Sat, 03 Jan 2015 20:18:00 +0100
Conditionally enable double key logic according to:
private browsing mode or privacy.thirdparty.isolate preference and
implement in GetCookieStringCommon and FindCookie where it counts...
With some reservations of how to convince FindCookie users to test
condition and pass a nullptr when disabling double key logic.
1 /* This Source Code Form is subject to the terms of the Mozilla Public
2 * License, v. 2.0. If a copy of the MPL was not distributed with this
3 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
5 #undef NDEBUG
6 #include <assert.h>
7 #include <cstring>
8 #include <cstdlib>
9 #include <cstdio>
10 #include "elfxx.h"
12 #define ver "0"
13 #define elfhack_data ".elfhack.data.v" ver
14 #define elfhack_text ".elfhack.text.v" ver
16 #ifndef R_ARM_V4BX
17 #define R_ARM_V4BX 0x28
18 #endif
19 #ifndef R_ARM_CALL
20 #define R_ARM_CALL 0x1c
21 #endif
22 #ifndef R_ARM_JUMP24
23 #define R_ARM_JUMP24 0x1d
24 #endif
25 #ifndef R_ARM_THM_JUMP24
26 #define R_ARM_THM_JUMP24 0x1e
27 #endif
29 char *rundir = nullptr;
31 template <typename T>
32 struct wrapped {
33 T value;
34 };
36 class Elf_Addr_Traits {
37 public:
38 typedef wrapped<Elf32_Addr> Type32;
39 typedef wrapped<Elf64_Addr> Type64;
41 template <class endian, typename R, typename T>
42 static inline void swap(T &t, R &r) {
43 r.value = endian::swap(t.value);
44 }
45 };
47 typedef serializable<Elf_Addr_Traits> Elf_Addr;
49 class Elf_RelHack_Traits {
50 public:
51 typedef Elf32_Rel Type32;
52 typedef Elf32_Rel Type64;
54 template <class endian, typename R, typename T>
55 static inline void swap(T &t, R &r) {
56 r.r_offset = endian::swap(t.r_offset);
57 r.r_info = endian::swap(t.r_info);
58 }
59 };
61 typedef serializable<Elf_RelHack_Traits> Elf_RelHack;
63 class ElfRelHack_Section: public ElfSection {
64 public:
65 ElfRelHack_Section(Elf_Shdr &s)
66 : ElfSection(s, nullptr, nullptr)
67 {
68 name = elfhack_data;
69 };
71 void serialize(std::ofstream &file, char ei_class, char ei_data)
72 {
73 for (std::vector<Elf_RelHack>::iterator i = rels.begin();
74 i != rels.end(); ++i)
75 (*i).serialize(file, ei_class, ei_data);
76 }
78 bool isRelocatable() {
79 return true;
80 }
82 void push_back(Elf_RelHack &r) {
83 rels.push_back(r);
84 shdr.sh_size = rels.size() * shdr.sh_entsize;
85 }
86 private:
87 std::vector<Elf_RelHack> rels;
88 };
90 class ElfRelHackCode_Section: public ElfSection {
91 public:
92 ElfRelHackCode_Section(Elf_Shdr &s, Elf &e, unsigned int init)
93 : ElfSection(s, nullptr, nullptr), parent(e), init(init) {
94 std::string file(rundir);
95 file += "/inject/";
96 switch (parent.getMachine()) {
97 case EM_386:
98 file += "x86";
99 break;
100 case EM_X86_64:
101 file += "x86_64";
102 break;
103 case EM_ARM:
104 file += "arm";
105 break;
106 default:
107 throw std::runtime_error("unsupported architecture");
108 }
109 file += ".o";
110 std::ifstream inject(file.c_str(), std::ios::in|std::ios::binary);
111 elf = new Elf(inject);
112 if (elf->getType() != ET_REL)
113 throw std::runtime_error("object for injected code is not ET_REL");
114 if (elf->getMachine() != parent.getMachine())
115 throw std::runtime_error("architecture of object for injected code doesn't match");
117 ElfSymtab_Section *symtab = nullptr;
119 // Find the symbol table.
120 for (ElfSection *section = elf->getSection(1); section != nullptr;
121 section = section->getNext()) {
122 if (section->getType() == SHT_SYMTAB)
123 symtab = (ElfSymtab_Section *) section;
124 }
125 if (symtab == nullptr)
126 throw std::runtime_error("Couldn't find a symbol table for the injected code");
128 // Find the init symbol
129 entry_point = -1;
130 Elf_SymValue *sym = symtab->lookup(init ? "init" : "init_noinit");
131 if (!sym)
132 throw std::runtime_error("Couldn't find an 'init' symbol in the injected code");
134 entry_point = sym->value.getValue();
136 // Get all relevant sections from the injected code object.
