xpcom/ds/TimeStamp.h

changeset 0
6474c204b198
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/xpcom/ds/TimeStamp.h	Wed Dec 31 06:09:35 2014 +0100
     1.3 @@ -0,0 +1,377 @@
     1.4 +/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
     1.5 +/* vim:set ts=2 sw=2 sts=2 et cindent: */
     1.6 +/* This Source Code Form is subject to the terms of the Mozilla Public
     1.7 + * License, v. 2.0. If a copy of the MPL was not distributed with this
     1.8 + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
     1.9 +
    1.10 +#ifndef mozilla_TimeStamp_h
    1.11 +#define mozilla_TimeStamp_h
    1.12 +
    1.13 +#include <stdint.h>
    1.14 +#include "mozilla/Assertions.h"
    1.15 +#include "mozilla/Attributes.h"
    1.16 +#include "nscore.h"
    1.17 +
    1.18 +namespace IPC {
    1.19 +template <typename T> struct ParamTraits;
    1.20 +}
    1.21 +
    1.22 +#ifdef XP_WIN
    1.23 +// defines TimeStampValue as a complex value keeping both
    1.24 +// GetTickCount and QueryPerformanceCounter values
    1.25 +#include "TimeStamp_windows.h"
    1.26 +#endif
    1.27 +
    1.28 +namespace mozilla {
    1.29 +
    1.30 +#ifndef XP_WIN
    1.31 +typedef uint64_t TimeStampValue;
    1.32 +#endif
    1.33 +
    1.34 +class TimeStamp;
    1.35 +
    1.36 +/**
    1.37 + * Instances of this class represent the length of an interval of time.
    1.38 + * Negative durations are allowed, meaning the end is before the start.
    1.39 + * 
    1.40 + * Internally the duration is stored as a int64_t in units of
    1.41 + * PR_TicksPerSecond() when building with NSPR interval timers, or a
    1.42 + * system-dependent unit when building with system clocks.  The
    1.43 + * system-dependent unit must be constant, otherwise the semantics of
    1.44 + * this class would be broken.
    1.45 + */
    1.46 +class TimeDuration
    1.47 +{
    1.48 +public:
    1.49 +  // The default duration is 0.
    1.50 +  MOZ_CONSTEXPR TimeDuration() : mValue(0) {}
    1.51 +  // Allow construction using '0' as the initial value, for readability,
    1.52 +  // but no other numbers (so we don't have any implicit unit conversions).
    1.53 +  struct _SomethingVeryRandomHere;
    1.54 +  TimeDuration(_SomethingVeryRandomHere* aZero) : mValue(0) {
    1.55 +    MOZ_ASSERT(!aZero, "Who's playing funny games here?");
    1.56 +  }
    1.57 +  // Default copy-constructor and assignment are OK
    1.58 +
    1.59 +  double ToSeconds() const;
    1.60 +  // Return a duration value that includes digits of time we think to
    1.61 +  // be significant.  This method should be used when displaying a
    1.62 +  // time to humans.
    1.63 +  double ToSecondsSigDigits() const;
    1.64 +  double ToMilliseconds() const {
    1.65 +    return ToSeconds() * 1000.0;
    1.66 +  }
    1.67 +  double ToMicroseconds() const {
    1.68 +    return ToMilliseconds() * 1000.0;
    1.69 +  }
    1.70 +
    1.71 +  // Using a double here is safe enough; with 53 bits we can represent
    1.72 +  // durations up to over 280,000 years exactly.  If the units of
    1.73 +  // mValue do not allow us to represent durations of that length,
    1.74 +  // long durations are clamped to the max/min representable value
    1.75 +  // instead of overflowing.
