gfx/skia/trunk/src/core/SkClipStack.cpp

Sat, 03 Jan 2015 20:18:00 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Sat, 03 Jan 2015 20:18:00 +0100
branch
TOR_BUG_3246
changeset 7
129ffea94266
permissions
-rw-r--r--

Conditionally enable double key logic according to:
private browsing mode or privacy.thirdparty.isolate preference and
implement in GetCookieStringCommon and FindCookie where it counts...
With some reservations of how to convince FindCookie users to test
condition and pass a nullptr when disabling double key logic.

     2 /*
     3  * Copyright 2011 Google Inc.
     4  *
     5  * Use of this source code is governed by a BSD-style license that can be
     6  * found in the LICENSE file.
     7  */
     8 #include "SkClipStack.h"
     9 #include "SkPath.h"
    10 #include "SkThread.h"
    12 #include <new>
    15 // 0-2 are reserved for invalid, empty & wide-open
    16 static const int32_t kFirstUnreservedGenID = 3;
    17 int32_t SkClipStack::gGenID = kFirstUnreservedGenID;
    19 SkClipStack::Element::Element(const Element& that) {
    20     switch (that.getType()) {
    21         case kEmpty_Type:
    22             fPath.reset();
    23             break;
    24         case kRect_Type: // Rect uses rrect
    25         case kRRect_Type:
    26             fPath.reset();
    27             fRRect = that.fRRect;
    28             break;
    29         case kPath_Type:
    30             fPath.set(that.getPath());
    31             break;
    32     }
    34     fSaveCount = that.fSaveCount;
    35     fOp = that.fOp;
    36     fType = that.fType;
    37     fDoAA = that.fDoAA;
    38     fFiniteBoundType = that.fFiniteBoundType;
    39     fFiniteBound = that.fFiniteBound;
    40     fIsIntersectionOfRects = that.fIsIntersectionOfRects;
    41     fGenID = that.fGenID;
    42 }
    44 bool SkClipStack::Element::operator== (const Element& element) const {
    45     if (this == &element) {
    46         return true;
    47     }
    48     if (fOp != element.fOp ||
    49         fType != element.fType ||
    50         fDoAA != element.fDoAA ||
    51         fSaveCount != element.fSaveCount) {
    52         return false;
    53     }
    54     switch (fType) {
    55         case kPath_Type:
    56             return this->getPath() == element.getPath();
    57         case kRRect_Type:
    58             return fRRect == element.fRRect;
    59         case kRect_Type:
    60             return this->getRect() == element.getRect();
    61         case kEmpty_Type:
    62             return true;
    63         default:
    64             SkDEBUGFAIL("Unexpected type.");
    65             return false;
    66     }
    67 }
    69 void SkClipStack::Element::invertShapeFillType() {
    70     switch (fType) {
    71         case kRect_Type:
    72             fPath.init();
    73             fPath.get()->addRect(this->getRect());
    74             fPath.get()->setFillType(SkPath::kInverseEvenOdd_FillType);
    75             fType = kPath_Type;
    76             break;
    77         case kRRect_Type:
    78             fPath.init();
    79             fPath.get()->addRRect(fRRect);
    80             fPath.get()->setFillType(SkPath::kInverseEvenOdd_FillType);
    81             fType = kPath_Type;
    82             break;
    83         case kPath_Type:
    84             fPath.get()->toggleInverseFillType();
    85             break;
    86         case kEmpty_Type:
    87             // Should this set to an empty, inverse filled path?
