EVENT_ACTION_MOVE:
   1.288 +    case AMOTION_EVENT_ACTION_HOVER_MOVE:
   1.289 +        break;
   1.290 +    default:
   1.291 +        // Ignore all other actions because they do not convey any new information about
   1.292 +        // pointer movement.  We also want to preserve the last known velocity of the pointers.
   1.293 +        // Note that ACTION_UP and ACTION_POINTER_UP always report the last known position
   1.294 +        // of the pointers that went up.  ACTION_POINTER_UP does include the new position of
   1.295 +        // pointers that remained down but we will also receive an ACTION_MOVE with this
   1.296 +        // information if any of them actually moved.  Since we don't know how many pointers
   1.297 +        // will be going up at once it makes sense to just wait for the following ACTION_MOVE
   1.298 +        // before adding the movement.
   1.299 +        return;
   1.300 +    }
   1.301 +
   1.302 +    size_t pointerCount = event->getPointerCount();
   1.303 +    if (pointerCount > MAX_POINTERS) {
   1.304 +        pointerCount = MAX_POINTERS;
   1.305 +    }
   1.306 +
   1.307 +    BitSet32 idBits;
   1.308 +    for (size_t i = 0; i < pointerCount; i++) {
   1.309 +        idBits.markBit(event->getPointerId(i));
   1.310 +    }
   1.311 +
   1.312 +    uint32_t pointerIndex[MAX_POINTERS];
   1.313 +    for (size_t i = 0; i < pointerCount; i++) {
   1.314 +        pointerIndex[i] = idBits.getIndexOfBit(event->getPointerId(i));
   1.315 +    }
   1.316 +
   1.317 +    nsecs_t eventTime;
   1.318 +    Position positions[pointerCount];
   1.319 +
   1.320 +    size_t historySize = event->getHistorySize();
   1.321 +    for (size_t h = 0; h < historySize; h++) {
   1.322 +        eventTime = event->getHistoricalEventTime(h);
   1.323 +        for (size_t i = 0; i < pointerCount; i++) {
   1.324 +            uint32_t index = pointerIndex[i];
   1.325 +            positions[index].x = event->getHistoricalX(i, h);
   1.326 +            positions[index].y = event->getHistoricalY(i, h);
   1.327 +        }
   1.328 +        addMovement(eventTime, idBits, positions);
   1.329 +    }
   1.330 +
   1.331 +    eventTime = event->getEventTime();
   1.332 +    for (size_t i = 0; i < pointerCount; i++) {
   1.333 +        uint32_t index = pointerIndex[i];
   1.334 +        positions[index].x = event->getX(i);
   1.335 +        positions[index].y = event->getY(i);
   1.336 +    }
   1.337 +    addMovement(eventTime, idBits, positions);
   1.338 +}
   1.339 +
   1.340 +bool VelocityTracker::getVelocity(uint32_t id, float* outVx, float* outVy) const {
   1.341 +    Estimator estimator;
   1.342 +    if (getEstimator(id, &estimator) && estimator.degree >= 1) {
   1.343 +        *outVx = estimator.xCoeff[1];
   1.344 +        *outVy = estimator.yCoeff[1];
   1.345 +        return true;
   1.346 +    }
   1.347 +    *outVx = 0;
   1.348 +    *outVy = 0;
   1.349 +    return false;
   1.350 +}
   1.351 +
   1.352 +bool VelocityTracker::getEstimator(uint32_t id, Estimator* outEstimator) const {
   1.353 +    return mStrategy->getEstimator(id, outEstimator);
   1.354 +}
   1.355 +
   1.356 +
   1.357 +// --- LeastSquaresVelocityTrackerStrategy ---
   1.358 +
   1.359 +const nsecs_t LeastSquaresVelocityTrackerStrategy::HORIZON;
   1.360 +const uint32_t LeastSquaresVelocityTrackerStrategy::HISTORY_SIZE;
   1.361 +
   1.362 +LeastSquaresVelocityTrackerStrategy::LeastSquaresVelocityTrackerStrategy(
   1.363 +        uint32_t degree, Weighting weighting) :
   1.364 +        mDegree(degree), mWeighting(weighting) {
   1.365 +    clear();
   1.366 +}
   1.367 +
   1.368 +LeastSquaresVelocityTrackerStrategy::~LeastSquaresVelocityTrackerStrategy() {
   1.369 +}
   1.370 +
   1.371 +void LeastSquaresVelocityTrackerStrategy::clear() {
