1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/xpcom/ds/TimeStamp_posix.cpp Wed Dec 31 06:09:35 2014 +0100 1.3 @@ -0,0 +1,345 @@ 1.4 +/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ 1.5 +/* vim:set ts=2 sw=2 sts=2 et cindent: */ 1.6 +/* This Source Code Form is subject to the terms of the Mozilla Public 1.7 + * License, v. 2.0. If a copy of the MPL was not distributed with this 1.8 + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ 1.9 + 1.10 +// 1.11 +// Implement TimeStamp::Now() with POSIX clocks. 1.12 +// 1.13 +// The "tick" unit for POSIX clocks is simply a nanosecond, as this is 1.14 +// the smallest unit of time representable by struct timespec. That 1.15 +// doesn't mean that a nanosecond is the resolution of TimeDurations 1.16 +// obtained with this API; see TimeDuration::Resolution; 1.17 +// 1.18 + 1.19 +#include <sys/syscall.h> 1.20 +#include <time.h> 1.21 +#include <unistd.h> 1.22 + 1.23 +#if defined(__DragonFly__) || defined(__FreeBSD__) \ 1.24 + || defined(__NetBSD__) || defined(__OpenBSD__) 1.25 +#include <sys/param.h> 1.26 +#include <sys/sysctl.h> 1.27 +#endif 1.28 + 1.29 +#if defined(__DragonFly__) || defined(__FreeBSD__) 1.30 +#include <sys/user.h> 1.31 +#endif 1.32 + 1.33 +#if defined(__NetBSD__) 1.34 +#undef KERN_PROC 1.35 +#define KERN_PROC KERN_PROC2 1.36 +#define KINFO_PROC struct kinfo_proc2 1.37 +#else 1.38 +#define KINFO_PROC struct kinfo_proc 1.39 +#endif 1.40 + 1.41 +#if defined(__DragonFly__) 1.42 +#define KP_START_SEC kp_start.tv_sec 1.43 +#define KP_START_USEC kp_start.tv_usec 1.44 +#elif defined(__FreeBSD__) 1.45 +#define KP_START_SEC ki_start.tv_sec 1.46 +#define KP_START_USEC ki_start.tv_usec 1.47 +#else 1.48 +#define KP_START_SEC p_ustart_sec 1.49 +#define KP_START_USEC p_ustart_usec 1.50 +#endif 1.51 + 1.52 +#include "mozilla/TimeStamp.h" 1.53 +#include "nsCRT.h" 1.54 +#include "prprf.h" 1.55 +#include "prthread.h" 1.56 +#include "nsDebug.h" 1.57 + 1.58 +// Estimate of the smallest duration of time we can measure. 1.59 +static uint64_t sResolution; 1.60 +static uint64_t sResolutionSigDigs; 1.61 + 1.62 +static const uint16_t kNsPerUs = 1000; 1.63 +static const uint64_t kNsPerMs = 1000000; 1.64 +static const uint64_t kNsPerSec = 1000000000; 1.65 +static const double kNsPerMsd = 1000000.0; 1.66 +static const double kNsPerSecd = 1000000000.0; 1.67 + 1.68 +static uint64_t 1.69 +TimespecToNs(const struct timespec& ts) 1.70 +{ 1.71 + uint64_t baseNs = uint64_t(ts.tv_sec) * kNsPerSec; 1.72 + return baseNs + uint64_t(ts.tv_nsec); 1.73 +} 1.74 + 1.75 +static uint64_t 1.76 +ClockTimeNs() 1.77 +{ 1.78 + struct timespec ts; 1.79 + // this can't fail: we know &ts is valid, and TimeStamp::Startup() 1.80 + // checks that CLOCK_MONOTONIC is supported (and aborts if not) 1.81 + clock_gettime(CLOCK_MONOTONIC, &ts); 1.82 + 1.83 + // tv_sec is defined to be relative to an arbitrary point in time, 1.84 + // but it would be madness for that point in time to be earlier than 1.85 + // the Epoch. So we can safely assume that even if time_t is 32 1.86 + // bits, tv_sec won't overflow while the browser is open. Revisit 1.87 + // this argument if we're still building with 32-bit time_t around 1.88 + // the year 2037. 1.89 + return TimespecToNs(ts); 1.90 +} 1.91 + 1.92 +static uint64_t 1.93 +ClockResolutionNs() 1.94 +{ 1.95 + // NB: why not rely on clock_getres()? Two reasons: (i) it might 1.96 + // lie, and (ii) it might return an "ideal" resolution that while 1.97 + // theoretically true, could never be measured in practice. Since 1.98 + // clock_gettime() likely involves a system call on your platform, 1.99 + // the "actual" timing resolution shouldn't be lower than syscall 1.100 + // overhead. 