    88             break;
    89     }
    90 }
    92 void SkClipStack::Element::initPath(int saveCount, const SkPath& path, SkRegion::Op op,
    93                                     bool doAA) {
    94     if (!path.isInverseFillType()) {
    95         if (SkPath::kNone_PathAsRect != path.asRect()) {
    96             this->initRect(saveCount, path.getBounds(), op, doAA);
    97             return;
    98         }
    99         SkRect ovalRect;
   100         if (path.isOval(&ovalRect)) {
   101             SkRRect rrect;
   102             rrect.setOval(ovalRect);
   103             this->initRRect(saveCount, rrect, op, doAA);
   104             return;
   105         }
   106     }
   107     fPath.set(path);
   108     fType = kPath_Type;
   109     this->initCommon(saveCount, op, doAA);
   110 }
   112 void SkClipStack::Element::asPath(SkPath* path) const {
   113     switch (fType) {
   114         case kEmpty_Type:
   115             path->reset();
   116             break;
   117         case kRect_Type:
   118             path->reset();
   119             path->addRect(this->getRect());
   120             break;
   121         case kRRect_Type:
   122             path->reset();
   123             path->addRRect(fRRect);
   124             break;
   125         case kPath_Type:
   126             *path = *fPath.get();
   127             break;
   128     }
   129 }
   131 void SkClipStack::Element::setEmpty() {
   132     fType = kEmpty_Type;
   133     fFiniteBound.setEmpty();
   134     fFiniteBoundType = kNormal_BoundsType;
   135     fIsIntersectionOfRects = false;
   136     fRRect.setEmpty();
   137     fPath.reset();
   138     fGenID = kEmptyGenID;
   139     SkDEBUGCODE(this->checkEmpty();)
   140 }
   142 void SkClipStack::Element::checkEmpty() const {
   143     SkASSERT(fFiniteBound.isEmpty());
   144     SkASSERT(kNormal_BoundsType == fFiniteBoundType);
   145     SkASSERT(!fIsIntersectionOfRects);
   146     SkASSERT(kEmptyGenID == fGenID);
   147     SkASSERT(!fPath.isValid());
   148 }
   150 bool SkClipStack::Element::canBeIntersectedInPlace(int saveCount, SkRegion::Op op) const {
   151     if (kEmpty_Type == fType &&
   152         (SkRegion::kDifference_Op == op || SkRegion::kIntersect_Op == op)) {
   153         return true;
   154     }
   155     // Only clips within the same save/restore frame (as captured by
   156     // the save count) can be merged
   157     return  fSaveCount == saveCount &&
   158             SkRegion::kIntersect_Op == op &&
   159             (SkRegion::kIntersect_Op == fOp || SkRegion::kReplace_Op == fOp);
   160 }
   162 bool SkClipStack::Element::rectRectIntersectAllowed(const SkRect& newR, bool newAA) const {
   163     SkASSERT(kRect_Type == fType);
   165     if (fDoAA == newAA) {
   166         // if the AA setting is the same there is no issue
   167         return true;
   168     }
   170     if (!SkRect::Intersects(this->getRect(), newR)) {
   171         // The calling code will correctly set the result to the empty clip
   172         return true;
   173     }
   175     if (this->getRect().contains(newR)) {
   176         // if the new rect carves out a portion of the old one there is no
   177         // issue
   178         return true;
   179     }
   181     // So either the two overlap in some complex manner or newR contains oldR.
   182     // In the first, case the edges will require different AA. In the second,
   183     // the AA setting that would be carried forward is incorrect (e.g., oldR
   184     // is AA while newR is BW but since newR contains oldR, oldR will be
   185     // drawn BW) since the new AA setting will predominate.
   186     return false;
   187 }
   189 // a mirror of combineBoundsRevDiff
   190 void SkClipStack::Element::combineBoundsDiff(FillCombo combination, const SkRect& prevFinite) {
   191     switch (combination) {
   192         case kInvPrev_InvCur_FillCombo:
   193             // In this case the only pixels that can remain set
   194             // are inside the current clip rect since the extensions
   195             // to infinity of both clips cancel out and whatever
   196             // is outside of the current clip is removed
   197             fFiniteBoundType = kNormal_BoundsType;
   198             break;
   199         case kInvPrev_Cur_FillCombo:
   200             // In this case the current op is finite so the only pixels
   201             // that aren't set are whatever isn't set in the previous
   202             // clip and whatever this clip carves out
   203             fFiniteBound.join(prevFinite);
   204             fFiniteBoundType = kInsideOut_BoundsType;
   205             break;
   206         case kPrev_InvCur_FillCombo:
   207             // In this case everything outside of this clip's bound
   208             // is erased, so the only pixels that can remain set
   209             // occur w/in the intersection of the two finite bounds
   210             if (!fFiniteBound.intersect(prevFinite)) {
   211                 this->setEmpty();
   212             } else {
   213                 fFiniteBoundType = kNormal_BoundsType;
   214             }
   215             break;
   216         case kPrev_Cur_FillCombo:
   217             // The most conservative result bound is that of the
   218             // prior clip. This could be wildly incorrect if the
   219             // second clip either exactly matches the first clip
   220             // (which should yield the empty set) or reduces the
   221             // size of the prior bound (e.g., if the second clip
   222             // exactly matched the bottom half of the prior clip).