   1.372 +    mIndex = 0;
   1.373 +    mMovements[0].idBits.clear();
   1.374 +}
   1.375 +
   1.376 +void LeastSquaresVelocityTrackerStrategy::clearPointers(BitSet32 idBits) {
   1.377 +    BitSet32 remainingIdBits(mMovements[mIndex].idBits.value & ~idBits.value);
   1.378 +    mMovements[mIndex].idBits = remainingIdBits;
   1.379 +}
   1.380 +
   1.381 +void LeastSquaresVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits,
   1.382 +        const VelocityTracker::Position* positions) {
   1.383 +    if (++mIndex == HISTORY_SIZE) {
   1.384 +        mIndex = 0;
   1.385 +    }
   1.386 +
   1.387 +    Movement& movement = mMovements[mIndex];
   1.388 +    movement.eventTime = eventTime;
   1.389 +    movement.idBits = idBits;
   1.390 +    uint32_t count = idBits.count();
   1.391 +    for (uint32_t i = 0; i < count; i++) {
   1.392 +        movement.positions[i] = positions[i];
   1.393 +    }
   1.394 +}
   1.395 +
   1.396 +/**
   1.397 + * Solves a linear least squares problem to obtain a N degree polynomial that fits
   1.398 + * the specified input data as nearly as possible.
   1.399 + *
   1.400 + * Returns true if a solution is found, false otherwise.
   1.401 + *
   1.402 + * The input consists of two vectors of data points X and Y with indices 0..m-1
   1.403 + * along with a weight vector W of the same size.
   1.404 + *
   1.405 + * The output is a vector B with indices 0..n that describes a polynomial
   1.406 + * that fits the data, such the sum of W[i] * W[i] * abs(Y[i] - (B[0] + B[1] X[i]
   1.407 + * + B[2] X[i]^2 ... B[n] X[i]^n)) for all i between 0 and m-1 is minimized.
   1.408 + *
   1.409 + * Accordingly, the weight vector W should be initialized by the caller with the
   1.410 + * reciprocal square root of the variance of the error in each input data point.
   1.411 + * In other words, an ideal choice for W would be W[i] = 1 / var(Y[i]) = 1 / stddev(Y[i]).
   1.412 + * The weights express the relative importance of each data point.  If the weights are
   1.413 + * all 1, then the data points are considered to be of equal importance when fitting
   1.414 + * the polynomial.  It is a good idea to choose weights that diminish the importance
   1.415 + * of data points that may have higher than usual error margins.
   1.416 + *
   1.417 + * Errors among data points are assumed to be independent.  W is represented here
   1.418 + * as a vector although in the literature it is typically taken to be a diagonal matrix.
   1.419 + *
   1.420 + * That is to say, the function that generated the input data can be approximated
   1.421 + * by y(x) ~= B[0] + B[1] x + B[2] x^2 + ... + B[n] x^n.
   1.422 + *
   1.423 + * The coefficient of determination (R^2) is also returned to describe the goodness
   1.424 + * of fit of the model for the given data.  It is a value between 0 and 1, where 1
   1.425 + * indicates perfect correspondence.
   1.426 + *
   1.427 + * This function first expands the X vector to a m by n matrix A such that
   1.428 + * A[i][0] = 1, A[i][1] = X[i], A[i][2] = X[i]^2, ..., A[i][n] = X[i]^n, then
   1.429 + * multiplies it by w[i]./
   1.430 + *
   1.431 + * Then it calculates the QR decomposition of A yielding an m by m orthonormal matrix Q
   1.432 + * and an m by n upper triangular matrix R.  Because R is upper triangular (lower
   1.433 + * part is all zeroes), we can simplify the decomposition into an m by n matrix
   1.434 + * Q1 and a n by n matrix R1 such that A = Q1 R1.
   1.435 + *
   1.436 + * Finally we solve the system of linear equations given by R1 B = (Qtranspose W Y)
   1.437 + * to find B.
   1.438 + *
   1.439 + * For efficiency, we lay out A and Q column-wise in memory because we frequently
   1.440 + * operate on the column vectors.  Conversely, we lay out R row-wise.
