gfx/skia/trunk/include/core/SkScalar.h

Sat, 03 Jan 2015 20:18:00 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Sat, 03 Jan 2015 20:18:00 +0100
branch
TOR_BUG_3246
changeset 7
129ffea94266
permissions
-rw-r--r--

Conditionally enable double key logic according to:
private browsing mode or privacy.thirdparty.isolate preference and
implement in GetCookieStringCommon and FindCookie where it counts...
With some reservations of how to convince FindCookie users to test
condition and pass a nullptr when disabling double key logic.

     1 /*
     2  * Copyright 2006 The Android Open Source Project
     3  *
     4  * Use of this source code is governed by a BSD-style license that can be
     5  * found in the LICENSE file.
     6  */
     8 #ifndef SkScalar_DEFINED
     9 #define SkScalar_DEFINED
    11 #include "SkFixed.h"
    12 #include "SkFloatingPoint.h"
    14 //#define SK_SUPPORT_DEPRECATED_SCALARROUND
    16 typedef float   SkScalar;
    18 /** SK_Scalar1 is defined to be 1.0 represented as an SkScalar
    19 */
    20 #define SK_Scalar1              (1.0f)
    21 /** SK_Scalar1 is defined to be 1/2 represented as an SkScalar
    22 */
    23 #define SK_ScalarHalf           (0.5f)
    24 /** SK_ScalarInfinity is defined to be infinity as an SkScalar
    25 */
    26 #define SK_ScalarInfinity       SK_FloatInfinity
    27 /** SK_ScalarNegativeInfinity is defined to be negative infinity as an SkScalar
    28 */
    29 #define SK_ScalarNegativeInfinity       SK_FloatNegativeInfinity
    30 /** SK_ScalarMax is defined to be the largest value representable as an SkScalar
    31 */
    32 #define SK_ScalarMax            (3.402823466e+38f)
    33 /** SK_ScalarMin is defined to be the smallest value representable as an SkScalar
    34 */
    35 #define SK_ScalarMin            (-SK_ScalarMax)
    36 /** SK_ScalarNaN is defined to be 'Not a Number' as an SkScalar
    37 */
    38 #define SK_ScalarNaN            SK_FloatNaN
    39 /** SkScalarIsNaN(n) returns true if argument is not a number
    40 */
    41 static inline bool SkScalarIsNaN(float x) { return x != x; }
    43 /** Returns true if x is not NaN and not infinite */
    44 static inline bool SkScalarIsFinite(float x) {
    45     // We rely on the following behavior of infinities and nans
    46     // 0 * finite --> 0
    47     // 0 * infinity --> NaN
    48     // 0 * NaN --> NaN
    49     float prod = x * 0;
    50     // At this point, prod will either be NaN or 0
    51     // Therefore we can return (prod == prod) or (0 == prod).
