gfx/skia/trunk/include/core/SkPathRef.h

Sat, 03 Jan 2015 20:18:00 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Sat, 03 Jan 2015 20:18:00 +0100
branch
TOR_BUG_3246
changeset 7
129ffea94266
permissions
-rw-r--r--

Conditionally enable double key logic according to:
private browsing mode or privacy.thirdparty.isolate preference and
implement in GetCookieStringCommon and FindCookie where it counts...
With some reservations of how to convince FindCookie users to test
condition and pass a nullptr when disabling double key logic.

     2 /*
     3  * Copyright 2012 Google Inc.
     4  *
     5  * Use of this source code is governed by a BSD-style license that can be
     6  * found in the LICENSE file.
     7  */
     9 #ifndef SkPathRef_DEFINED
    10 #define SkPathRef_DEFINED
    12 #include "SkMatrix.h"
    13 #include "SkPoint.h"
    14 #include "SkRect.h"
    15 #include "SkRefCnt.h"
    16 #include "SkTDArray.h"
    17 #include <stddef.h> // ptrdiff_t
    19 class SkRBuffer;
    20 class SkWBuffer;
    22 /**
    23  * Holds the path verbs and points. It is versioned by a generation ID. None of its public methods
    24  * modify the contents. To modify or append to the verbs/points wrap the SkPathRef in an
    25  * SkPathRef::Editor object. Installing the editor resets the generation ID. It also performs
    26  * copy-on-write if the SkPathRef is shared by multiple SkPaths. The caller passes the Editor's
    27  * constructor a SkAutoTUnref, which may be updated to point to a new SkPathRef after the editor's
    28  * constructor returns.
    29  *
    30  * The points and verbs are stored in a single allocation. The points are at the begining of the
    31  * allocation while the verbs are stored at end of the allocation, in reverse order. Thus the points
    32  * and verbs both grow into the middle of the allocation until the meet. To access verb i in the
    33  * verb array use ref.verbs()[~i] (because verbs() returns a pointer just beyond the first
    34  * logical verb or the last verb in memory).
    35  */
    37 class SK_API SkPathRef : public ::SkRefCnt {
    38 public:
    39     SK_DECLARE_INST_COUNT(SkPathRef);
    41     class Editor {
    42     public:
    43         Editor(SkAutoTUnref<SkPathRef>* pathRef,
    44                int incReserveVerbs = 0,
    45                int incReservePoints = 0);
    47         ~Editor() { SkDEBUGCODE(sk_atomic_dec(&fPathRef->fEditorsAttached);) }
    49         /**
    50          * Returns the array of points.
    51          */
    52         SkPoint* points() { return fPathRef->getPoints(); }
    53         const SkPoint* points() const { return fPathRef->points(); }
    55         /**
    56          * Gets the ith point. Shortcut for this->points() + i
    57          */
    58         SkPoint* atPoint(int i) {
    59             SkASSERT((unsigned) i < (unsigned) fPathRef->fPointCnt);
    60             return this->points() + i;
    61         };
    62         const SkPoint* atPoint(int i) const {
    63             SkASSERT((unsigned) i < (unsigned) fPathRef->fPointCnt);
    64             return this->points() + i;
    65         };
    67         /**
    68          * Adds the verb and allocates space for the number of points indicated by the verb. The
    69          * return value is a pointer to where the points for the verb should be written.
    70          * 'weight' is only used if 'verb' is kConic_Verb
    71          */
    72         SkPoint* growForVerb(int /*SkPath::Verb*/ verb, SkScalar weight = 0) {
    73             SkDEBUGCODE(fPathRef->validate();)
    74             return fPathRef->growForVerb(verb, weight);
    75         }
    77         /**
    78          * Allocates space for multiple instances of a particular verb and the
    79          * requisite points & weights.
    80          * The return pointer points at the first new point (indexed normally [<i>]).
    81          * If 'verb' is kConic_Verb, 'weights' will return a pointer to the
    82          * space for the conic weights (indexed normally).
    83          */
    84         SkPoint* growForRepeatedVerb(int /*SkPath::Verb*/ verb,
    85                                      int numVbs,
    86                                      SkScalar** weights = NULL) {
    87             return fPathRef->growForRepeatedVerb(verb, numVbs, weights);
    88         }
    90         /**
    91          * Resets the path ref to a new verb and point count. The new verbs and points are
    92          * uninitialized.
    93          */
    94         void resetToSize(int newVerbCnt, int newPointCnt, int newConicCount) {
    95             fPathRef->resetToSize(newVerbCnt, newPointCnt, newConicCount);
    96         }
    98         /**
    99          * Gets the path ref that is wrapped in the Editor.