   1.441 + *
   1.442 + * http://en.wikipedia.org/wiki/Numerical_methods_for_linear_least_squares
   1.443 + * http://en.wikipedia.org/wiki/Gram-Schmidt
   1.444 + */
   1.445 +static bool solveLeastSquares(const float* x, const float* y,
   1.446 +        const float* w, uint32_t m, uint32_t n, float* outB, float* outDet) {
   1.447 +#if DEBUG_STRATEGY
   1.448 +    ALOGD("solveLeastSquares: m=%d, n=%d, x=%s, y=%s, w=%s", int(m), int(n),
   1.449 +            vectorToString(x, m).string(), vectorToString(y, m).string(),
   1.450 +            vectorToString(w, m).string());
   1.451 +#endif
   1.452 +
   1.453 +    // Expand the X vector to a matrix A, pre-multiplied by the weights.
   1.454 +    float a[n][m]; // column-major order
   1.455 +    for (uint32_t h = 0; h < m; h++) {
   1.456 +        a[0][h] = w[h];
   1.457 +        for (uint32_t i = 1; i < n; i++) {
   1.458 +            a[i][h] = a[i - 1][h] * x[h];
   1.459 +        }
   1.460 +    }
   1.461 +#if DEBUG_STRATEGY
   1.462 +    ALOGD("  - a=%s", matrixToString(&a[0][0], m, n, false /*rowMajor*/).string());
   1.463 +#endif
   1.464 +
   1.465 +    // Apply the Gram-Schmidt process to A to obtain its QR decomposition.
   1.466 +    float q[n][m]; // orthonormal basis, column-major order
   1.467 +    float r[n][n]; // upper triangular matrix, row-major order
   1.468 +    for (uint32_t j = 0; j < n; j++) {
   1.469 +        for (uint32_t h = 0; h < m; h++) {
   1.470 +            q[j][h] = a[j][h];
   1.471 +        }
   1.472 +        for (uint32_t i = 0; i < j; i++) {
   1.473 +            float dot = vectorDot(&q[j][0], &q[i][0], m);
   1.474 +            for (uint32_t h = 0; h < m; h++) {
   1.475 +                q[j][h] -= dot * q[i][h];
   1.476 +            }
   1.477 +        }
   1.478 +
   1.479 +        float norm = vectorNorm(&q[j][0], m);
   1.480 +        if (norm < 0.000001f) {
   1.481 +            // vectors are linearly dependent or zero so no solution
   1.482 +#if DEBUG_STRATEGY
   1.483 +            ALOGD("  - no solution, norm=%f", norm);
   1.484 +#endif
   1.485 +            return false;
   1.486 +        }
   1.487 +
   1.488 +        float invNorm = 1.0f / norm;
   1.489 +        for (uint32_t h = 0; h < m; h++) {
   1.490 +            q[j][h] *= invNorm;
   1.491 +        }
   1.492 +        for (uint32_t i = 0; i < n; i++) {
   1.493 +            r[j][i] = i < j ? 0 : vectorDot(&q[j][0], &a[i][0], m);
   1.494 +        }
   1.495 +    }
   1.496 +#if DEBUG_STRATEGY
   1.497 +    ALOGD("  - q=%s", matrixToString(&q[0][0], m, n, false /*rowMajor*/).string());
   1.498 +    ALOGD("  - r=%s", matrixToString(&r[0][0], n, n, true /*rowMajor*/).string());
   1.499 +
   1.500 +    // calculate QR, if we factored A correctly then QR should equal A
   1.501 +    float qr[n][m];
   1.502 +    for (uint32_t h = 0; h < m; h++) {
   1.503 +        for (uint32_t i = 0; i < n; i++) {
   1.504 +            qr[i][h] = 0;
   1.505 +            for (uint32_t j = 0; j < n; j++) {
   1.506 +                qr[i][h] += q[j][h] * r[j][i];
   1.507 +            }
   1.508 +        }
   1.509 +    }
   1.510 +    ALOGD("  - qr=%s", matrixToString(&qr[0][0], m, n, false /*rowMajor*/).string());
   1.511 +#endif
   1.512 +
   1.513 +    // Solve R B = Qt W Y to find B.  This is easy because R is upper triangular.
   1.514 +    // We just work from bottom-right to top-left calculating B's coefficients.