    1.76 +  static inline TimeDuration FromSeconds(double aSeconds) {
    1.77 +    return FromMilliseconds(aSeconds * 1000.0);
    1.78 +  }
    1.79 +  static TimeDuration FromMilliseconds(double aMilliseconds);
    1.80 +  static inline TimeDuration FromMicroseconds(double aMicroseconds) {
    1.81 +    return FromMilliseconds(aMicroseconds / 1000.0);
    1.82 +  }
    1.83 +
    1.84 +  static TimeDuration Forever() {
    1.85 +    return FromTicks(INT64_MAX);
    1.86 +  }
    1.87 +
    1.88 +  TimeDuration operator+(const TimeDuration& aOther) const {
    1.89 +    return TimeDuration::FromTicks(mValue + aOther.mValue);
    1.90 +  }
    1.91 +  TimeDuration operator-(const TimeDuration& aOther) const {
    1.92 +    return TimeDuration::FromTicks(mValue - aOther.mValue);
    1.93 +  }
    1.94 +  TimeDuration& operator+=(const TimeDuration& aOther) {
    1.95 +    mValue += aOther.mValue;
    1.96 +    return *this;
    1.97 +  }
    1.98 +  TimeDuration& operator-=(const TimeDuration& aOther) {
    1.99 +    mValue -= aOther.mValue;
   1.100 +    return *this;
   1.101 +  }
   1.102 +
   1.103 +private:
   1.104 +  // Block double multiplier (slower, imprecise if long duration) - Bug 853398.
   1.105 +  // If required, use MultDouble explicitly and with care.
   1.106 +  TimeDuration operator*(const double aMultiplier) const MOZ_DELETE;
   1.107 +
   1.108 +public:
   1.109 +  TimeDuration MultDouble(double aMultiplier) const {
   1.110 +    return TimeDuration::FromTicks(static_cast<int64_t>(mValue * aMultiplier));
   1.111 +  }
   1.112 +  TimeDuration operator*(const int32_t aMultiplier) const {
   1.113 +    return TimeDuration::FromTicks(mValue * int64_t(aMultiplier));
   1.114 +  }
   1.115 +  TimeDuration operator*(const uint32_t aMultiplier) const {
   1.116 +    return TimeDuration::FromTicks(mValue * int64_t(aMultiplier));
   1.117 +  }
   1.118 +  TimeDuration operator*(const int64_t aMultiplier) const {
   1.119 +    return TimeDuration::FromTicks(mValue * int64_t(aMultiplier));
   1.120 +  }
   1.121 +  TimeDuration operator/(const int64_t aDivisor) const {
   1.122 +    return TimeDuration::FromTicks(mValue / aDivisor);
   1.123 +  }
   1.124 +  double operator/(const TimeDuration& aOther) const {
   1.125 +    return static_cast<double>(mValue) / aOther.mValue;
   1.126 +  }
   1.127 +
   1.128 +  bool operator<(const TimeDuration& aOther) const {
   1.129 +    return mValue < aOther.mValue;
   1.130 +  }
   1.131 +  bool operator<=(const TimeDuration& aOther) const {
   1.132 +    return mValue <= aOther.mValue;
   1.133 +  }
   1.134 +  bool operator>=(const TimeDuration& aOther) const {
   1.135 +    return mValue >= aOther.mValue;
   1.136 +  }
   1.137 +  bool operator>(const TimeDuration& aOther) const {
   1.138 +    return mValue > aOther.mValue;
   1.139 +  }
   1.140 +  bool operator==(const TimeDuration& aOther) const {
   1.141 +    return mValue == aOther.mValue;
   1.142 +  }
   1.143 +
   1.144 +  // Return a best guess at the system's current timing resolution,
   1.145 +  // which might be variable.  TimeDurations below this order of
   1.146 +  // magnitude are meaningless, and those at the same order of
   1.147 +  // magnitude or just above are suspect.
   1.148 +  static TimeDuration Resolution();
   1.149 +
   1.150 +  // We could define additional operators here:
   1.151 +  // -- convert to/from other time units
   1.152 +  // -- scale duration by a float
   1.153 +  // but let's do that on demand.
   1.154 +  // Comparing durations for equality will only lead to bugs on
   1.155 +  // platforms with high-resolution timers.