   100          */
   101         SkPathRef* pathRef() { return fPathRef; }
   103         void setIsOval(bool isOval) { fPathRef->setIsOval(isOval); }
   105         void setBounds(const SkRect& rect) { fPathRef->setBounds(rect); }
   107     private:
   108         SkPathRef* fPathRef;
   109     };
   111 public:
   112     /**
   113      * Gets a path ref with no verbs or points.
   114      */
   115     static SkPathRef* CreateEmpty();
   117     /**
   118      *  Returns true if all of the points in this path are finite, meaning there
   119      *  are no infinities and no NaNs.
   120      */
   121     bool isFinite() const {
   122         if (fBoundsIsDirty) {
   123             this->computeBounds();
   124         }
   125         return SkToBool(fIsFinite);
   126     }
   128     /**
   129      *  Returns a mask, where each bit corresponding to a SegmentMask is
   130      *  set if the path contains 1 or more segments of that type.
   131      *  Returns 0 for an empty path (no segments).
   132      */
   133     uint32_t getSegmentMasks() const { return fSegmentMask; }
   135     /** Returns true if the path is an oval.
   136      *
   137      * @param rect      returns the bounding rect of this oval. It's a circle
   138      *                  if the height and width are the same.
   139      *
   140      * @return true if this path is an oval.
   141      *              Tracking whether a path is an oval is considered an
   142      *              optimization for performance and so some paths that are in
   143      *              fact ovals can report false.
   144      */
   145     bool isOval(SkRect* rect) const {
   146         if (fIsOval && NULL != rect) {
   147             *rect = getBounds();
   148         }
   150         return SkToBool(fIsOval);
   151     }
   153     bool hasComputedBounds() const {
   154         return !fBoundsIsDirty;
   155     }
   157     /** Returns the bounds of the path's points. If the path contains 0 or 1
   158         points, the bounds is set to (0,0,0,0), and isEmpty() will return true.
   159         Note: this bounds may be larger than the actual shape, since curves
   160         do not extend as far as their control points.
   161     */
   162     const SkRect& getBounds() const {
   163         if (fBoundsIsDirty) {
   164             this->computeBounds();
   165         }
   166         return fBounds;
   167     }
   169     /**
   170      * Transforms a path ref by a matrix, allocating a new one only if necessary.
   171      */
   172     static void CreateTransformedCopy(SkAutoTUnref<SkPathRef>* dst,
   173                                       const SkPathRef& src,
   174                                       const SkMatrix& matrix);
   176     static SkPathRef* CreateFromBuffer(SkRBuffer* buffer);
   178     /**
   179      * Rollsback a path ref to zero verbs and points with the assumption that the path ref will be
   180      * repopulated with approximately the same number of verbs and points. A new path ref is created
   181      * only if necessary.
   182      */
   183     static void Rewind(SkAutoTUnref<SkPathRef>* pathRef);
   185     virtual ~SkPathRef() {
   186         SkDEBUGCODE(this->validate();)
   187         sk_free(fPoints);
   189         SkDEBUGCODE(fPoints = NULL;)
   190         SkDEBUGCODE(fVerbs = NULL;)
   191         SkDEBUGCODE(fVerbCnt = 0x9999999;)
   192         SkDEBUGCODE(fPointCnt = 0xAAAAAAA;)
   193         SkDEBUGCODE(fPointCnt = 0xBBBBBBB;)
   194         SkDEBUGCODE(fGenerationID = 0xEEEEEEEE;)
   195         SkDEBUGCODE(fEditorsAttached = 0x7777777;)
   196     }
   198     int countPoints() const { SkDEBUGCODE(this->validate();) return fPointCnt; }
   199     int countVerbs() const { SkDEBUGCODE(this->validate();) return fVerbCnt; }
   200     int countWeights() const { SkDEBUGCODE(this->validate();) return fConicWeights.count(); }
   202     /**
   203      * Returns a pointer one beyond the first logical verb (last verb in memory order).
   204      */
   205     const uint8_t* verbs() const { SkDEBUGCODE(this->validate();) return fVerbs; }
   207     /**
   208      * Returns a const pointer to the first verb in memory (which is the last logical verb).
   209      */
   210     const uint8_t* verbsMemBegin() const { return this->verbs() - fVerbCnt; }
   212     /**
   213      * Returns a const pointer to the first point.
   214      */
   215     const SkPoint* points() const { SkDEBUGCODE(this->validate();) return fPoints; }
   217     /**
   218      * Shortcut for this->points() + this->countPoints()
   219      */
   220     const SkPoint* pointsEnd() const { return this->points() + this->countPoints(); }
   222     const SkScalar* conicWeights() const { SkDEBUGCODE(this->validate();) return fConicWeights.begin(); }
   223     const SkScalar* conicWeightsEnd() const { SkDEBUGCODE(this->validate();) return fConicWeights.end(); }
   225     /**
   226      * Convenience methods for getting to a verb or point by index.