   1.515 +    float wy[m];
   1.516 +    for (uint32_t h = 0; h < m; h++) {
   1.517 +        wy[h] = y[h] * w[h];
   1.518 +    }
   1.519 +    for (uint32_t i = n; i-- != 0; ) {
   1.520 +        outB[i] = vectorDot(&q[i][0], wy, m);
   1.521 +        for (uint32_t j = n - 1; j > i; j--) {
   1.522 +            outB[i] -= r[i][j] * outB[j];
   1.523 +        }
   1.524 +        outB[i] /= r[i][i];
   1.525 +    }
   1.526 +#if DEBUG_STRATEGY
   1.527 +    ALOGD("  - b=%s", vectorToString(outB, n).string());
   1.528 +#endif
   1.529 +
   1.530 +    // Calculate the coefficient of determination as 1 - (SSerr / SStot) where
   1.531 +    // SSerr is the residual sum of squares (variance of the error),
   1.532 +    // and SStot is the total sum of squares (variance of the data) where each
   1.533 +    // has been weighted.
   1.534 +    float ymean = 0;
   1.535 +    for (uint32_t h = 0; h < m; h++) {
   1.536 +        ymean += y[h];
   1.537 +    }
   1.538 +    ymean /= m;
   1.539 +
   1.540 +    float sserr = 0;
   1.541 +    float sstot = 0;
   1.542 +    for (uint32_t h = 0; h < m; h++) {
   1.543 +        float err = y[h] - outB[0];
   1.544 +        float term = 1;
   1.545 +        for (uint32_t i = 1; i < n; i++) {
   1.546 +            term *= x[h];
   1.547 +            err -= term * outB[i];
   1.548 +        }
   1.549 +        sserr += w[h] * w[h] * err * err;
   1.550 +        float var = y[h] - ymean;
   1.551 +        sstot += w[h] * w[h] * var * var;
   1.552 +    }
   1.553 +    *outDet = sstot > 0.000001f ? 1.0f - (sserr / sstot) : 1;
   1.554 +#if DEBUG_STRATEGY
   1.555 +    ALOGD("  - sserr=%f", sserr);
   1.556 +    ALOGD("  - sstot=%f", sstot);
   1.557 +    ALOGD("  - det=%f", *outDet);
   1.558 +#endif
   1.559 +    return true;
   1.560 +}
   1.561 +
   1.562 +bool LeastSquaresVelocityTrackerStrategy::getEstimator(uint32_t id,
   1.563 +        VelocityTracker::Estimator* outEstimator) const {
   1.564 +    outEstimator->clear();
   1.565 +
   1.566 +    // Iterate over movement samples in reverse time order and collect samples.
   1.567 +    float x[HISTORY_SIZE];
   1.568 +    float y[HISTORY_SIZE];
   1.569 +    float w[HISTORY_SIZE];
   1.570 +    float time[HISTORY_SIZE];
   1.571 +    uint32_t m = 0;
   1.572 +    uint32_t index = mIndex;
   1.573 +    const Movement& newestMovement = mMovements[mIndex];
   1.574 +    do {
   1.575 +        const Movement& movement = mMovements[index];
   1.576 +        if (!movement.idBits.hasBit(id)) {
   1.577 +            break;
   1.578 +        }
   1.579 +
   1.580 +        nsecs_t age = newestMovement.eventTime - movement.eventTime;
   1.581 +        if (age > HORIZON) {
   1.582 +            break;
   1.583 +        }
   1.584 +
   1.585 +        const VelocityTracker::Position& position = movement.getPosition(id);
   1.586 +        x[m] = position.x;
   1.587 +        y[m] = position.y;
   1.588 +        w[m] = chooseWeight(index);
   1.589 +        time[m] = -age * 0.000000001f;
   1.590 +        index = (index == 0 ? HISTORY_SIZE : index) - 1;
   1.591 +    } while (++m < HISTORY_SIZE);
   1.592 +
   1.593 +    if (m == 0) {
   1.594 +        return false; // no data
   1.595 +    }
   1.596 +
   1.597 +    // Calculate a least squares polynomial fit.