    52     return prod == prod;
    53 }
    55 /** SkIntToScalar(n) returns its integer argument as an SkScalar
    56 */
    57 #define SkIntToScalar(n)        ((float)(n))
    58 /** SkFixedToScalar(n) returns its SkFixed argument as an SkScalar
    59 */
    60 #define SkFixedToScalar(x)      SkFixedToFloat(x)
    61 /** SkScalarToFixed(n) returns its SkScalar argument as an SkFixed
    62 */
    63 #define SkScalarToFixed(x)      SkFloatToFixed(x)
    65 #define SkScalarToFloat(n)      (n)
    66 #ifndef SK_SCALAR_TO_FLOAT_EXCLUDED
    67 #define SkFloatToScalar(n)      (n)
    68 #endif
    70 #define SkScalarToDouble(n)      (double)(n)
    71 #define SkDoubleToScalar(n)      (float)(n)
    73 /** SkScalarFraction(x) returns the signed fractional part of the argument
    74 */
    75 #define SkScalarFraction(x)     sk_float_mod(x, 1.0f)
    77 #define SkScalarFloorToScalar(x)    sk_float_floor(x)
    78 #define SkScalarCeilToScalar(x)     sk_float_ceil(x)
    79 #define SkScalarRoundToScalar(x)    sk_float_floor((x) + 0.5f)
    81 #define SkScalarFloorToInt(x)       sk_float_floor2int(x)
    82 #define SkScalarCeilToInt(x)        sk_float_ceil2int(x)
    83 #define SkScalarRoundToInt(x)       sk_float_round2int(x)
    84 #define SkScalarTruncToInt(x)       static_cast<int>(x)
    86 /** Returns the absolute value of the specified SkScalar
    87 */
    88 #define SkScalarAbs(x)          sk_float_abs(x)
    89 /** Return x with the sign of y
    90  */
    91 #define SkScalarCopySign(x, y)  sk_float_copysign(x, y)
    92 /** Returns the value pinned between 0 and max inclusive
    93 */
    94 inline SkScalar SkScalarClampMax(SkScalar x, SkScalar max) {
    95     return x < 0 ? 0 : x > max ? max : x;
    96 }
    97 /** Returns the value pinned between min and max inclusive
    98 */
    99 inline SkScalar SkScalarPin(SkScalar x, SkScalar min, SkScalar max) {
   100     return x < min ? min : x > max ? max : x;
   101 }
   102 /** Returns the specified SkScalar squared (x*x)
   103 */
   104 inline SkScalar SkScalarSquare(SkScalar x) { return x * x; }
   105 /** Returns the product of two SkScalars
   106 */
   107 #define SkScalarMul(a, b)       ((float)(a) * (b))
   108 /** Returns the product of two SkScalars plus a third SkScalar
   109 */
   110 #define SkScalarMulAdd(a, b, c) ((float)(a) * (b) + (c))
   111 /** Returns the quotient of two SkScalars (a/b)
   112 */
   113 #define SkScalarDiv(a, b)       ((float)(a) / (b))
   114 /** Returns the mod of two SkScalars (a mod b)
   115 */
   116 #define SkScalarMod(x,y)        sk_float_mod(x,y)
   117 /** Returns the product of the first two arguments, divided by the third argument
   118 */
   119 #define SkScalarMulDiv(a, b, c) ((float)(a) * (b) / (c))
   120 /** Returns the multiplicative inverse of the SkScalar (1/x)
   121 */
   122 #define SkScalarInvert(x)       (SK_Scalar1 / (x))
   123 #define SkScalarFastInvert(x)   (SK_Scalar1 / (x))
   124 /** Returns the square root of the SkScalar
   125 */
   126 #define SkScalarSqrt(x)         sk_float_sqrt(x)
   127 /** Returns b to the e
   128 */
   129 #define SkScalarPow(b, e)       sk_float_pow(b, e)
   130 /** Returns the average of two SkScalars (a+b)/2
   131 */
   132 #define SkScalarAve(a, b)       (((a) + (b)) * 0.5f)
   133 /** Returns one half of the specified SkScalar
   134 */
   135 #define SkScalarHalf(a)         ((a) * 0.5f)
   137 #define SK_ScalarSqrt2          1.41421356f
   138 #define SK_ScalarPI             3.14159265f
   139 #define SK_ScalarTanPIOver8     0.414213562f
   140 #define SK_ScalarRoot2Over2     0.707106781f
   142 #define SkDegreesToRadians(degrees) ((degrees) * (SK_ScalarPI / 180))
   143 #define SkRadiansToDegrees(radians) ((radians) * (180 / SK_ScalarPI))