   223             // We ignore these two possibilities.
   224             fFiniteBound = prevFinite;
   225             break;
   226         default:
   227             SkDEBUGFAIL("SkClipStack::Element::combineBoundsDiff Invalid fill combination");
   228             break;
   229     }
   230 }
   232 void SkClipStack::Element::combineBoundsXOR(int combination, const SkRect& prevFinite) {
   234     switch (combination) {
   235         case kInvPrev_Cur_FillCombo:       // fall through
   236         case kPrev_InvCur_FillCombo:
   237             // With only one of the clips inverted the result will always
   238             // extend to infinity. The only pixels that may be un-writeable
   239             // lie within the union of the two finite bounds
   240             fFiniteBound.join(prevFinite);
   241             fFiniteBoundType = kInsideOut_BoundsType;
   242             break;
   243         case kInvPrev_InvCur_FillCombo:
   244             // The only pixels that can survive are within the
   245             // union of the two bounding boxes since the extensions
   246             // to infinity of both clips cancel out
   247             // fall through!
   248         case kPrev_Cur_FillCombo:
   249             // The most conservative bound for xor is the
   250             // union of the two bounds. If the two clips exactly overlapped
   251             // the xor could yield the empty set. Similarly the xor
   252             // could reduce the size of the original clip's bound (e.g.,
   253             // if the second clip exactly matched the bottom half of the
   254             // first clip). We ignore these two cases.
   255             fFiniteBound.join(prevFinite);
   256             fFiniteBoundType = kNormal_BoundsType;
   257             break;
   258         default:
   259             SkDEBUGFAIL("SkClipStack::Element::combineBoundsXOR Invalid fill combination");
   260             break;
   261     }
   262 }
   264 // a mirror of combineBoundsIntersection
   265 void SkClipStack::Element::combineBoundsUnion(int combination, const SkRect& prevFinite) {
   267     switch (combination) {
   268         case kInvPrev_InvCur_FillCombo:
   269             if (!fFiniteBound.intersect(prevFinite)) {
   270                 fFiniteBound.setEmpty();
   271                 fGenID = kWideOpenGenID;
   272             }
   273             fFiniteBoundType = kInsideOut_BoundsType;
   274             break;
   275         case kInvPrev_Cur_FillCombo:
   276             // The only pixels that won't be drawable are inside
   277             // the prior clip's finite bound
   278             fFiniteBound = prevFinite;
   279             fFiniteBoundType = kInsideOut_BoundsType;
   280             break;
   281         case kPrev_InvCur_FillCombo:
   282             // The only pixels that won't be drawable are inside
   283             // this clip's finite bound
   284             break;
   285         case kPrev_Cur_FillCombo:
   286             fFiniteBound.join(prevFinite);
   287             break;
   288         default:
   289             SkDEBUGFAIL("SkClipStack::Element::combineBoundsUnion Invalid fill combination");
   290             break;
   291     }
   292 }
   294 // a mirror of combineBoundsUnion
   295 void SkClipStack::Element::combineBoundsIntersection(int combination, const SkRect& prevFinite) {
   297     switch (combination) {
   298         case kInvPrev_InvCur_FillCombo:
   299             // The only pixels that aren't writable in this case
   300             // occur in the union of the two finite bounds
   301             fFiniteBound.join(prevFinite);
   302             fFiniteBoundType = kInsideOut_BoundsType;
   303             break;
   304         case kInvPrev_Cur_FillCombo:
   305             // In this case the only pixels that will remain writeable
   306             // are within the current clip
   307             break;
   308         case kPrev_InvCur_FillCombo:
   309             // In this case the only pixels that will remain writeable