   1.598 +    uint32_t degree = mDegree;
   1.599 +    if (degree > m - 1) {
   1.600 +        degree = m - 1;
   1.601 +    }
   1.602 +    if (degree >= 1) {
   1.603 +        float xdet, ydet;
   1.604 +        uint32_t n = degree + 1;
   1.605 +        if (solveLeastSquares(time, x, w, m, n, outEstimator->xCoeff, &xdet)
   1.606 +                && solveLeastSquares(time, y, w, m, n, outEstimator->yCoeff, &ydet)) {
   1.607 +            outEstimator->time = newestMovement.eventTime;
   1.608 +            outEstimator->degree = degree;
   1.609 +            outEstimator->confidence = xdet * ydet;
   1.610 +#if DEBUG_STRATEGY
   1.611 +            ALOGD("estimate: degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f",
   1.612 +                    int(outEstimator->degree),
   1.613 +                    vectorToString(outEstimator->xCoeff, n).string(),
   1.614 +                    vectorToString(outEstimator->yCoeff, n).string(),
   1.615 +                    outEstimator->confidence);
   1.616 +#endif
   1.617 +            return true;
   1.618 +        }
   1.619 +    }
   1.620 +
   1.621 +    // No velocity data available for this pointer, but we do have its current position.
   1.622 +    outEstimator->xCoeff[0] = x[0];
   1.623 +    outEstimator->yCoeff[0] = y[0];
   1.624 +    outEstimator->time = newestMovement.eventTime;
   1.625 +    outEstimator->degree = 0;
   1.626 +    outEstimator->confidence = 1;
   1.627 +    return true;
   1.628 +}
   1.629 +
   1.630 +float LeastSquaresVelocityTrackerStrategy::chooseWeight(uint32_t index) const {
   1.631 +    switch (mWeighting) {
   1.632 +    case WEIGHTING_DELTA: {
   1.633 +        // Weight points based on how much time elapsed between them and the next
   1.634 +        // point so that points that "cover" a shorter time span are weighed less.
   1.635 +        //   delta  0ms: 0.5
   1.636 +        //   delta 10ms: 1.0
   1.637 +        if (index == mIndex) {
   1.638 +            return 1.0f;
   1.639 +        }
   1.640 +        uint32_t nextIndex = (index + 1) % HISTORY_SIZE;
   1.641 +        float deltaMillis = (mMovements[nextIndex].eventTime- mMovements[index].eventTime)
   1.642 +                * 0.000001f;
   1.643 +        if (deltaMillis < 0) {
   1.644 +            return 0.5f;
   1.645 +        }
   1.646 +        if (deltaMillis < 10) {
   1.647 +            return 0.5f + deltaMillis * 0.05;
   1.648 +        }
   1.649 +        return 1.0f;
   1.650 +    }
   1.651 +
   1.652 +    case WEIGHTING_CENTRAL: {
   1.653 +        // Weight points based on their age, weighing very recent and very old points less.
   1.654 +        //   age  0ms: 0.5
   1.655 +        //   age 10ms: 1.0
   1.656 +        //   age 50ms: 1.0
   1.657 +        //   age 60ms: 0.5
   1.658 +        float ageMillis = (mMovements[mIndex].eventTime - mMovements[index].eventTime)
   1.659 +                * 0.000001f;
   1.660 +        if (ageMillis < 0) {
   1.661 +            return 0.5f;
   1.662 +        }
   1.663 +        if (ageMillis < 10) {
   1.664 +            return 0.5f + ageMillis * 0.05;
   1.665 +        }
   1.666 +        if (ageMillis < 50) {
   1.667 +            return 1.0f;
   1.668 +        }
   1.669 +        if (ageMillis < 60) {
   1.670 +            return 0.5f + (60 - ageMillis) * 0.05;
   1.671 +        }
   1.672 +        return 0.5f;
   1.673 +    }
   1.674 +
   1.675 +    case WEIGHTING_RECENT: {
   1.676 +        // Weight points based on their age, weighing older points less.