137 add_code_section(sym->value.getSection());
139 // Adjust code sections offsets according to their size
140 std::vector<ElfSection *>::iterator c = code.begin();
141 (*c)->getShdr().sh_addr = 0;
142 for(ElfSection *last = *(c++); c != code.end(); c++) {
143 unsigned int addr = last->getShdr().sh_addr + last->getSize();
144 if (addr & ((*c)->getAddrAlign() - 1))
145 addr = (addr | ((*c)->getAddrAlign() - 1)) + 1;
146 (*c)->getShdr().sh_addr = addr;
147 // We need to align this section depending on the greater
148 // alignment required by code sections.
149 if (shdr.sh_addralign < (*c)->getAddrAlign())
150 shdr.sh_addralign = (*c)->getAddrAlign();
151 }
152 shdr.sh_size = code.back()->getAddr() + code.back()->getSize();
153 data = new char[shdr.sh_size];
154 char *buf = data;
155 for (c = code.begin(); c != code.end(); c++) {
156 memcpy(buf, (*c)->getData(), (*c)->getSize());
157 buf += (*c)->getSize();
158 }
159 name = elfhack_text;
160 }
162 ~ElfRelHackCode_Section() {
163 delete elf;
164 }
166 void serialize(std::ofstream &file, char ei_class, char ei_data)
167 {
168 // Readjust code offsets
169 for (std::vector<ElfSection *>::iterator c = code.begin(); c != code.end(); c++)
170 (*c)->getShdr().sh_addr += getAddr();
172 // Apply relocations
173 for (std::vector<ElfSection *>::iterator c = code.begin(); c != code.end(); c++) {
174 for (ElfSection *rel = elf->getSection(1); rel != nullptr; rel = rel->getNext())
175 if (((rel->getType() == SHT_REL) ||
176 (rel->getType() == SHT_RELA)) &&
177 (rel->getInfo().section == *c)) {
178 if (rel->getType() == SHT_REL)
179 apply_relocations((ElfRel_Section<Elf_Rel> *)rel, *c);
180 else
181 apply_relocations((ElfRel_Section<Elf_Rela> *)rel, *c);
182 }
183 }
185 ElfSection::serialize(file, ei_class, ei_data);
186 }
188 bool isRelocatable() {
189 return true;
190 }
192 unsigned int getEntryPoint() {
193 return entry_point;
194 }
195 private:
196 void add_code_section(ElfSection *section)
197 {
198 if (section) {
199 /* Don't add section if it's already been added in the past */
200 for (auto s = code.begin(); s != code.end(); ++s) {
201 if (section == *s)
202 return;
203 }
204 code.push_back(section);
205 find_code(section);
206 }
207 }
209 /* Look at the relocations associated to the given section to find other
210 * sections that it requires */
211 void find_code(ElfSection *section)
212 {
213 for (ElfSection *s = elf->getSection(1); s != nullptr;
214 s = s->getNext()) {
215 if (((s->getType() == SHT_REL) ||
216 (s->getType() == SHT_RELA)) &&
217 (s->getInfo().section == section)) {
218 if (s->getType() == SHT_REL)
219 scan_relocs_for_code((ElfRel_Section<Elf_Rel> *)s);
220 else
221 scan_relocs_for_code((ElfRel_Section<Elf_Rela> *)s);
222 }
223 }
224 }
226 template <typename Rel_Type>
227 void scan_relocs_for_code(ElfRel_Section<Rel_Type> *rel)
228 {
229 ElfSymtab_Section *symtab = (ElfSymtab_Section *)rel->getLink();
230 for (auto r = rel->rels.begin(); r != rel->rels.end(); r++) {
231 ElfSection *section = symtab->syms[ELF32_R_SYM(r->r_info)].value.getSection();
232 add_code_section(section);
233 }
234 }
236 class pc32_relocation {
237 public:
238 Elf32_Addr operator()(unsigned int base_addr, Elf32_Off offset,
239 Elf32_Word addend, unsigned int addr)
240 {
241 return addr + addend - offset - base_addr;
242 }
243 };
245 class arm_plt32_relocation {
246 public:
247 Elf32_Addr operator()(unsigned int base_addr, Elf32_Off offset,
248 Elf32_Word addend, unsigned int addr)
249 {
250 // We don't care about sign_extend because the only case where this is
251 // going to be used only jumps forward.
