Sat, 03 Jan 2015 20:18:00 +0100
Conditionally enable double key logic according to:
private browsing mode or privacy.thirdparty.isolate preference and
implement in GetCookieStringCommon and FindCookie where it counts...
With some reservations of how to convince FindCookie users to test
condition and pass a nullptr when disabling double key logic.
1 //
2 // Copyright (c) 2002-2012 The ANGLE Project Authors. All rights reserved.
3 // Use of this source code is governed by a BSD-style license that can be
4 // found in the LICENSE file.
5 //
7 // generatemip.h: Defines the GenerateMip function, templated on the format
8 // type of the image for which mip levels are being generated.
10 #ifndef LIBGLESV2_RENDERER_GENERATEMIP_H_
11 #define LIBGLESV2_RENDERER_GENERATEMIP_H_
13 #include "libGLESv2/mathutil.h"
15 namespace rx
16 {
17 struct L8
18 {
19 unsigned char L;
21 static void average(L8 *dst, const L8 *src1, const L8 *src2)
22 {
23 dst->L = ((src1->L ^ src2->L) >> 1) + (src1->L & src2->L);
24 }
25 };
27 typedef L8 R8; // R8 type is functionally equivalent for mip purposes
28 typedef L8 A8; // A8 type is functionally equivalent for mip purposes
30 struct A8L8
31 {
32 unsigned char L;
33 unsigned char A;
35 static void average(A8L8 *dst, const A8L8 *src1, const A8L8 *src2)
36 {
37 *(unsigned short*)dst = (((*(unsigned short*)src1 ^ *(unsigned short*)src2) & 0xFEFE) >> 1) + (*(unsigned short*)src1 & *(unsigned short*)src2);
38 }
39 };
41 typedef A8L8 R8G8; // R8G8 type is functionally equivalent for mip purposes
43 struct A8R8G8B8
44 {
45 unsigned char B;
46 unsigned char G;
47 unsigned char R;
48 unsigned char A;
50 static void average(A8R8G8B8 *dst, const A8R8G8B8 *src1, const A8R8G8B8 *src2)
51 {
52 *(unsigned int*)dst = (((*(unsigned int*)src1 ^ *(unsigned int*)src2) & 0xFEFEFEFE) >> 1) + (*(unsigned int*)src1 & *(unsigned int*)src2);
53 }
54 };
56 typedef A8R8G8B8 R8G8B8A8; // R8G8B8A8 type is functionally equivalent for mip purposes
58 struct A16B16G16R16F
59 {
60 unsigned short R;
61 unsigned short G;
62 unsigned short B;
63 unsigned short A;
65 static void average(A16B16G16R16F *dst, const A16B16G16R16F *src1, const A16B16G16R16F *src2)
66 {
67 dst->R = gl::float32ToFloat16((gl::float16ToFloat32(src1->R) + gl::float16ToFloat32(src2->R)) * 0.5f);
68 dst->G = gl::float32ToFloat16((gl::float16ToFloat32(src1->G) + gl::float16ToFloat32(src2->G)) * 0.5f);
69 dst->B = gl::float32ToFloat16((gl::float16ToFloat32(src1->B) + gl::float16ToFloat32(src2->B)) * 0.5f);
70 dst->A = gl::float32ToFloat16((gl::float16ToFloat32(src1->A) + gl::float16ToFloat32(src2->A)) * 0.5f);
71 }
72 };
74 struct R16F
75 {
76 unsigned short R;
78 static void average(R16F *dst, const R16F *src1, const R16F *src2)
79 {
80 dst->R = gl::float32ToFloat16((gl::float16ToFloat32(src1->R) + gl::float16ToFloat32(src2->R)) * 0.5f);
81 }
82 };
84 struct R16G16F
85 {
86 unsigned short R;