   1.677 +        //   age   0ms: 1.0
   1.678 +        //   age  50ms: 1.0
   1.679 +        //   age 100ms: 0.5
   1.680 +        float ageMillis = (mMovements[mIndex].eventTime - mMovements[index].eventTime)
   1.681 +                * 0.000001f;
   1.682 +        if (ageMillis < 50) {
   1.683 +            return 1.0f;
   1.684 +        }
   1.685 +        if (ageMillis < 100) {
   1.686 +            return 0.5f + (100 - ageMillis) * 0.01f;
   1.687 +        }
   1.688 +        return 0.5f;
   1.689 +    }
   1.690 +
   1.691 +    case WEIGHTING_NONE:
   1.692 +    default:
   1.693 +        return 1.0f;
   1.694 +    }
   1.695 +}
   1.696 +
   1.697 +
   1.698 +// --- IntegratingVelocityTrackerStrategy ---
   1.699 +
   1.700 +IntegratingVelocityTrackerStrategy::IntegratingVelocityTrackerStrategy(uint32_t degree) :
   1.701 +        mDegree(degree) {
   1.702 +}
   1.703 +
   1.704 +IntegratingVelocityTrackerStrategy::~IntegratingVelocityTrackerStrategy() {
   1.705 +}
   1.706 +
   1.707 +void IntegratingVelocityTrackerStrategy::clear() {
   1.708 +    mPointerIdBits.clear();
   1.709 +}
   1.710 +
   1.711 +void IntegratingVelocityTrackerStrategy::clearPointers(BitSet32 idBits) {
   1.712 +    mPointerIdBits.value &= ~idBits.value;
   1.713 +}
   1.714 +
   1.715 +void IntegratingVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits,
   1.716 +        const VelocityTracker::Position* positions) {
   1.717 +    uint32_t index = 0;
   1.718 +    for (BitSet32 iterIdBits(idBits); !iterIdBits.isEmpty();) {
   1.719 +        uint32_t id = iterIdBits.clearFirstMarkedBit();
   1.720 +        State& state = mPointerState[id];
   1.721 +        const VelocityTracker::Position& position = positions[index++];
   1.722 +        if (mPointerIdBits.hasBit(id)) {
   1.723 +            updateState(state, eventTime, position.x, position.y);
   1.724 +        } else {
   1.725 +            initState(state, eventTime, position.x, position.y);
   1.726 +        }
   1.727 +    }
   1.728 +
   1.729 +    mPointerIdBits = idBits;
   1.730 +}
   1.731 +
   1.732 +bool IntegratingVelocityTrackerStrategy::getEstimator(uint32_t id,
   1.733 +        VelocityTracker::Estimator* outEstimator) const {
   1.734 +    outEstimator->clear();
   1.735 +
   1.736 +    if (mPointerIdBits.hasBit(id)) {
   1.737 +        const State& state = mPointerState[id];
   1.738 +        populateEstimator(state, outEstimator);
   1.739 +        return true;
   1.740 +    }
   1.741 +
   1.742 +    return false;
   1.743 +}
   1.744 +
   1.745 +void IntegratingVelocityTrackerStrategy::initState(State& state,
   1.746 +        nsecs_t eventTime, float xpos, float ypos) const {
   1.747 +    state.updateTime = eventTime;
   1.748 +    state.degree = 0;
   1.749 +
   1.750 +    state.xpos = xpos;
   1.751 +    state.xvel = 0;
   1.752 +    state.xaccel = 0;
   1.753 +    state.ypos = ypos;
   1.754 +    state.yvel = 0;
   1.755 +    state.yaccel = 0;
   1.756 +}
   1.757 +
   1.758 +void IntegratingVelocityTrackerStrategy::updateState(State& state,
   1.759 +        nsecs_t eventTime, float xpos, float ypos) const {
   1.760 +    const nsecs_t MIN_TIME_DELTA = 2 * NANOS_PER_MS;
   1.761 +    const float FILTER_TIME_CONSTANT = 0.010f; // 10 milliseconds
   1.762 +
   1.763 +    if (eventTime <= state.updateTime + MIN_TIME_DELTA) {
   1.764 +        return;
   1.765 +    }
   1.766 +
   1.767 +    float dt = (eventTime - state.updateTime) * 0.000000001f;
   1.768 +    state.updateTime = eventTime;
   1.769 +
   1.770 +    float xvel = (xpos - state.xpos) / dt;
   1.771 +    float yvel = (ypos - state.ypos) / dt;
   1.772 +    if (state.degree == 0) {
   1.773 +        state.xvel = xvel;
   1.774 +        state.yvel = yvel;