252 Elf32_Addr tmp = (Elf32_Addr) (addr - offset - base_addr) >> 2;
253 tmp = (addend + tmp) & 0x00ffffff;
254 return (addend & 0xff000000) | tmp;
255 }
256 };
258 class arm_thm_jump24_relocation {
259 public:
260 Elf32_Addr operator()(unsigned int base_addr, Elf32_Off offset,
261 Elf32_Word addend, unsigned int addr)
262 {
263 /* Follows description of b.w and bl instructions as per
264 ARM Architecture Reference Manual ARMĀ® v7-A and ARMĀ® v7-R edition, A8.6.16
265 We limit ourselves to Encoding T4 of b.w and Encoding T1 of bl.
266 We don't care about sign_extend because the only case where this is
267 going to be used only jumps forward. */
268 Elf32_Addr tmp = (Elf32_Addr) (addr - offset - base_addr);
269 unsigned int word0 = addend & 0xffff,
270 word1 = addend >> 16;
272 /* Encoding T4 of B.W is 10x1 ; Encoding T1 of BL is 11x1. */
273 unsigned int type = (word1 & 0xd000) >> 12;
274 if (((word0 & 0xf800) != 0xf000) || ((type & 0x9) != 0x9))
275 throw std::runtime_error("R_ARM_THM_JUMP24/R_ARM_THM_CALL relocation only supported for B.W <label> and BL <label>");
277 /* When the target address points to ARM code, switch a BL to a
278 * BLX. This however can't be done with a B.W without adding a
279 * trampoline, which is not supported as of now. */
280 if ((addr & 0x1) == 0) {
281 if (type == 0x9)
282 throw std::runtime_error("R_ARM_THM_JUMP24/R_ARM_THM_CALL relocation only supported for BL <label> when label points to ARM code");
283 /* The address of the target is always relative to a 4-bytes
284 * aligned address, so if the address of the BL instruction is
285 * not 4-bytes aligned, adjust for it. */
286 if ((base_addr + offset) & 0x2)
287 tmp += 2;
288 /* Encoding T2 of BLX is 11x0. */
289 type = 0xc;
290 }
292 unsigned int s = (word0 & (1 << 10)) >> 10;
293 unsigned int j1 = (word1 & (1 << 13)) >> 13;
294 unsigned int j2 = (word1 & (1 << 11)) >> 11;
295 unsigned int i1 = j1 ^ s ? 0 : 1;
296 unsigned int i2 = j2 ^ s ? 0 : 1;
298 tmp += ((s << 24) | (i1 << 23) | (i2 << 22) | ((word0 & 0x3ff) << 12) | ((word1 & 0x7ff) << 1));
300 s = (tmp & (1 << 24)) >> 24;
301 j1 = ((tmp & (1 << 23)) >> 23) ^ !s;
302 j2 = ((tmp & (1 << 22)) >> 22) ^ !s;
304 return 0xf000 | (s << 10) | ((tmp & (0x3ff << 12)) >> 12) |
305 (type << 28) | (j1 << 29) | (j2 << 27) | ((tmp & 0xffe) << 15);
306 }
307 };
309 class gotoff_relocation {
310 public:
311 Elf32_Addr operator()(unsigned int base_addr, Elf32_Off offset,
312 Elf32_Word addend, unsigned int addr)
313 {
314 return addr + addend;
315 }
316 };
318 template <class relocation_type>
319 void apply_relocation(ElfSection *the_code, char *base, Elf_Rel *r, unsigned int addr)
320 {
321 relocation_type relocation;
322 Elf32_Addr value;
323 memcpy(&value, base + r->r_offset, 4);
324 value = relocation(the_code->getAddr(), r->r_offset, value, addr);
325 memcpy(base + r->r_offset, &value, 4);
326 }
328 template <class relocation_type>
329 void apply_relocation(ElfSection *the_code, char *base, Elf_Rela *r, unsigned int addr)
330 {
331 relocation_type relocation;
332 Elf32_Addr value = relocation(the_code->getAddr(), r->r_offset, r->r_addend, addr);
333 memcpy(base + r->r_offset, &value, 4);
334 }
336 template <typename Rel_Type>
337 void apply_relocations(ElfRel_Section<Rel_Type> *rel, ElfSection *the_code)
338 {
339 assert(rel->getType() == Rel_Type::sh_type);
340 char *buf = data + (the_code->getAddr() - code.front()->getAddr());