   227      */
   228     uint8_t atVerb(int index) const {
   229         SkASSERT((unsigned) index < (unsigned) fVerbCnt);
   230         return this->verbs()[~index];
   231     }
   232     const SkPoint& atPoint(int index) const {
   233         SkASSERT((unsigned) index < (unsigned) fPointCnt);
   234         return this->points()[index];
   235     }
   237     bool operator== (const SkPathRef& ref) const;
   239     /**
   240      * Writes the path points and verbs to a buffer.
   241      */
   242     void writeToBuffer(SkWBuffer* buffer) const;
   244     /**
   245      * Gets the number of bytes that would be written in writeBuffer()
   246      */
   247     uint32_t writeSize() const;
   249     /**
   250      * Gets an ID that uniquely identifies the contents of the path ref. If two path refs have the
   251      * same ID then they have the same verbs and points. However, two path refs may have the same
   252      * contents but different genIDs.
   253      */
   254     uint32_t genID() const;
   256 private:
   257     enum SerializationOffsets {
   258         kIsFinite_SerializationShift = 25,  // requires 1 bit
   259         kIsOval_SerializationShift = 24,    // requires 1 bit
   260         kSegmentMask_SerializationShift = 0 // requires 4 bits
   261     };
   263     SkPathRef() {
   264         fBoundsIsDirty = true;    // this also invalidates fIsFinite
   265         fPointCnt = 0;
   266         fVerbCnt = 0;
   267         fVerbs = NULL;
   268         fPoints = NULL;
   269         fFreeSpace = 0;
   270         fGenerationID = kEmptyGenID;
   271         fSegmentMask = 0;
   272         fIsOval = false;
   273         SkDEBUGCODE(fEditorsAttached = 0;)
   274         SkDEBUGCODE(this->validate();)
   275     }
   277     void copy(const SkPathRef& ref, int additionalReserveVerbs, int additionalReservePoints);
   279     // Return true if the computed bounds are finite.
   280     static bool ComputePtBounds(SkRect* bounds, const SkPathRef& ref) {
   281         int count = ref.countPoints();
   282         if (count <= 1) {  // we ignore just 1 point (moveto)
   283             bounds->setEmpty();
   284             return count ? ref.points()->isFinite() : true;
   285         } else {
   286             return bounds->setBoundsCheck(ref.points(), count);
   287         }
   288     }
   290     // called, if dirty, by getBounds()
   291     void computeBounds() const {
   292         SkDEBUGCODE(this->validate();)
   293         SkASSERT(fBoundsIsDirty);
   295         fIsFinite = ComputePtBounds(&fBounds, *this);
   296         fBoundsIsDirty = false;
   297     }
   299     void setBounds(const SkRect& rect) {
   300         SkASSERT(rect.fLeft <= rect.fRight && rect.fTop <= rect.fBottom);
   301         fBounds = rect;
   302         fBoundsIsDirty = false;
   303         fIsFinite = fBounds.isFinite();
   304     }
   306     /** Makes additional room but does not change the counts or change the genID */
   307     void incReserve(int additionalVerbs, int additionalPoints) {
   308         SkDEBUGCODE(this->validate();)
   309         size_t space = additionalVerbs * sizeof(uint8_t) + additionalPoints * sizeof (SkPoint);
   310         this->makeSpace(space);
   311         SkDEBUGCODE(this->validate();)
   312     }
   314     /** Resets the path ref with verbCount verbs and pointCount points, all uninitialized. Also
   315      *  allocates space for reserveVerb additional verbs and reservePoints additional points.*/
   316     void resetToSize(int verbCount, int pointCount, int conicCount,
   317                      int reserveVerbs = 0, int reservePoints = 0) {
   318         SkDEBUGCODE(this->validate();)
   319         fBoundsIsDirty = true;      // this also invalidates fIsFinite
   320         fGenerationID = 0;
   322         fSegmentMask = 0;
   323         fIsOval = false;
   325         size_t newSize = sizeof(uint8_t) * verbCount + sizeof(SkPoint) * pointCount;
   326         size_t newReserve = sizeof(uint8_t) * reserveVerbs + sizeof(SkPoint) * reservePoints;
   327         size_t minSize = newSize + newReserve;
   329         ptrdiff_t sizeDelta = this->currSize() - minSize;
   331         if (sizeDelta < 0 || static_cast<size_t>(sizeDelta) >= 3 * minSize) {
   332             sk_free(fPoints);
   333             fPoints = NULL;
   334             fVerbs = NULL;
   335             fFreeSpace = 0;
   336             fVerbCnt = 0;
   337             fPointCnt = 0;
   338             this->makeSpace(minSize);
   339             fVerbCnt = verbCount;
   340             fPointCnt = pointCount;
   341             fFreeSpace -= newSize;
   342         } else {
   343             fPointCnt = pointCount;
   344             fVerbCnt = verbCount;
   345             fFreeSpace = this->currSize() - minSize;
   346         }
   347         fConicWeights.setCount(conicCount);
   348         SkDEBUGCODE(this->validate();)
   349     }
   351     /**
   352      * Increases the verb count by numVbs and point count by the required amount.