   1.775 +        state.degree = 1;
   1.776 +    } else {
   1.777 +        float alpha = dt / (FILTER_TIME_CONSTANT + dt);
   1.778 +        if (mDegree == 1) {
   1.779 +            state.xvel += (xvel - state.xvel) * alpha;
   1.780 +            state.yvel += (yvel - state.yvel) * alpha;
   1.781 +        } else {
   1.782 +            float xaccel = (xvel - state.xvel) / dt;
   1.783 +            float yaccel = (yvel - state.yvel) / dt;
   1.784 +            if (state.degree == 1) {
   1.785 +                state.xaccel = xaccel;
   1.786 +                state.yaccel = yaccel;
   1.787 +                state.degree = 2;
   1.788 +            } else {
   1.789 +                state.xaccel += (xaccel - state.xaccel) * alpha;
   1.790 +                state.yaccel += (yaccel - state.yaccel) * alpha;
   1.791 +            }
   1.792 +            state.xvel += (state.xaccel * dt) * alpha;
   1.793 +            state.yvel += (state.yaccel * dt) * alpha;
   1.794 +        }
   1.795 +    }
   1.796 +    state.xpos = xpos;
   1.797 +    state.ypos = ypos;
   1.798 +}
   1.799 +
   1.800 +void IntegratingVelocityTrackerStrategy::populateEstimator(const State& state,
   1.801 +        VelocityTracker::Estimator* outEstimator) const {
   1.802 +    outEstimator->time = state.updateTime;
   1.803 +    outEstimator->confidence = 1.0f;
   1.804 +    outEstimator->degree = state.degree;
   1.805 +    outEstimator->xCoeff[0] = state.xpos;
   1.806 +    outEstimator->xCoeff[1] = state.xvel;
   1.807 +    outEstimator->xCoeff[2] = state.xaccel / 2;
   1.808 +    outEstimator->yCoeff[0] = state.ypos;
   1.809 +    outEstimator->yCoeff[1] = state.yvel;
   1.810 +    outEstimator->yCoeff[2] = state.yaccel / 2;
   1.811 +}
   1.812 +
   1.813 +
   1.814 +// --- LegacyVelocityTrackerStrategy ---
   1.815 +
   1.816 +const nsecs_t LegacyVelocityTrackerStrategy::HORIZON;
   1.817 +const uint32_t LegacyVelocityTrackerStrategy::HISTORY_SIZE;
   1.818 +const nsecs_t LegacyVelocityTrackerStrategy::MIN_DURATION;
   1.819 +
   1.820 +LegacyVelocityTrackerStrategy::LegacyVelocityTrackerStrategy() {
   1.821 +    clear();
   1.822 +}
   1.823 +
   1.824 +LegacyVelocityTrackerStrategy::~LegacyVelocityTrackerStrategy() {
   1.825 +}
   1.826 +
   1.827 +void LegacyVelocityTrackerStrategy::clear() {
   1.828 +    mIndex = 0;
   1.829 +    mMovements[0].idBits.clear();
   1.830 +}
   1.831 +
   1.832 +void LegacyVelocityTrackerStrategy::clearPointers(BitSet32 idBits) {
   1.833 +    BitSet32 remainingIdBits(mMovements[mIndex].idBits.value & ~idBits.value);
   1.834 +    mMovements[mIndex].idBits = remainingIdBits;
   1.835 +}
   1.836 +
   1.837 +void LegacyVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits,
   1.838 +        const VelocityTracker::Position* positions) {
   1.839 +    if (++mIndex == HISTORY_SIZE) {
   1.840 +        mIndex = 0;
   1.841 +    }
   1.842 +
   1.843 +    Movement& movement = mMovements[mIndex];
   1.844 +    movement.eventTime = eventTime;
   1.845 +    movement.idBits = idBits;
   1.846 +    uint32_t count = idBits.count();
   1.847 +    for (uint32_t i = 0; i < count; i++) {
   1.848 +        movement.positions[i] = positions[i];
   1.849 +    }
   1.850 +}
   1.851 +
   1.852 +bool LegacyVelocityTrackerStrategy::getEstimator(uint32_t id,
   1.853 +        VelocityTracker::Estimator* outEstimator) const {
   1.854 +    outEstimator->clear();
   1.855 +
   1.856 +    const Movement& newestMovement = mMovements[mIndex];
   1.857 +    if (!newestMovement.idBits.hasBit(id)) {
   1.858 +        return false; // no data
   1.859 +    }
   1.860 +
   1.861 +    // Find the oldest sample that contains the pointer and that is not older than HORIZON.