   310             // are with the previous clip
   311             fFiniteBound = prevFinite;
   312             fFiniteBoundType = kNormal_BoundsType;
   313             break;
   314         case kPrev_Cur_FillCombo:
   315             if (!fFiniteBound.intersect(prevFinite)) {
   316                 this->setEmpty();
   317             }
   318             break;
   319         default:
   320             SkDEBUGFAIL("SkClipStack::Element::combineBoundsIntersection Invalid fill combination");
   321             break;
   322     }
   323 }
   325 // a mirror of combineBoundsDiff
   326 void SkClipStack::Element::combineBoundsRevDiff(int combination, const SkRect& prevFinite) {
   328     switch (combination) {
   329         case kInvPrev_InvCur_FillCombo:
   330             // The only pixels that can survive are in the
   331             // previous bound since the extensions to infinity in
   332             // both clips cancel out
   333             fFiniteBound = prevFinite;
   334             fFiniteBoundType = kNormal_BoundsType;
   335             break;
   336         case kInvPrev_Cur_FillCombo:
   337             if (!fFiniteBound.intersect(prevFinite)) {
   338                 this->setEmpty();
   339             } else {
   340                 fFiniteBoundType = kNormal_BoundsType;
   341             }
   342             break;
   343         case kPrev_InvCur_FillCombo:
   344             fFiniteBound.join(prevFinite);
   345             fFiniteBoundType = kInsideOut_BoundsType;
   346             break;
   347         case kPrev_Cur_FillCombo:
   348             // Fall through - as with the kDifference_Op case, the
   349             // most conservative result bound is the bound of the
   350             // current clip. The prior clip could reduce the size of this
   351             // bound (as in the kDifference_Op case) but we are ignoring
   352             // those cases.
   353             break;
   354         default:
   355             SkDEBUGFAIL("SkClipStack::Element::combineBoundsRevDiff Invalid fill combination");
   356             break;
   357     }
   358 }
   360 void SkClipStack::Element::updateBoundAndGenID(const Element* prior) {
   361     // We set this first here but we may overwrite it later if we determine that the clip is
   362     // either wide-open or empty.
   363     fGenID = GetNextGenID();
   365     // First, optimistically update the current Element's bound information
   366     // with the current clip's bound
   367     fIsIntersectionOfRects = false;
   368     switch (fType) {
   369         case kRect_Type:
   370             fFiniteBound = this->getRect();
   371             fFiniteBoundType = kNormal_BoundsType;
   373             if (SkRegion::kReplace_Op == fOp ||
   374                 (SkRegion::kIntersect_Op == fOp && NULL == prior) ||
   375                 (SkRegion::kIntersect_Op == fOp && prior->fIsIntersectionOfRects &&
   376                     prior->rectRectIntersectAllowed(this->getRect(), fDoAA))) {
   377                 fIsIntersectionOfRects = true;
   378             }
   379             break;
   380         case kRRect_Type:
   381             fFiniteBound = fRRect.getBounds();
   382             fFiniteBoundType = kNormal_BoundsType;
   383             break;
   384         case kPath_Type:
   385             fFiniteBound = fPath.get()->getBounds();
   387             if (fPath.get()->isInverseFillType()) {
   388                 fFiniteBoundType = kInsideOut_BoundsType;
   389             } else {
   390                 fFiniteBoundType = kNormal_BoundsType;
   391             }
   392             break;
   393         case kEmpty_Type:
   394             SkDEBUGFAIL("We shouldn't get here with an empty element.");
   395             break;
   396     }
   398     if (!fDoAA) {
   399         // Here we mimic a non-anti-aliased scanline system. If there is
   400         // no anti-aliasing we can integerize the bounding box to exclude
   401         // fractional parts that won't be rendered.