341 // TODO: various checks on the sections
342 ElfSymtab_Section *symtab = (ElfSymtab_Section *)rel->getLink();
343 for (typename std::vector<Rel_Type>::iterator r = rel->rels.begin(); r != rel->rels.end(); r++) {
344 // TODO: various checks on the symbol
345 const char *name = symtab->syms[ELF32_R_SYM(r->r_info)].name;
346 unsigned int addr;
347 if (symtab->syms[ELF32_R_SYM(r->r_info)].value.getSection() == nullptr) {
348 if (strcmp(name, "relhack") == 0) {
349 addr = getNext()->getAddr();
350 } else if (strcmp(name, "elf_header") == 0) {
351 // TODO: change this ungly hack to something better
352 ElfSection *ehdr = parent.getSection(1)->getPrevious()->getPrevious();
353 addr = ehdr->getAddr();
354 } else if (strcmp(name, "original_init") == 0) {
355 addr = init;
356 } else if (strcmp(name, "_GLOBAL_OFFSET_TABLE_") == 0) {
357 // We actually don't need a GOT, but need it as a reference for
358 // GOTOFF relocations. We'll just use the start of the ELF file
359 addr = 0;
360 } else if (strcmp(name, "") == 0) {
361 // This is for R_ARM_V4BX, until we find something better
362 addr = -1;
363 } else {
364 throw std::runtime_error("Unsupported symbol in relocation");
365 }
366 } else {
367 ElfSection *section = symtab->syms[ELF32_R_SYM(r->r_info)].value.getSection();
368 assert((section->getType() == SHT_PROGBITS) && (section->getFlags() & SHF_EXECINSTR));
369 addr = symtab->syms[ELF32_R_SYM(r->r_info)].value.getValue();
370 }
371 // Do the relocation
372 #define REL(machine, type) (EM_ ## machine | (R_ ## machine ## _ ## type << 8))
373 switch (elf->getMachine() | (ELF32_R_TYPE(r->r_info) << 8)) {
374 case REL(X86_64, PC32):
375 case REL(386, PC32):
376 case REL(386, GOTPC):
377 case REL(ARM, GOTPC):
378 case REL(ARM, REL32):
379 apply_relocation<pc32_relocation>(the_code, buf, &*r, addr);
380 break;
381 case REL(ARM, CALL):
382 case REL(ARM, JUMP24):
383 case REL(ARM, PLT32):
384 apply_relocation<arm_plt32_relocation>(the_code, buf, &*r, addr);
385 break;
386 case REL(ARM, THM_PC22 /* THM_CALL */):
387 case REL(ARM, THM_JUMP24):
388 apply_relocation<arm_thm_jump24_relocation>(the_code, buf, &*r, addr);
389 break;
390 case REL(386, GOTOFF):
391 case REL(ARM, GOTOFF):
392 apply_relocation<gotoff_relocation>(the_code, buf, &*r, addr);
393 break;
394 case REL(ARM, V4BX):
395 // Ignore R_ARM_V4BX relocations
396 break;
397 default:
398 throw std::runtime_error("Unsupported relocation type");
399 }
400 }
401 }
403 Elf *elf, &parent;
404 std::vector<ElfSection *> code;
405 unsigned int init;
406 int entry_point;
407 };
409 unsigned int get_addend(Elf_Rel *rel, Elf *elf) {
410 ElfLocation loc(rel->r_offset, elf);
411 Elf_Addr addr(loc.getBuffer(), Elf_Addr::size(elf->getClass()), elf->getClass(), elf->getData());
412 return addr.value;
413 }
415 unsigned int get_addend(Elf_Rela *rel, Elf *elf) {
416 return rel->r_addend;
417 }
419 void set_relative_reloc(Elf_Rel *rel, Elf *elf, unsigned int value) {
420 ElfLocation loc(rel->r_offset, elf);
421 Elf_Addr addr;
422 addr.value = value;
423 addr.serialize(const_cast<char *>(loc.getBuffer()), Elf_Addr::size(elf->getClass()), elf->getClass(), elf->getData());
424 }
426 void set_relative_reloc(Elf_Rela *rel, Elf *elf, unsigned int value) {
427 // ld puts the value of relocated relocations both in the addend and
428 // at r_offset. For consistency, keep it that way.