   1.156 +
   1.157 +private:
   1.158 +  friend class TimeStamp;
   1.159 +  friend struct IPC::ParamTraits<mozilla::TimeDuration>;
   1.160 +
   1.161 +  static TimeDuration FromTicks(int64_t aTicks) {
   1.162 +    TimeDuration t;
   1.163 +    t.mValue = aTicks;
   1.164 +    return t;
   1.165 +  }
   1.166 +
   1.167 +  static TimeDuration FromTicks(double aTicks) {
   1.168 +    // NOTE: this MUST be a >= test, because int64_t(double(INT64_MAX))
   1.169 +    // overflows and gives INT64_MIN.
   1.170 +    if (aTicks >= double(INT64_MAX))
   1.171 +      return TimeDuration::FromTicks(INT64_MAX);
   1.172 +
   1.173 +    // This MUST be a <= test.
   1.174 +    if (aTicks <= double(INT64_MIN))
   1.175 +      return TimeDuration::FromTicks(INT64_MIN);
   1.176 +
   1.177 +    return TimeDuration::FromTicks(int64_t(aTicks));
   1.178 +  }
   1.179 +
   1.180 +  // Duration, result is implementation-specific difference of two TimeStamps
   1.181 +  int64_t mValue;
   1.182 +};
   1.183 +
   1.184 +/**
   1.185 + * Instances of this class represent moments in time, or a special
   1.186 + * "null" moment. We do not use the non-monotonic system clock or
   1.187 + * local time, since they can be reset, causing apparent backward
   1.188 + * travel in time, which can confuse algorithms. Instead we measure
   1.189 + * elapsed time according to the system.  This time can never go
   1.190 + * backwards (i.e. it never wraps around, at least not in less than
   1.191 + * five million years of system elapsed time). It might not advance
   1.192 + * while the system is sleeping. If TimeStamp::SetNow() is not called
   1.193 + * at all for hours or days, we might not notice the passage of some
   1.194 + * of that time.
   1.195 + * 
   1.196 + * We deliberately do not expose a way to convert TimeStamps to some
   1.197 + * particular unit. All you can do is compute a difference between two
   1.198 + * TimeStamps to get a TimeDuration. You can also add a TimeDuration
   1.199 + * to a TimeStamp to get a new TimeStamp. You can't do something
   1.200 + * meaningless like add two TimeStamps.
   1.201 + *
   1.202 + * Internally this is implemented as either a wrapper around
   1.203 + *   - high-resolution, monotonic, system clocks if they exist on this
   1.204 + *     platform
   1.205 + *   - PRIntervalTime otherwise.  We detect wraparounds of
   1.206 + *     PRIntervalTime and work around them.
   1.207 + *
   1.208 + * This class is similar to C++11's time_point, however it is
   1.209 + * explicitly nullable and provides an IsNull() method. time_point
   1.210 + * is initialized to the clock's epoch and provides a
   1.211 + * time_since_epoch() method that functions similiarly. i.e.
   1.212 + * t.IsNull() is equivalent to t.time_since_epoch() == decltype(t)::duration::zero();
   1.213 + */
   1.214 +class TimeStamp
   1.215 +{
   1.216 +public:
   1.217 +  /**
   1.218 +   * Initialize to the "null" moment
   1.219 +   */
   1.220 +  MOZ_CONSTEXPR TimeStamp() : mValue(0) {}
   1.221 +  // Default copy-constructor and assignment are OK
   1.222 +
   1.223 +  /**
   1.224 +   * Return true if this is the "null" moment
   1.225 +   */
   1.226 +  bool IsNull() const { return mValue == 0; }
   1.227 +  /**
   1.228 +   * Return a timestamp reflecting the current elapsed system time. This
   1.229 +   * is monotonically increasing (i.e., does not decrease) over the
   1.230 +   * lifetime of this process' XPCOM session.
   1.231 +   *
   1.232 +   * Now() is trying to ensure the best possible precision on each platform,
   1.233 +   * at least one millisecond.
   1.234 +   *
   1.235 +   * NowLoRes() has been introduced to workaround performance problems of
   1.236 +   * QueryPerformanceCounter on the Windows platform.  NowLoRes() is giving
   1.237 +   * lower precision, usually 15.6 ms, but with very good performance benefit.