   402         // Note: the left edge is handled slightly differently below. We
   403         // are a bit more generous in the rounding since we don't want to
   404         // risk missing the left pixels when fLeft is very close to .5
   405         fFiniteBound.set(SkScalarFloorToScalar(fFiniteBound.fLeft+0.45f),
   406                          SkScalarRoundToScalar(fFiniteBound.fTop),
   407                          SkScalarRoundToScalar(fFiniteBound.fRight),
   408                          SkScalarRoundToScalar(fFiniteBound.fBottom));
   409     }
   411     // Now determine the previous Element's bound information taking into
   412     // account that there may be no previous clip
   413     SkRect prevFinite;
   414     SkClipStack::BoundsType prevType;
   416     if (NULL == prior) {
   417         // no prior clip means the entire plane is writable
   418         prevFinite.setEmpty();   // there are no pixels that cannot be drawn to
   419         prevType = kInsideOut_BoundsType;
   420     } else {
   421         prevFinite = prior->fFiniteBound;
   422         prevType = prior->fFiniteBoundType;
   423     }
   425     FillCombo combination = kPrev_Cur_FillCombo;
   426     if (kInsideOut_BoundsType == fFiniteBoundType) {
   427         combination = (FillCombo) (combination | 0x01);
   428     }
   429     if (kInsideOut_BoundsType == prevType) {
   430         combination = (FillCombo) (combination | 0x02);
   431     }
   433     SkASSERT(kInvPrev_InvCur_FillCombo == combination ||
   434                 kInvPrev_Cur_FillCombo == combination ||
   435                 kPrev_InvCur_FillCombo == combination ||
   436                 kPrev_Cur_FillCombo == combination);
   438     // Now integrate with clip with the prior clips
   439     switch (fOp) {
   440         case SkRegion::kDifference_Op:
   441             this->combineBoundsDiff(combination, prevFinite);
   442             break;
   443         case SkRegion::kXOR_Op:
   444             this->combineBoundsXOR(combination, prevFinite);
   445             break;
   446         case SkRegion::kUnion_Op:
   447             this->combineBoundsUnion(combination, prevFinite);
   448             break;
   449         case SkRegion::kIntersect_Op:
   450             this->combineBoundsIntersection(combination, prevFinite);
   451             break;
   452         case SkRegion::kReverseDifference_Op:
   453             this->combineBoundsRevDiff(combination, prevFinite);
   454             break;
   455         case SkRegion::kReplace_Op:
   456             // Replace just ignores everything prior
   457             // The current clip's bound information is already filled in
   458             // so nothing to do
   459             break;
   460         default:
   461             SkDebugf("SkRegion::Op error\n");
   462             SkASSERT(0);
   463             break;
   464     }
   465 }
   467 // This constant determines how many Element's are allocated together as a block in
   468 // the deque. As such it needs to balance allocating too much memory vs.
   469 // incurring allocation/deallocation thrashing. It should roughly correspond to
   470 // the deepest save/restore stack we expect to see.