429 set_relative_reloc((Elf_Rel *)rel, elf, value);
430 rel->r_addend = value;
431 }
433 void maybe_split_segment(Elf *elf, ElfSegment *segment, bool fill)
434 {
435 std::list<ElfSection *>::iterator it = segment->begin();
436 for (ElfSection *last = *(it++); it != segment->end(); last = *(it++)) {
437 // When two consecutive non-SHT_NOBITS sections are apart by more
438 // than the alignment of the section, the second can be moved closer
439 // to the first, but this requires the segment to be split.
440 if (((*it)->getType() != SHT_NOBITS) && (last->getType() != SHT_NOBITS) &&
441 ((*it)->getOffset() - last->getOffset() - last->getSize() > segment->getAlign())) {
442 // Probably very wrong.
443 Elf_Phdr phdr;
444 phdr.p_type = PT_LOAD;
445 phdr.p_vaddr = 0;
446 phdr.p_paddr = phdr.p_vaddr + segment->getVPDiff();
447 phdr.p_flags = segment->getFlags();
448 phdr.p_align = segment->getAlign();
449 phdr.p_filesz = (unsigned int)-1;
450 phdr.p_memsz = (unsigned int)-1;
451 ElfSegment *newSegment = new ElfSegment(&phdr);
452 elf->insertSegmentAfter(segment, newSegment);
453 ElfSection *section = *it;
454 for (; it != segment->end(); ++it) {
455 newSegment->addSection(*it);
456 }
457 for (it = newSegment->begin(); it != newSegment->end(); it++) {
458 segment->removeSection(*it);
459 }
460 // Fill the virtual address space gap left between the two PT_LOADs
461 // with a new PT_LOAD with no permissions. This avoids the linker
462 // (especially bionic's) filling the gap with anonymous memory,
463 // which breakpad doesn't like.
464 // /!\ running strip on a elfhacked binary will break this filler
465 // PT_LOAD.
466 if (!fill)
467 break;
468 // Insert dummy segment to normalize the entire Elf with the header
469 // sizes adjusted, before inserting a filler segment.
470 {
471 memset(&phdr, 0, sizeof(phdr));
472 ElfSegment dummySegment(&phdr);
473 elf->insertSegmentAfter(segment, &dummySegment);
474 elf->normalize();
475 elf->removeSegment(&dummySegment);
476 }
477 ElfSection *previous = section->getPrevious();
478 phdr.p_type = PT_LOAD;
479 phdr.p_vaddr = (previous->getAddr() + previous->getSize() + segment->getAlign() - 1) & ~(segment->getAlign() - 1);
480 phdr.p_paddr = phdr.p_vaddr + segment->getVPDiff();
481 phdr.p_flags = 0;
482 phdr.p_align = 0;
483 phdr.p_filesz = (section->getAddr() & ~(newSegment->getAlign() - 1)) - phdr.p_vaddr;
484 phdr.p_memsz = phdr.p_filesz;
485 if (phdr.p_filesz) {
486 newSegment = new ElfSegment(&phdr);
487 assert(newSegment->isElfHackFillerSegment());
488 elf->insertSegmentAfter(segment, newSegment);
489 } else {
490 elf->normalize();
491 }
492 break;
493 }
494 }
495 }
497 template <typename Rel_Type>
498 int do_relocation_section(Elf *elf, unsigned int rel_type, unsigned int rel_type2, bool force, bool fill)
499 {
500 ElfDynamic_Section *dyn = elf->getDynSection();
501 if (dyn == nullptr) {
502 fprintf(stderr, "Couldn't find SHT_DYNAMIC section\n");
503 return -1;
504 }
506 ElfSegment *relro = elf->getSegmentByType(PT_GNU_RELRO);
508 ElfRel_Section<Rel_Type> *section = (ElfRel_Section<Rel_Type> *)dyn->getSectionForType(Rel_Type::d_tag);
509 assert(section->getType() == Rel_Type::sh_type);
511 Elf32_Shdr relhack32_section =
512 { 0, SHT_PROGBITS, SHF_ALLOC, 0, (Elf32_Off)-1, 0, SHN_UNDEF, 0,
513 Elf_RelHack::size(elf->getClass()), Elf_RelHack::size(elf->getClass()) }; // TODO: sh_addralign should be an alignment, not size
514 Elf32_Shdr relhackcode32_section =
515 { 0, SHT_PROGBITS, SHF_ALLOC | SHF_EXECINSTR, 0, (Elf32_Off)-1, 0,
516 SHN_UNDEF, 0, 1, 0 };
518 unsigned int entry_sz = Elf_Addr::size(elf->getClass());
520 // The injected code needs to be executed before any init code in the
521 // binary. There are three possible cases:
522 // - The binary has no init code at all. In this case, we will add a
523 // DT_INIT entry pointing to the injected code.