   1.238 +   * Use it for measurements of longer times, like >200ms timeouts.
   1.239 +   */
   1.240 +  static TimeStamp Now() { return Now(true); }
   1.241 +  static TimeStamp NowLoRes() { return Now(false); }
   1.242 +
   1.243 +  /**
   1.244 +   * Return a timestamp representing the time when the current process was
   1.245 +   * created which will be comparable with other timestamps taken with this
   1.246 +   * class. If the actual process creation time is detected to be inconsistent
   1.247 +   * the @a aIsInconsistent parameter will be set to true, the returned
   1.248 +   * timestamp however will still be valid though inaccurate.
   1.249 +   *
   1.250 +   * @param aIsInconsistent Set to true if an inconsistency was detected in the
   1.251 +   * process creation time
   1.252 +   * @returns A timestamp representing the time when the process was created,
   1.253 +   * this timestamp is always valid even when errors are reported
   1.254 +   */
   1.255 +  static TimeStamp ProcessCreation(bool& aIsInconsistent);
   1.256 +
   1.257 +  /**
   1.258 +   * Records a process restart. After this call ProcessCreation() will return
   1.259 +   * the time when the browser was restarted instead of the actual time when
   1.260 +   * the process was created.
   1.261 +   */
   1.262 +  static void RecordProcessRestart();
   1.263 +
   1.264 +  /**
   1.265 +   * Compute the difference between two timestamps. Both must be non-null.
   1.266 +   */
   1.267 +  TimeDuration operator-(const TimeStamp& aOther) const {
   1.268 +    MOZ_ASSERT(!IsNull(), "Cannot compute with a null value");
   1.269 +    MOZ_ASSERT(!aOther.IsNull(), "Cannot compute with aOther null value");
   1.270 +    static_assert(-INT64_MAX > INT64_MIN, "int64_t sanity check");
   1.271 +    int64_t ticks = int64_t(mValue - aOther.mValue);
   1.272 +    // Check for overflow.
   1.273 +    if (mValue > aOther.mValue) {
   1.274 +      if (ticks < 0) {
   1.275 +        ticks = INT64_MAX;
   1.276 +      }
   1.277 +    } else {
   1.278 +      if (ticks > 0) {
   1.279 +        ticks = INT64_MIN;
   1.280 +      }
   1.281 +    }
   1.282 +    return TimeDuration::FromTicks(ticks);
   1.283 +  }
   1.284 +
   1.285 +  TimeStamp operator+(const TimeDuration& aOther) const {
   1.286 +    MOZ_ASSERT(!IsNull(), "Cannot compute with a null value");
   1.287 +    return TimeStamp(mValue + aOther.mValue);
   1.288 +  }
   1.289 +  TimeStamp operator-(const TimeDuration& aOther) const {
   1.290 +    MOZ_ASSERT(!IsNull(), "Cannot compute with a null value");
   1.291 +    return TimeStamp(mValue - aOther.mValue);
   1.292 +  }
   1.293 +  TimeStamp& operator+=(const TimeDuration& aOther) {
   1.294 +    MOZ_ASSERT(!IsNull(), "Cannot compute with a null value");
   1.295 +    mValue += aOther.mValue;
   1.296 +    return *this;
   1.297 +  }
   1.298 +  TimeStamp& operator-=(const TimeDuration& aOther) {
   1.299 +    MOZ_ASSERT(!IsNull(), "Cannot compute with a null value");
   1.300 +    mValue -= aOther.mValue;
   1.301 +    return *this;
   1.302 +  }
   1.303 +
   1.304 +  bool operator<(const TimeStamp& aOther) const {
   1.305 +    MOZ_ASSERT(!IsNull(), "Cannot compute with a null value");
   1.306 +    MOZ_ASSERT(!aOther.IsNull(), "Cannot compute with aOther null value");
   1.307 +    return mValue < aOther.mValue;
   1.308 +  }
   1.309 +  bool operator<=(const TimeStamp& aOther) const {
   1.310 +    MOZ_ASSERT(!IsNull(), "Cannot compute with a null value");
   1.311 +    MOZ_ASSERT(!aOther.IsNull(), "Cannot compute with aOther null value");
   1.312 +    return mValue <= aOther.mValue;
   1.313 +  }
   1.314 +  bool operator>=(const TimeStamp& aOther) const {
   1.315 +    MOZ_ASSERT(!IsNull(), "Cannot compute with a null value");
   1.316 +    MOZ_ASSERT(!aOther.IsNull(), "Cannot compute with aOther null value");
   1.317 +    return mValue >= aOther.mValue;
   1.318 +  }
   1.319 +  bool operator>(const TimeStamp& aOther) const {
   1.320 +    MOZ_ASSERT(!IsNull(), "Cannot compute with a null value");
   1.321 +    MOZ_ASSERT(!aOther.IsNull(), "Cannot compute with aOther null value");
   1.322 +    return mValue > aOther.mValue;
   1.323 +  }
   1.324 +  bool operator==(const TimeStamp& aOther) const {
   1.325 +    // Maybe it's ok to check == with null timestamps?