   471 static const int kDefaultElementAllocCnt = 8;
   473 SkClipStack::SkClipStack()
   474     : fDeque(sizeof(Element), kDefaultElementAllocCnt)
   475     , fSaveCount(0) {
   476 }
   478 SkClipStack::SkClipStack(const SkClipStack& b)
   479     : fDeque(sizeof(Element), kDefaultElementAllocCnt) {
   480     *this = b;
   481 }
   483 SkClipStack::SkClipStack(const SkRect& r)
   484     : fDeque(sizeof(Element), kDefaultElementAllocCnt)
   485     , fSaveCount(0) {
   486     if (!r.isEmpty()) {
   487         this->clipDevRect(r, SkRegion::kReplace_Op, false);
   488     }
   489 }
   491 SkClipStack::SkClipStack(const SkIRect& r)
   492     : fDeque(sizeof(Element), kDefaultElementAllocCnt)
   493     , fSaveCount(0) {
   494     if (!r.isEmpty()) {
   495         SkRect temp;
   496         temp.set(r);
   497         this->clipDevRect(temp, SkRegion::kReplace_Op, false);
   498     }
   499 }
   501 SkClipStack::~SkClipStack() {
   502     reset();
   503 }
   505 SkClipStack& SkClipStack::operator=(const SkClipStack& b) {
   506     if (this == &b) {
   507         return *this;
   508     }
   509     reset();
   511     fSaveCount = b.fSaveCount;
   512     SkDeque::F2BIter recIter(b.fDeque);
   513     for (const Element* element = (const Element*)recIter.next();
   514          element != NULL;
   515          element = (const Element*)recIter.next()) {
   516         new (fDeque.push_back()) Element(*element);
   517     }
   519     return *this;
   520 }
   522 bool SkClipStack::operator==(const SkClipStack& b) const {
   523     if (this->getTopmostGenID() == b.getTopmostGenID()) {
   524         return true;
   525     }
   526     if (fSaveCount != b.fSaveCount ||
   527         fDeque.count() != b.fDeque.count()) {
   528         return false;
   529     }
   530     SkDeque::F2BIter myIter(fDeque);
   531     SkDeque::F2BIter bIter(b.fDeque);
   532     const Element* myElement = (const Element*)myIter.next();
   533     const Element* bElement = (const Element*)bIter.next();
   535     while (myElement != NULL && bElement != NULL) {
   536         if (*myElement != *bElement) {
   537             return false;
   538         }
   539         myElement = (const Element*)myIter.next();
   540         bElement = (const Element*)bIter.next();
   541     }
   542     return myElement == NULL && bElement == NULL;
   543 }
   545 void SkClipStack::reset() {
   546     // We used a placement new for each object in fDeque, so we're responsible
   547     // for calling the destructor on each of them as well.
   548     while (!fDeque.empty()) {
   549         Element* element = (Element*)fDeque.back();
   550         element->~Element();
   551         fDeque.pop_back();
   552     }
   554     fSaveCount = 0;
   555 }
   557 void SkClipStack::save() {
   558     fSaveCount += 1;
   559 }
   561 void SkClipStack::restore() {
   562     fSaveCount -= 1;
   563     restoreTo(fSaveCount);
   564 }
   566 void SkClipStack::restoreTo(int saveCount) {
   567     while (!fDeque.empty()) {
   568         Element* element = (Element*)fDeque.back();
   569         if (element->fSaveCount <= saveCount) {
   570             break;
   571         }
   572         element->~Element();
   573         fDeque.pop_back();
   574     }
   575 }
   577 void SkClipStack::getBounds(SkRect* canvFiniteBound,
   578                             BoundsType* boundType,
   579                             bool* isIntersectionOfRects) const {
   580     SkASSERT(NULL != canvFiniteBound && NULL != boundType);
   582     Element* element = (Element*)fDeque.back();
   584     if (NULL == element) {
   585         // the clip is wide open - the infinite plane w/ no pixels un-writeable
   586         canvFiniteBound->setEmpty();
   587         *boundType = kInsideOut_BoundsType;
   588         if (NULL != isIntersectionOfRects) {
   589             *isIntersectionOfRects = false;
   590         }
   591         return;
   592     }
   594     *canvFiniteBound = element->fFiniteBound;
   595     *boundType = element->fFiniteBoundType;
   596     if (NULL != isIntersectionOfRects) {
   597         *isIntersectionOfRects = element->fIsIntersectionOfRects;
   598     }
   599 }
   601 bool SkClipStack::intersectRectWithClip(SkRect* rect) const {
   602     SkASSERT(NULL != rect);
   604     SkRect bounds;
   605     SkClipStack::BoundsType bt;
   606     this->getBounds(&bounds, &bt);
   607     if (bt == SkClipStack::kInsideOut_BoundsType) {
   608         if (bounds.contains(*rect)) {
   609             return false;
   610         } else {
   611             // If rect's x values are both within bound's x range we
   612             // could clip here. Same for y. But we don't bother to check.