1.101 + 1.102 + uint64_t start = ClockTimeNs(); 1.103 + uint64_t end = ClockTimeNs(); 1.104 + uint64_t minres = (end - start); 1.105 + 1.106 + // 10 total trials is arbitrary: what we're trying to avoid by 1.107 + // looping is getting unlucky and being interrupted by a context 1.108 + // switch or signal, or being bitten by paging/cache effects 1.109 + for (int i = 0; i < 9; ++i) { 1.110 + start = ClockTimeNs(); 1.111 + end = ClockTimeNs(); 1.112 + 1.113 + uint64_t candidate = (start - end); 1.114 + if (candidate < minres) 1.115 + minres = candidate; 1.116 + } 1.117 + 1.118 + if (0 == minres) { 1.119 + // measurable resolution is either incredibly low, ~1ns, or very 1.120 + // high. fall back on clock_getres() 1.121 + struct timespec ts; 1.122 + if (0 == clock_getres(CLOCK_MONOTONIC, &ts)) { 1.123 + minres = TimespecToNs(ts); 1.124 + } 1.125 + } 1.126 + 1.127 + if (0 == minres) { 1.128 + // clock_getres probably failed. fall back on NSPR's resolution 1.129 + // assumption 1.130 + minres = 1 * kNsPerMs; 1.131 + } 1.132 + 1.133 + return minres; 1.134 +} 1.135 + 1.136 +namespace mozilla { 1.137 + 1.138 +double 1.139 +TimeDuration::ToSeconds() const 1.140 +{ 1.141 + return double(mValue) / kNsPerSecd; 1.142 +} 1.143 + 1.144 +double 1.145 +TimeDuration::ToSecondsSigDigits() const 1.146 +{ 1.147 + // don't report a value < mResolution ... 1.148 + int64_t valueSigDigs = sResolution * (mValue / sResolution); 1.149 + // and chop off insignificant digits 1.150 + valueSigDigs = sResolutionSigDigs * (valueSigDigs / sResolutionSigDigs); 1.151 + return double(valueSigDigs) / kNsPerSecd; 1.152 +} 1.153 + 1.154 +TimeDuration 1.155 +TimeDuration::FromMilliseconds(double aMilliseconds) 1.156 +{ 1.157 + return TimeDuration::FromTicks(aMilliseconds * kNsPerMsd); 1.158 +} 1.159 + 1.160 +TimeDuration 1.161 +TimeDuration::Resolution() 1.162 +{ 1.163 + return TimeDuration::FromTicks(int64_t(sResolution)); 1.164 +} 1.165 + 1.166 +static bool gInitialized = false; 1.167 + 1.168 +nsresult 1.169 +TimeStamp::Startup() 1.170 +{ 1.171 + if (gInitialized) 1.172 + return NS_OK; 1.173 + 1.174 + struct timespec dummy; 1.175 + if (0 != clock_gettime(CLOCK_MONOTONIC, &dummy)) 1.176 + NS_RUNTIMEABORT("CLOCK_MONOTONIC is absent!"); 1.177 + 1.178 + sResolution = ClockResolutionNs(); 1.179 + 1.180 + // find the number of significant digits in sResolution, for the 1.181 + // sake of ToSecondsSigDigits() 1.182 + for (sResolutionSigDigs = 1; 1.183 + !(sResolutionSigDigs == sResolution 1.184 + || 10*sResolutionSigDigs > sResolution); 1.185 + sResolutionSigDigs *= 10); 1.186 + 1.187 + gInitialized = true; 1.188 + 1.189 + return NS_OK; 1.190 +} 1.191 + 1.192 +void 1.193 +TimeStamp::Shutdown() 1.194 +{ 1.195 +} 1.196 + 1.197 +TimeStamp 1.198 +TimeStamp::Now(bool aHighResolution) 1.199 +{ 1.200 + return TimeStamp(ClockTimeNs()); 1.201 +} 1.202 + 1.203 +#if defined(LINUX) || defined(ANDROID) 1.204 + 1.205 +// Calculates the amount of jiffies that have elapsed since boot and up to the 1.206 +// starttime value of a specific process as found in its /proc/*/stat file. 1.207 +// Returns 0 if an error occurred. 