   1.862 +    nsecs_t minTime = newestMovement.eventTime - HORIZON;
   1.863 +    uint32_t oldestIndex = mIndex;
   1.864 +    uint32_t numTouches = 1;
   1.865 +    do {
   1.866 +        uint32_t nextOldestIndex = (oldestIndex == 0 ? HISTORY_SIZE : oldestIndex) - 1;
   1.867 +        const Movement& nextOldestMovement = mMovements[nextOldestIndex];
   1.868 +        if (!nextOldestMovement.idBits.hasBit(id)
   1.869 +                || nextOldestMovement.eventTime < minTime) {
   1.870 +            break;
   1.871 +        }
   1.872 +        oldestIndex = nextOldestIndex;
   1.873 +    } while (++numTouches < HISTORY_SIZE);
   1.874 +
   1.875 +    // Calculate an exponentially weighted moving average of the velocity estimate
   1.876 +    // at different points in time measured relative to the oldest sample.
   1.877 +    // This is essentially an IIR filter.  Newer samples are weighted more heavily
   1.878 +    // than older samples.  Samples at equal time points are weighted more or less
   1.879 +    // equally.
   1.880 +    //
   1.881 +    // One tricky problem is that the sample data may be poorly conditioned.
   1.882 +    // Sometimes samples arrive very close together in time which can cause us to
   1.883 +    // overestimate the velocity at that time point.  Most samples might be measured
   1.884 +    // 16ms apart but some consecutive samples could be only 0.5sm apart because
   1.885 +    // the hardware or driver reports them irregularly or in bursts.
   1.886 +    float accumVx = 0;
   1.887 +    float accumVy = 0;
   1.888 +    uint32_t index = oldestIndex;
   1.889 +    uint32_t samplesUsed = 0;
   1.890 +    const Movement& oldestMovement = mMovements[oldestIndex];
   1.891 +    const VelocityTracker::Position& oldestPosition = oldestMovement.getPosition(id);
   1.892 +    nsecs_t lastDuration = 0;
   1.893 +
   1.894 +    while (numTouches-- > 1) {
   1.895 +        if (++index == HISTORY_SIZE) {
   1.896 +            index = 0;
   1.897 +        }
   1.898 +        const Movement& movement = mMovements[index];
   1.899 +        nsecs_t duration = movement.eventTime - oldestMovement.eventTime;
   1.900 +
   1.901 +        // If the duration between samples is small, we may significantly overestimate
   1.902 +        // the velocity.  Consequently, we impose a minimum duration constraint on the
   1.903 +        // samples that we include in the calculation.
   1.904 +        if (duration >= MIN_DURATION) {
   1.905 +            const VelocityTracker::Position& position = movement.getPosition(id);
   1.906 +            float scale = 1000000000.0f / duration; // one over time delta in seconds
   1.907 +            float vx = (position.x - oldestPosition.x) * scale;
   1.908 +            float vy = (position.y - oldestPosition.y) * scale;
   1.909 +            accumVx = (accumVx * lastDuration + vx * duration) / (duration + lastDuration);
   1.910 +            accumVy = (accumVy * lastDuration + vy * duration) / (duration + lastDuration);
   1.911 +            lastDuration = duration;
   1.912 +            samplesUsed += 1;
   1.913 +        }
   1.914 +    }
   1.915 +
   1.916 +    // Report velocity.
   1.917 +    const VelocityTracker::Position& newestPosition = newestMovement.getPosition(id);
   1.918 +    outEstimator->time = newestMovement.eventTime;
   1.919 +    outEstimator->confidence = 1;
   1.920 +    outEstimator->xCoeff[0] = newestPosition.x;
   1.921 +    outEstimator->yCoeff[0] = newestPosition.y;
   1.922 +    if (samplesUsed) {
   1.923 +        outEstimator->xCoeff[1] = accumVx;
   1.924 +        outEstimator->yCoeff[1] = accumVy;
   1.925 +        outEstimator->degree = 1;
   1.926 +    } else {
   1.927 +        outEstimator->degree = 0;
   1.928 +    }
   1.929 +    return true;
   1.930 +}
   1.931 +
   1.932 +} // namespace android

mercurial