   353      * The new points are uninitialized. All the new verbs are set to the specified
   354      * verb. If 'verb' is kConic_Verb, 'weights' will return a pointer to the
   355      * uninitialized conic weights.
   356      */
   357     SkPoint* growForRepeatedVerb(int /*SkPath::Verb*/ verb, int numVbs, SkScalar** weights);
   359     /**
   360      * Increases the verb count 1, records the new verb, and creates room for the requisite number
   361      * of additional points. A pointer to the first point is returned. Any new points are
   362      * uninitialized.
   363      */
   364     SkPoint* growForVerb(int /*SkPath::Verb*/ verb, SkScalar weight);
   366     /**
   367      * Ensures that the free space available in the path ref is >= size. The verb and point counts
   368      * are not changed.
   369      */
   370     void makeSpace(size_t size) {
   371         SkDEBUGCODE(this->validate();)
   372         ptrdiff_t growSize = size - fFreeSpace;
   373         if (growSize <= 0) {
   374             return;
   375         }
   376         size_t oldSize = this->currSize();
   377         // round to next multiple of 8 bytes
   378         growSize = (growSize + 7) & ~static_cast<size_t>(7);
   379         // we always at least double the allocation
   380         if (static_cast<size_t>(growSize) < oldSize) {
   381             growSize = oldSize;
   382         }
   383         if (growSize < kMinSize) {
   384             growSize = kMinSize;
   385         }
   386         size_t newSize = oldSize + growSize;
   387         // Note that realloc could memcpy more than we need. It seems to be a win anyway. TODO:
   388         // encapsulate this.
   389         fPoints = reinterpret_cast<SkPoint*>(sk_realloc_throw(fPoints, newSize));
   390         size_t oldVerbSize = fVerbCnt * sizeof(uint8_t);
   391         void* newVerbsDst = reinterpret_cast<void*>(
   392                                 reinterpret_cast<intptr_t>(fPoints) + newSize - oldVerbSize);
   393         void* oldVerbsSrc = reinterpret_cast<void*>(
   394                                 reinterpret_cast<intptr_t>(fPoints) + oldSize - oldVerbSize);
   395         memmove(newVerbsDst, oldVerbsSrc, oldVerbSize);
   396         fVerbs = reinterpret_cast<uint8_t*>(reinterpret_cast<intptr_t>(fPoints) + newSize);
   397         fFreeSpace += growSize;
   398         SkDEBUGCODE(this->validate();)
   399     }
   401     /**
   402      * Private, non-const-ptr version of the public function verbsMemBegin().
   403      */
   404     uint8_t* verbsMemWritable() {
   405         SkDEBUGCODE(this->validate();)
   406         return fVerbs - fVerbCnt;
   407     }
   409     /**
   410      * Gets the total amount of space allocated for verbs, points, and reserve.
   411      */
   412     size_t currSize() const {
   413         return reinterpret_cast<intptr_t>(fVerbs) - reinterpret_cast<intptr_t>(fPoints);
   414     }
   416     SkDEBUGCODE(void validate() const;)
   418     /**
   419      * Called the first time someone calls CreateEmpty to actually create the singleton.
   420      */
   421     static void CreateEmptyImpl(int/*unused*/);
   423     void setIsOval(bool isOval) { fIsOval = isOval; }
   425     SkPoint* getPoints() {
   426         SkDEBUGCODE(this->validate();)
   427         fIsOval = false;
   428         return fPoints;
   429     }
   431     enum {
   432         kMinSize = 256,
   433     };
   435     mutable SkRect      fBounds;
   436     uint8_t             fSegmentMask;
   437     mutable uint8_t     fBoundsIsDirty;
   438     mutable SkBool8     fIsFinite;    // only meaningful if bounds are valid
   439     mutable SkBool8     fIsOval;
   441     SkPoint*            fPoints; // points to begining of the allocation
   442     uint8_t*            fVerbs; // points just past the end of the allocation (verbs grow backwards)
   443     int                 fVerbCnt;
   444     int                 fPointCnt;
   445     size_t              fFreeSpace; // redundant but saves computation
   446     SkTDArray<SkScalar> fConicWeights;
   448     enum {
   449         kEmptyGenID = 1, // GenID reserved for path ref with zero points and zero verbs.
   450     };
   451     mutable uint32_t    fGenerationID;
   452     SkDEBUGCODE(int32_t fEditorsAttached;) // assert that only one editor in use at any time.
   454     friend class PathRefTest_Private;
   455     typedef SkRefCnt INHERITED;
   456 };
   458 #endif

mercurial