87 unsigned short G;
89 static void average(R16G16F *dst, const R16G16F *src1, const R16G16F *src2)
90 {
91 dst->R = gl::float32ToFloat16((gl::float16ToFloat32(src1->R) + gl::float16ToFloat32(src2->R)) * 0.5f);
92 dst->G = gl::float32ToFloat16((gl::float16ToFloat32(src1->G) + gl::float16ToFloat32(src2->G)) * 0.5f);
93 }
94 };
96 struct A32B32G32R32F
97 {
98 float R;
99 float G;
100 float B;
101 float A;
103 static void average(A32B32G32R32F *dst, const A32B32G32R32F *src1, const A32B32G32R32F *src2)
104 {
105 dst->R = (src1->R + src2->R) * 0.5f;
106 dst->G = (src1->G + src2->G) * 0.5f;
107 dst->B = (src1->B + src2->B) * 0.5f;
108 dst->A = (src1->A + src2->A) * 0.5f;
109 }
110 };
112 struct R32F
113 {
114 float R;
116 static void average(R32F *dst, const R32F *src1, const R32F *src2)
117 {
118 dst->R = (src1->R + src2->R) * 0.5f;
119 }
120 };
122 struct R32G32F
123 {
124 float R;
125 float G;
127 static void average(R32G32F *dst, const R32G32F *src1, const R32G32F *src2)
128 {
129 dst->R = (src1->R + src2->R) * 0.5f;
130 dst->G = (src1->G + src2->G) * 0.5f;
131 }
132 };
134 struct R32G32B32F
135 {
136 float R;
137 float G;
138 float B;
140 static void average(R32G32B32F *dst, const R32G32B32F *src1, const R32G32B32F *src2)
141 {
142 dst->R = (src1->R + src2->R) * 0.5f;
143 dst->G = (src1->G + src2->G) * 0.5f;
144 dst->B = (src1->B + src2->B) * 0.5f;
145 }
146 };
148 template <typename T>
149 static void GenerateMip(unsigned int sourceWidth, unsigned int sourceHeight,
150 const unsigned char *sourceData, int sourcePitch,
151 unsigned char *destData, int destPitch)
152 {
153 unsigned int mipWidth = std::max(1U, sourceWidth >> 1);
154 unsigned int mipHeight = std::max(1U, sourceHeight >> 1);
156 if (sourceHeight == 1)
157 {
158 ASSERT(sourceWidth != 1);
160 const T *src = (const T*)sourceData;
161 T *dst = (T*)destData;
163 for (unsigned int x = 0; x < mipWidth; x++)
164 {
165 T::average(&dst[x], &src[x * 2], &src[x * 2 + 1]);
166 }
167 }
168 else if (sourceWidth == 1)
169 {
170 ASSERT(sourceHeight != 1);
172 for (unsigned int y = 0; y < mipHeight; y++)
173 {
174 const T *src0 = (const T*)(sourceData + y * 2 * sourcePitch);
175 const T *src1 = (const T*)(sourceData + y * 2 * sourcePitch + sourcePitch);
176 T *dst = (T*)(destData + y * destPitch);
178 T::average(dst, src0, src1);
179 }
180 }
181 else
182 {
183 for (unsigned int y = 0; y < mipHeight; y++)
184 {
185 const T *src0 = (const T*)(sourceData + y * 2 * sourcePitch);
186 const T *src1 = (const T*)(sourceData + y * 2 * sourcePitch + sourcePitch);
187 T *dst = (T*)(destData + y * destPitch);
189 for (unsigned int x = 0; x < mipWidth; x++)
190 {
191 T tmp0;
192 T tmp1;
194 T::average(&tmp0, &src0[x * 2], &src0[x * 2 + 1]);
195 T::average(&tmp1, &src1[x * 2], &src1[x * 2 + 1]);
196 T::average(&dst[x], &tmp0, &tmp1);
197 }
198 }
199 }
200 }
201 }
203 #endif // LIBGLESV2_RENDERER_GENERATEMIP_H_