   613             return true;
   614         }
   615     } else {
   616         return rect->intersect(bounds);
   617     }
   618 }
   620 bool SkClipStack::quickContains(const SkRect& rect) const {
   622     Iter iter(*this, Iter::kTop_IterStart);
   623     const Element* element = iter.prev();
   624     while (element != NULL) {
   625         if (SkRegion::kIntersect_Op != element->getOp() && SkRegion::kReplace_Op != element->getOp())
   626             return false;
   627         if (element->isInverseFilled()) {
   628             // Part of 'rect' could be trimmed off by the inverse-filled clip element
   629             if (SkRect::Intersects(element->getBounds(), rect)) {
   630                 return false;
   631             }
   632         } else {
   633             if (!element->contains(rect)) {
   634                 return false;
   635             }
   636         }
   637         if (SkRegion::kReplace_Op == element->getOp()) {
   638             break;
   639         }
   640         element = iter.prev();
   641     }
   642     return true;
   643 }
   645 void SkClipStack::pushElement(const Element& element) {
   646     // Use reverse iterator instead of back because Rect path may need previous
   647     SkDeque::Iter iter(fDeque, SkDeque::Iter::kBack_IterStart);
   648     Element* prior = (Element*) iter.prev();
   650     if (NULL != prior) {
   651         if (prior->canBeIntersectedInPlace(fSaveCount, element.getOp())) {
   652             switch (prior->fType) {
   653                 case Element::kEmpty_Type:
   654                     SkDEBUGCODE(prior->checkEmpty();)
   655                     return;
   656                 case Element::kRect_Type:
   657                     if (Element::kRect_Type == element.getType()) {
   658                         if (prior->rectRectIntersectAllowed(element.getRect(), element.isAA())) {
   659                             SkRect isectRect;
   660                             if (!isectRect.intersect(prior->getRect(), element.getRect())) {
   661                                 prior->setEmpty();
   662                                 return;
   663                             }
   665                             prior->fRRect.setRect(isectRect);
   666                             prior->fDoAA = element.isAA();
   667                             Element* priorPrior = (Element*) iter.prev();
   668                             prior->updateBoundAndGenID(priorPrior);
   669                             return;
   670                         }
   671                         break;
   672                     }
   673                     // fallthrough
   674                 default:
   675                     if (!SkRect::Intersects(prior->getBounds(), element.getBounds())) {
   676                         prior->setEmpty();
   677                         return;
   678                     }
   679                     break;
   680             }
   681         } else if (SkRegion::kReplace_Op == element.getOp()) {
   682             this->restoreTo(fSaveCount - 1);
   683             prior = (Element*) fDeque.back();
   684         }
   685     }
   686     Element* newElement = SkNEW_PLACEMENT_ARGS(fDeque.push_back(), Element, (element));
   687     newElement->updateBoundAndGenID(prior);
   688 }
   690 void SkClipStack::clipDevRRect(const SkRRect& rrect, SkRegion::Op op, bool doAA) {
   691     Element element(fSaveCount, rrect, op, doAA);
   692     this->pushElement(element);
   693 }
   695 void SkClipStack::clipDevRect(const SkRect& rect, SkRegion::Op op, bool doAA) {
   696     Element element(fSaveCount, rect, op, doAA);
   697     this->pushElement(element);
   698 }
   700 void SkClipStack::clipDevPath(const SkPath& path, SkRegion::Op op, bool doAA) {
   701     Element element(fSaveCount, path, op, doAA);
   702     this->pushElement(element);
   703 }
   705 void SkClipStack::clipEmpty() {
   706     Element* element = (Element*) fDeque.back();
   708     if (element && element->canBeIntersectedInPlace(fSaveCount, SkRegion::kIntersect_Op)) {
   709         element->setEmpty();
   710     }
   711     new (fDeque.push_back()) Element(fSaveCount);