524 // - The binary has a DT_INIT entry. In this case, we will interpose:
525 // we change DT_INIT to point to the injected code, and have the
526 // injected code call the original DT_INIT entry point.
527 // - The binary has no DT_INIT entry, but has a DT_INIT_ARRAY. In this
528 // case, we interpose as well, by replacing the first entry in the
529 // array to point to the injected code, and have the injected code
530 // call the original first entry.
531 // The binary may have .ctors instead of DT_INIT_ARRAY, for its init
532 // functions, but this falls into the second case above, since .ctors
533 // are actually run by DT_INIT code.
534 ElfValue *value = dyn->getValueForType(DT_INIT);
535 unsigned int original_init = value ? value->getValue() : 0;
536 ElfSection *init_array = nullptr;
537 if (!value || !value->getValue()) {
538 value = dyn->getValueForType(DT_INIT_ARRAYSZ);
539 if (value && value->getValue() >= entry_sz)
540 init_array = dyn->getSectionForType(DT_INIT_ARRAY);
541 }
543 Elf_Shdr relhack_section(relhack32_section);
544 Elf_Shdr relhackcode_section(relhackcode32_section);
545 ElfRelHack_Section *relhack = new ElfRelHack_Section(relhack_section);
547 ElfSymtab_Section *symtab = (ElfSymtab_Section *) section->getLink();
548 Elf_SymValue *sym = symtab->lookup("__cxa_pure_virtual");
550 std::vector<Rel_Type> new_rels;
551 Elf_RelHack relhack_entry;
552 relhack_entry.r_offset = relhack_entry.r_info = 0;
553 size_t init_array_reloc = 0;
554 for (typename std::vector<Rel_Type>::iterator i = section->rels.begin();
555 i != section->rels.end(); i++) {
556 // We don't need to keep R_*_NONE relocations
557 if (!ELF32_R_TYPE(i->r_info))
558 continue;
559 ElfLocation loc(i->r_offset, elf);
560 // __cxa_pure_virtual is a function used in vtables to point at pure
561 // virtual methods. The __cxa_pure_virtual function usually abort()s.
562 // These functions are however normally never called. In the case
563 // where they would, jumping to the null address instead of calling
564 // __cxa_pure_virtual is going to work just as well. So we can remove
565 // relocations for the __cxa_pure_virtual symbol and null out the
566 // content at the offset pointed by the relocation.
567 if (sym) {
568 if (sym->defined) {
569 // If we are statically linked to libstdc++, the
570 // __cxa_pure_virtual symbol is defined in our lib, and we
571 // have relative relocations (rel_type) for it.
572 if (ELF32_R_TYPE(i->r_info) == rel_type) {
573 Elf_Addr addr(loc.getBuffer(), entry_sz, elf->getClass(), elf->getData());
574 if (addr.value == sym->value.getValue()) {
575 memset((char *)loc.getBuffer(), 0, entry_sz);
576 continue;
577 }
578 }
579 } else {
580 // If we are dynamically linked to libstdc++, the
581 // __cxa_pure_virtual symbol is undefined in our lib, and we
582 // have absolute relocations (rel_type2) for it.
583 if ((ELF32_R_TYPE(i->r_info) == rel_type2) &&
584 (sym == &symtab->syms[ELF32_R_SYM(i->r_info)])) {
585 memset((char *)loc.getBuffer(), 0, entry_sz);
586 continue;
587 }
588 }
589 }
590 // Keep track of the relocation associated with the first init_array entry.
591 if (init_array && i->r_offset == init_array->getAddr()) {
592 if (init_array_reloc) {
593 fprintf(stderr, "Found multiple relocations for the first init_array entry. Skipping\n");
594 return -1;
595 }
596 new_rels.push_back(*i);
597 init_array_reloc = new_rels.size();
598 } else if (!(loc.getSection()->getFlags() & SHF_WRITE) || (ELF32_R_TYPE(i->r_info) != rel_type) ||
599 (relro && (i->r_offset >= relro->getAddr()) &&
600 (i->r_offset < relro->getAddr() + relro->getMemSize()))) {
601 // Don't pack relocations happening in non writable sections.
602 // Our injected code is likely not to be allowed to write there.