   144 float SkScalarSinCos(SkScalar radians, SkScalar* cosValue);
   145 #define SkScalarSin(radians)    (float)sk_float_sin(radians)
   146 #define SkScalarCos(radians)    (float)sk_float_cos(radians)
   147 #define SkScalarTan(radians)    (float)sk_float_tan(radians)
   148 #define SkScalarASin(val)   (float)sk_float_asin(val)
   149 #define SkScalarACos(val)   (float)sk_float_acos(val)
   150 #define SkScalarATan2(y, x) (float)sk_float_atan2(y,x)
   151 #define SkScalarExp(x)  (float)sk_float_exp(x)
   152 #define SkScalarLog(x)  (float)sk_float_log(x)
   154 inline SkScalar SkMaxScalar(SkScalar a, SkScalar b) { return a > b ? a : b; }
   155 inline SkScalar SkMinScalar(SkScalar a, SkScalar b) { return a < b ? a : b; }
   157 static inline bool SkScalarIsInt(SkScalar x) {
   158     return x == (float)(int)x;
   159 }
   161 // DEPRECATED : use ToInt or ToScalar variant
   162 #ifdef SK_SUPPORT_DEPRECATED_SCALARROUND
   163 #   define SkScalarFloor(x)    SkScalarFloorToInt(x)
   164 #   define SkScalarCeil(x)     SkScalarCeilToInt(x)
   165 #   define SkScalarRound(x)    SkScalarRoundToInt(x)
   166 #endif
   168 /**
   169  *  Returns -1 || 0 || 1 depending on the sign of value:
   170  *  -1 if x < 0
   171  *   0 if x == 0
   172  *   1 if x > 0
   173  */
   174 static inline int SkScalarSignAsInt(SkScalar x) {
   175     return x < 0 ? -1 : (x > 0);
   176 }
   178 // Scalar result version of above
   179 static inline SkScalar SkScalarSignAsScalar(SkScalar x) {
   180     return x < 0 ? -SK_Scalar1 : ((x > 0) ? SK_Scalar1 : 0);
   181 }
   183 #define SK_ScalarNearlyZero         (SK_Scalar1 / (1 << 12))
   185 static inline bool SkScalarNearlyZero(SkScalar x,
   186                                     SkScalar tolerance = SK_ScalarNearlyZero) {
   187     SkASSERT(tolerance >= 0);
   188     return SkScalarAbs(x) <= tolerance;
   189 }
   191 static inline bool SkScalarNearlyEqual(SkScalar x, SkScalar y,
   192                                      SkScalar tolerance = SK_ScalarNearlyZero) {
   193     SkASSERT(tolerance >= 0);
   194     return SkScalarAbs(x-y) <= tolerance;
   195 }
   197 /** Linearly interpolate between A and B, based on t.
   198     If t is 0, return A
   199     If t is 1, return B
   200     else interpolate.
   201     t must be [0..SK_Scalar1]
   202 */
   203 static inline SkScalar SkScalarInterp(SkScalar A, SkScalar B, SkScalar t) {
   204     SkASSERT(t >= 0 && t <= SK_Scalar1);
   205     return A + (B - A) * t;
   206 }
   208 /** Interpolate along the function described by (keys[length], values[length])
   209     for the passed searchKey.  SearchKeys outside the range keys[0]-keys[Length]
   210     clamp to the min or max value.  This function was inspired by a desire
   211     to change the multiplier for thickness in fakeBold; therefore it assumes
   212     the number of pairs (length) will be small, and a linear search is used.
   213     Repeated keys are allowed for discontinuous functions (so long as keys is
   214     monotonically increasing), and if key is the value of a repeated scalar in
   215     keys, the first one will be used.  However, that may change if a binary
   216     search is used.
   217 */
   218 SkScalar SkScalarInterpFunc(SkScalar searchKey, const SkScalar keys[],
   219                             const SkScalar values[], int length);
   221 /*
   222  *  Helper to compare an array of scalars.
   223  */
   224 static inline bool SkScalarsEqual(const SkScalar a[], const SkScalar b[], int n) {
   225     SkASSERT(n >= 0);
   226     for (int i = 0; i < n; ++i) {
   227         if (a[i] != b[i]) {
   228             return false;
   229         }
   230     }
   231     return true;
   232 }
   234 #endif

mercurial