   713     ((Element*)fDeque.back())->fGenID = kEmptyGenID;
   714 }
   716 bool SkClipStack::isWideOpen() const {
   717     return this->getTopmostGenID() == kWideOpenGenID;
   718 }
   720 ///////////////////////////////////////////////////////////////////////////////
   722 SkClipStack::Iter::Iter() : fStack(NULL) {
   723 }
   725 SkClipStack::Iter::Iter(const SkClipStack& stack, IterStart startLoc)
   726     : fStack(&stack) {
   727     this->reset(stack, startLoc);
   728 }
   730 const SkClipStack::Element* SkClipStack::Iter::next() {
   731     return (const SkClipStack::Element*)fIter.next();
   732 }
   734 const SkClipStack::Element* SkClipStack::Iter::prev() {
   735     return (const SkClipStack::Element*)fIter.prev();
   736 }
   738 const SkClipStack::Element* SkClipStack::Iter::skipToTopmost(SkRegion::Op op) {
   740     if (NULL == fStack) {
   741         return NULL;
   742     }
   744     fIter.reset(fStack->fDeque, SkDeque::Iter::kBack_IterStart);
   746     const SkClipStack::Element* element = NULL;
   748     for (element = (const SkClipStack::Element*) fIter.prev();
   749          NULL != element;
   750          element = (const SkClipStack::Element*) fIter.prev()) {
   752         if (op == element->fOp) {
   753             // The Deque's iterator is actually one pace ahead of the
   754             // returned value. So while "element" is the element we want to
   755             // return, the iterator is actually pointing at (and will
   756             // return on the next "next" or "prev" call) the element
   757             // in front of it in the deque. Bump the iterator forward a
   758             // step so we get the expected result.
   759             if (NULL == fIter.next()) {
   760                 // The reverse iterator has run off the front of the deque
   761                 // (i.e., the "op" clip is the first clip) and can't
   762                 // recover. Reset the iterator to start at the front.
   763                 fIter.reset(fStack->fDeque, SkDeque::Iter::kFront_IterStart);
   764             }
   765             break;
   766         }
   767     }
   769     if (NULL == element) {
   770         // There were no "op" clips
   771         fIter.reset(fStack->fDeque, SkDeque::Iter::kFront_IterStart);
   772     }
   774     return this->next();
   775 }
   777 void SkClipStack::Iter::reset(const SkClipStack& stack, IterStart startLoc) {
   778     fStack = &stack;
   779     fIter.reset(stack.fDeque, static_cast<SkDeque::Iter::IterStart>(startLoc));
   780 }
   782 // helper method
   783 void SkClipStack::getConservativeBounds(int offsetX,
   784                                         int offsetY,
   785                                         int maxWidth,
   786                                         int maxHeight,
   787                                         SkRect* devBounds,
   788                                         bool* isIntersectionOfRects) const {
   789     SkASSERT(NULL != devBounds);
   791     devBounds->setLTRB(0, 0,
   792                        SkIntToScalar(maxWidth), SkIntToScalar(maxHeight));
   794     SkRect temp;
   795     SkClipStack::BoundsType boundType;
   797     // temp starts off in canvas space here
   798     this->getBounds(&temp, &boundType, isIntersectionOfRects);
   799     if (SkClipStack::kInsideOut_BoundsType == boundType) {
   800         return;
   801     }
   803     // but is converted to device space here
   804     temp.offset(SkIntToScalar(offsetX), SkIntToScalar(offsetY));
   806     if (!devBounds->intersect(temp)) {
   807         devBounds->setEmpty();
   808     }
   809 }
   811 int32_t SkClipStack::GetNextGenID() {
   812     // TODO: handle overflow.
   813     return sk_atomic_inc(&gGenID);
   814 }
   816 int32_t SkClipStack::getTopmostGenID() const {
   817     if (fDeque.empty()) {
   818         return kWideOpenGenID;
   819     }
   821     const Element* back = static_cast<const Element*>(fDeque.back());
   822     if (kInsideOut_BoundsType == back->fFiniteBoundType && back->fFiniteBound.isEmpty()) {
   823         return kWideOpenGenID;
   824     }
   826     return back->getGenID();
   827 }

mercurial