603 new_rels.push_back(*i);
604 } else {
605 // TODO: check that i->r_addend == *i->r_offset
606 if (i->r_offset == relhack_entry.r_offset + relhack_entry.r_info * entry_sz) {
607 relhack_entry.r_info++;
608 } else {
609 if (relhack_entry.r_offset)
610 relhack->push_back(relhack_entry);
611 relhack_entry.r_offset = i->r_offset;
612 relhack_entry.r_info = 1;
613 }
614 }
615 }
616 if (relhack_entry.r_offset)
617 relhack->push_back(relhack_entry);
618 // Last entry must be nullptr
619 relhack_entry.r_offset = relhack_entry.r_info = 0;
620 relhack->push_back(relhack_entry);
622 unsigned int old_end = section->getOffset() + section->getSize();
624 if (init_array) {
625 if (! init_array_reloc) {
626 fprintf(stderr, "Didn't find relocation for DT_INIT_ARRAY's first entry. Skipping\n");
627 return -1;
628 }
629 Rel_Type *rel = &new_rels[init_array_reloc - 1];
630 unsigned int addend = get_addend(rel, elf);
631 // Use relocated value of DT_INIT_ARRAY's first entry for the
632 // function to be called by the injected code.
633 if (ELF32_R_TYPE(rel->r_info) == rel_type) {
634 original_init = addend;
635 } else if (ELF32_R_TYPE(rel->r_info) == rel_type2) {
636 ElfSymtab_Section *symtab = (ElfSymtab_Section *)section->getLink();
637 original_init = symtab->syms[ELF32_R_SYM(rel->r_info)].value.getValue() + addend;
638 } else {
639 fprintf(stderr, "Unsupported relocation type for DT_INIT_ARRAY's first entry. Skipping\n");
640 return -1;
641 }
642 }
644 section->rels.assign(new_rels.begin(), new_rels.end());
645 section->shrink(new_rels.size() * section->getEntSize());
647 ElfRelHackCode_Section *relhackcode = new ElfRelHackCode_Section(relhackcode_section, *elf, original_init);
648 relhackcode->insertBefore(section);
649 relhack->insertAfter(relhackcode);
650 if (section->getOffset() + section->getSize() >= old_end) {
651 fprintf(stderr, "No gain. Skipping\n");
652 return -1;
653 }
655 // Adjust PT_LOAD segments
656 for (ElfSegment *segment = elf->getSegmentByType(PT_LOAD); segment;
657 segment = elf->getSegmentByType(PT_LOAD, segment)) {
658 maybe_split_segment(elf, segment, fill);
659 }
661 // Ensure Elf sections will be at their final location.
662 elf->normalize();
663 ElfLocation *init = new ElfLocation(relhackcode, relhackcode->getEntryPoint());
664 if (init_array) {
665 // Adjust the first DT_INIT_ARRAY entry to point at the injected code
666 // by transforming its relocation into a relative one pointing to the
667 // address of the injected code.
668 Rel_Type *rel = §ion->rels[init_array_reloc - 1];
669 rel->r_info = ELF32_R_INFO(0, rel_type); // Set as a relative relocation
670 set_relative_reloc(§ion->rels[init_array_reloc - 1], elf, init->getValue());
671 } else if (!dyn->setValueForType(DT_INIT, init)) {
672 fprintf(stderr, "Can't grow .dynamic section to set DT_INIT. Skipping\n");
673 return -1;
674 }
675 // TODO: adjust the value according to the remaining number of relative relocations
676 if (dyn->getValueForType(Rel_Type::d_tag_count))
677 dyn->setValueForType(Rel_Type::d_tag_count, new ElfPlainValue(0));
679 return 0;
680 }
682 static inline int backup_file(const char *name)
683 {
684 std::string fname(name);
685 fname += ".bak";
686 return rename(name, fname.c_str());
687 }
689 void do_file(const char *name, bool backup = false, bool force = false, bool fill = false)
690 {
691 std::ifstream file(name, std::ios::in|std::ios::binary);
692 Elf elf(file);
693 unsigned int size = elf.getSize();
694 fprintf(stderr, "%s: ", name);
695 if (elf.getType() != ET_DYN) {
696 fprintf(stderr, "Not a shared object. Skipping\n");
697 return;
698 }
700 for (ElfSection *section = elf.getSection(1); section != nullptr;
701 section = section->getNext()) {
702 if (section->getName() &&