   1.326 +    MOZ_ASSERT(!IsNull() && "Cannot compute with a null value");
   1.327 +    MOZ_ASSERT(!aOther.IsNull(), "Cannot compute with aOther null value");
   1.328 +    return mValue == aOther.mValue;
   1.329 +  }
   1.330 +  bool operator!=(const TimeStamp& aOther) const {
   1.331 +    // Maybe it's ok to check != with null timestamps?
   1.332 +    MOZ_ASSERT(!IsNull(), "Cannot compute with a null value");
   1.333 +    MOZ_ASSERT(!aOther.IsNull(), "Cannot compute with aOther null value");
   1.334 +    return mValue != aOther.mValue;
   1.335 +  }
   1.336 +
   1.337 +  // Comparing TimeStamps for equality should be discouraged. Adding
   1.338 +  // two TimeStamps, or scaling TimeStamps, is nonsense and must never
   1.339 +  // be allowed.
   1.340 +
   1.341 +  static NS_HIDDEN_(nsresult) Startup();
   1.342 +  static NS_HIDDEN_(void) Shutdown();
   1.343 +
   1.344 +private:
   1.345 +  friend struct IPC::ParamTraits<mozilla::TimeStamp>;
   1.346 +  friend void StartupTimelineRecordExternal(int, uint64_t);
   1.347 +
   1.348 +  TimeStamp(TimeStampValue aValue) : mValue(aValue) {}
   1.349 +
   1.350 +  static TimeStamp Now(bool aHighResolution);
   1.351 +
   1.352 +  /**
   1.353 +   * Computes the uptime of the current process in microseconds. The result
   1.354 +   * is platform-dependent and needs to be checked against existing timestamps
   1.355 +   * for consistency.
   1.356 +   *
   1.357 +   * @returns The number of microseconds since the calling process was started
   1.358 +   *          or 0 if an error was encountered while computing the uptime
   1.359 +   */
   1.360 +  static uint64_t ComputeProcessUptime();
   1.361 +
   1.362 +  /**
   1.363 +   * When built with PRIntervalTime, a value of 0 means this instance
   1.364 +   * is "null". Otherwise, the low 32 bits represent a PRIntervalTime,
   1.365 +   * and the high 32 bits represent a counter of the number of
   1.366 +   * rollovers of PRIntervalTime that we've seen. This counter starts
   1.367 +   * at 1 to avoid a real time colliding with the "null" value.
   1.368 +   * 
   1.369 +   * PR_INTERVAL_MAX is set at 100,000 ticks per second. So the minimum
   1.370 +   * time to wrap around is about 2^64/100000 seconds, i.e. about
   1.371 +   * 5,849,424 years.
   1.372 +   *
   1.373 +   * When using a system clock, a value is system dependent.
   1.374 +   */
   1.375 +  TimeStampValue mValue;
   1.376 +};
   1.377 +
   1.378 +}
   1.379 +
   1.380 +#endif /* mozilla_TimeStamp_h */

mercurial