1.208 + 1.209 +static uint64_t 1.210 +JiffiesSinceBoot(const char *aFile) 1.211 +{ 1.212 + char stat[512]; 1.213 + 1.214 + FILE *f = fopen(aFile, "r"); 1.215 + if (!f) 1.216 + return 0; 1.217 + 1.218 + int n = fread(&stat, 1, sizeof(stat) - 1, f); 1.219 + 1.220 + fclose(f); 1.221 + 1.222 + if (n <= 0) 1.223 + return 0; 1.224 + 1.225 + stat[n] = 0; 1.226 + 1.227 + long long unsigned startTime = 0; // instead of uint64_t to keep GCC quiet 1.228 + char *s = strrchr(stat, ')'); 1.229 + 1.230 + if (!s) 1.231 + return 0; 1.232 + 1.233 + int rv = sscanf(s + 2, 1.234 + "%*c %*d %*d %*d %*d %*d %*u %*u %*u %*u " 1.235 + "%*u %*u %*u %*d %*d %*d %*d %*d %*d %llu", 1.236 + &startTime); 1.237 + 1.238 + if (rv != 1 || !startTime) 1.239 + return 0; 1.240 + 1.241 + return startTime; 1.242 +} 1.243 + 1.244 +// Computes the interval that has elapsed between the thread creation and the 1.245 +// process creation by comparing the starttime fields in the respective 1.246 +// /proc/*/stat files. The resulting value will be a good approximation of the 1.247 +// process uptime. This value will be stored at the address pointed by aTime; 1.248 +// if an error occurred 0 will be stored instead. 1.249 + 1.250 +static void 1.251 +ComputeProcessUptimeThread(void *aTime) 1.252 +{ 1.253 + uint64_t *uptime = static_cast<uint64_t *>(aTime); 1.254 + long hz = sysconf(_SC_CLK_TCK); 1.255 + 1.256 + *uptime = 0; 1.257 + 1.258 + if (!hz) 1.259 + return; 1.260 + 1.261 + char threadStat[40]; 1.262 + sprintf(threadStat, "/proc/self/task/%d/stat", (pid_t) syscall(__NR_gettid)); 1.263 + 1.264 + uint64_t threadJiffies = JiffiesSinceBoot(threadStat); 1.265 + uint64_t selfJiffies = JiffiesSinceBoot("/proc/self/stat"); 1.266 + 1.267 + if (!threadJiffies || !selfJiffies) 1.268 + return; 1.269 + 1.270 + *uptime = ((threadJiffies - selfJiffies) * kNsPerSec) / hz; 1.271 +} 1.272 + 1.273 +// Computes and returns the process uptime in us on Linux & its derivatives. 1.274 +// Returns 0 if an error was encountered. 1.275 + 1.276 +uint64_t 1.277 +TimeStamp::ComputeProcessUptime() 1.278 +{ 1.279 + uint64_t uptime = 0; 1.280 + PRThread *thread = PR_CreateThread(PR_USER_THREAD, 1.281 + ComputeProcessUptimeThread, 1.282 + &uptime, 1.283 + PR_PRIORITY_NORMAL, 1.284 + PR_GLOBAL_THREAD, 1.285 + PR_JOINABLE_THREAD, 1.286 + 0); 1.287 + 1.288 + PR_JoinThread(thread); 1.289 + 1.290 + return uptime / kNsPerUs; 1.291 +} 1.292 + 1.293 +#elif defined(__DragonFly__) || defined(__FreeBSD__) \ 1.294 + || defined(__NetBSD__) || defined(__OpenBSD__) 1.295 + 1.296 +// Computes and returns the process uptime in us on various BSD flavors. 1.297 +// Returns 0 if an error was encountered. 1.298 + 1.299 +uint64_t 1.300 +TimeStamp::ComputeProcessUptime() 1.301 +{ 1.302 + struct timespec ts; 1.303 + int rv = clock_gettime(CLOCK_REALTIME, &ts); 1.304 + 1.305 + if (rv == -1) { 1.306 + return 0; 1.307 + } 1.308 + 1.309 + int mib[] = { 1.310 + CTL_KERN, 1.311 + KERN_PROC, 1.312 + KERN_PROC_PID, 1.313 + getpid(), 1.314 +#if defined(__NetBSD__) || defined(__OpenBSD__) 1.315 + sizeof(KINFO_PROC), 1.316 + 1, 1.317 +#endif 1.318 + }; 1.319 + u_int mibLen = sizeof(mib) / sizeof(mib[0]); 1.320 + 1.321 + KINFO_PROC proc; 1.322 + size_t bufferSize = sizeof(proc); 1.323 + rv = sysctl(mib, mibLen, &proc, &bufferSize, nullptr, 0); 1.324 + 1.325 + if (rv == -1) 1.326 + return 0; 1.327 + 1.328 + uint64_t startTime = ((uint64_t)proc.KP_START_SEC * kNsPerSec) 1.329 + + (proc.KP_START_USEC * kNsPerUs); 1.330 + uint64_t now = ((uint64_t)ts.tv_sec * kNsPerSec) + ts.tv_nsec; 1.331 + 1.332 + if (startTime > now) 1.333 + return 0; 1.334 + 1.335 + return (now - startTime) / kNsPerUs; 1.336 +} 1.337 + 1.338 +#else 1.339 + 1.340 +uint64_t 1.341 +TimeStamp::ComputeProcessUptime() 1.342 +{ 1.343 + return 0; 1.344 +} 1.345 + 1.346 +#endif 1.347 + 1.348 +} // namespace mozilla