703 (strncmp(section->getName(), ".elfhack.", 9) == 0)) {
704 fprintf(stderr, "Already elfhacked. Skipping\n");
705 return;
706 }
707 }
709 int exit = -1;
710 switch (elf.getMachine()) {
711 case EM_386:
712 exit = do_relocation_section<Elf_Rel>(&elf, R_386_RELATIVE, R_386_32, force, fill);
713 break;
714 case EM_X86_64:
715 exit = do_relocation_section<Elf_Rela>(&elf, R_X86_64_RELATIVE, R_X86_64_64, force, fill);
716 break;
717 case EM_ARM:
718 exit = do_relocation_section<Elf_Rel>(&elf, R_ARM_RELATIVE, R_ARM_ABS32, force, fill);
719 break;
720 }
721 if (exit == 0) {
722 if (!force && (elf.getSize() >= size)) {
723 fprintf(stderr, "No gain. Skipping\n");
724 } else if (backup && backup_file(name) != 0) {
725 fprintf(stderr, "Couln't create backup file\n");
726 } else {
727 std::ofstream ofile(name, std::ios::out|std::ios::binary|std::ios::trunc);
728 elf.write(ofile);
729 fprintf(stderr, "Reduced by %d bytes\n", size - elf.getSize());
730 }
731 }
732 }
734 void undo_file(const char *name, bool backup = false)
735 {
736 std::ifstream file(name, std::ios::in|std::ios::binary);
737 Elf elf(file);
738 unsigned int size = elf.getSize();
739 fprintf(stderr, "%s: ", name);
740 if (elf.getType() != ET_DYN) {
741 fprintf(stderr, "Not a shared object. Skipping\n");
742 return;
743 }
745 ElfSection *data = nullptr, *text = nullptr;
746 for (ElfSection *section = elf.getSection(1); section != nullptr;
747 section = section->getNext()) {
748 if (section->getName() &&
749 (strcmp(section->getName(), elfhack_data) == 0))
750 data = section;
751 if (section->getName() &&
752 (strcmp(section->getName(), elfhack_text) == 0))
753 text = section;
754 }
756 if (!data || !text) {
757 fprintf(stderr, "Not elfhacked. Skipping\n");
758 return;
759 }
760 if (data != text->getNext()) {
761 fprintf(stderr, elfhack_data " section not following " elfhack_text ". Skipping\n");
762 return;
763 }
765 ElfSegment *first = elf.getSegmentByType(PT_LOAD);
766 ElfSegment *second = elf.getSegmentByType(PT_LOAD, first);
767 ElfSegment *filler = nullptr;
768 // If the second PT_LOAD is a filler from elfhack --fill, check the third.
769 if (second->isElfHackFillerSegment()) {
770 filler = second;
771 second = elf.getSegmentByType(PT_LOAD, filler);
772 }
773 if (second->getFlags() != first->getFlags()) {
774 fprintf(stderr, "Couldn't identify elfhacked PT_LOAD segments. Skipping\n");
775 return;
776 }
777 // Move sections from the second PT_LOAD to the first, and remove the
778 // second PT_LOAD segment.
779 for (std::list<ElfSection *>::iterator section = second->begin();
780 section != second->end(); ++section)
781 first->addSection(*section);
783 elf.removeSegment(second);
784 if (filler)
785 elf.removeSegment(filler);
787 if (backup && backup_file(name) != 0) {
788 fprintf(stderr, "Couln't create backup file\n");
789 } else {
790 std::ofstream ofile(name, std::ios::out|std::ios::binary|std::ios::trunc);
791 elf.write(ofile);
792 fprintf(stderr, "Grown by %d bytes\n", elf.getSize() - size);
793 }
794 }
796 int main(int argc, char *argv[])
797 {
798 int arg;
799 bool backup = false;
800 bool force = false;
801 bool revert = false;
802 bool fill = false;
803 char *lastSlash = rindex(argv[0], '/');
804 if (lastSlash != nullptr)
805 rundir = strndup(argv[0], lastSlash - argv[0]);
806 for (arg = 1; arg < argc; arg++) {
807 if (strcmp(argv[arg], "-f") == 0)
808 force = true;
809 else if (strcmp(argv[arg], "-b") == 0)
810 backup = true;
811 else if (strcmp(argv[arg], "-r") == 0)
812 revert = true;
813 else if (strcmp(argv[arg], "--fill") == 0)
814 fill = true;
815 else if (revert) {
816 undo_file(argv[arg], backup);
817 } else
818 do_file(argv[arg], backup, force, fill);
819 }
821 free(rundir);
822 return 0;
823 }