Sat, 03 Jan 2015 20:18:00 +0100
Conditionally enable double key logic according to:
private browsing mode or privacy.thirdparty.isolate preference and
implement in GetCookieStringCommon and FindCookie where it counts...
With some reservations of how to convince FindCookie users to test
condition and pass a nullptr when disabling double key logic.
2 /*
3 * Copyright 2006 The Android Open Source Project
4 *
5 * Use of this source code is governed by a BSD-style license that can be
6 * found in the LICENSE file.
7 */
10 #include "SkEdge.h"
11 #include "SkFDot6.h"
12 #include "SkMath.h"
14 /*
15 In setLine, setQuadratic, setCubic, the first thing we do is to convert
16 the points into FDot6. This is modulated by the shift parameter, which
17 will either be 0, or something like 2 for antialiasing.
19 In the float case, we want to turn the float into .6 by saying pt * 64,
20 or pt * 256 for antialiasing. This is implemented as 1 << (shift + 6).
22 In the fixed case, we want to turn the fixed into .6 by saying pt >> 10,
23 or pt >> 8 for antialiasing. This is implemented as pt >> (10 - shift).
24 */
26 static inline SkFixed SkFDot6ToFixedDiv2(SkFDot6 value) {
27 // we want to return SkFDot6ToFixed(value >> 1), but we don't want to throw
28 // away data in value, so just perform a modify up-shift
29 return value << (16 - 6 - 1);
30 }
32 /////////////////////////////////////////////////////////////////////////
34 int SkEdge::setLine(const SkPoint& p0, const SkPoint& p1, const SkIRect* clip,
35 int shift) {
36 SkFDot6 x0, y0, x1, y1;
38 {
39 float scale = float(1 << (shift + 6));
40 x0 = int(p0.fX * scale);
41 y0 = int(p0.fY * scale);
42 x1 = int(p1.fX * scale);
43 y1 = int(p1.fY * scale);
44 }
46 int winding = 1;
48 if (y0 > y1) {
49 SkTSwap(x0, x1);
50 SkTSwap(y0, y1);
51 winding = -1;
52 }
54 int top = SkFDot6Round(y0);
55 int bot = SkFDot6Round(y1);
57 // are we a zero-height line?
58 if (top == bot) {
59 return 0;
60 }
61 // are we completely above or below the clip?
62 if (NULL != clip && (top >= clip->fBottom || bot <= clip->fTop)) {
63 return 0;
64 }
66 SkFixed slope = SkFDot6Div(x1 - x0, y1 - y0);
67 const int dy = SkEdge_Compute_DY(top, y0);
69 fX = SkFDot6ToFixed(x0 + SkFixedMul(slope, dy)); // + SK_Fixed1/2
70 fDX = slope;
71 fFirstY = top;
72 fLastY = bot - 1;
73 fCurveCount = 0;
74 fWinding = SkToS8(winding);
75 fCurveShift = 0;
77 if (clip) {
78 this->chopLineWithClip(*clip);
79 }
80 return 1;
81 }
83 // called from a curve subclass
84 int SkEdge::updateLine(SkFixed x0, SkFixed y0, SkFixed x1, SkFixed y1)
85 {
86 SkASSERT(fWinding == 1 || fWinding == -1);
87 SkASSERT(fCurveCount != 0);
88 // SkASSERT(fCurveShift != 0);
90 y0 >>= 10;
91 y1 >>= 10;
93 SkASSERT(y0 <= y1);
95 int top = SkFDot6Round(y0);
96 int bot = SkFDot6Round(y1);
98 // SkASSERT(top >= fFirstY);
100 // are we a zero-height line?
101 if (top == bot)
102 return 0;
104 x0 >>= 10;
105 x1 >>= 10;
107 SkFixed slope = SkFDot6Div(x1 - x0, y1 - y0);
108 const int dy = SkEdge_Compute_DY(top, y0);
110 fX = SkFDot6ToFixed(x0 + SkFixedMul(slope, dy)); // + SK_Fixed1/2
111 fDX = slope;
112 fFirstY = top;
113 fLastY = bot - 1;
115 return 1;
116 }
118 void SkEdge::chopLineWithClip(const SkIRect& clip)
119 {
120 int top = fFirstY;
122 SkASSERT(top < clip.fBottom);
124 // clip the line to the top
125 if (top < clip.fTop)
126 {
127 SkASSERT(fLastY >= clip.fTop);
128 fX += fDX * (clip.fTop - top);
129 fFirstY = clip.fTop;
130 }
131 }
133 ///////////////////////////////////////////////////////////////////////////////
135 /* We store 1<<shift in a (signed) byte, so its maximum value is 1<<6 == 64.
136 Note that this limits the number of lines we use to approximate a curve.
137 If we need to increase this, we need to store fCurveCount in something
138 larger than int8_t.
139 */
140 #define MAX_COEFF_SHIFT 6
142 static inline SkFDot6 cheap_distance(SkFDot6 dx, SkFDot6 dy)
143 {
144 dx = SkAbs32(dx);
145 dy = SkAbs32(dy);
146 // return max + min/2
147 if (dx > dy)
148 dx += dy >> 1;
149 else
150 dx = dy + (dx >> 1);
151 return dx;
152 }
154 static inline int diff_to_shift(SkFDot6 dx, SkFDot6 dy)
155 {
156 // cheap calc of distance from center of p0-p2 to the center of the curve
157 SkFDot6 dist = cheap_distance(dx, dy);
159 // shift down dist (it is currently in dot6)
160 // down by 5 should give us 1/2 pixel accuracy (assuming our dist is accurate...)
161 // this is chosen by heuristic: make it as big as possible (to minimize segments)
162 // ... but small enough so that our curves still look smooth
163 dist = (dist + (1 << 4)) >> 5;
165 // each subdivision (shift value) cuts this dist (error) by 1/4
166 return (32 - SkCLZ(dist)) >> 1;
167 }
169 int SkQuadraticEdge::setQuadratic(const SkPoint pts[3], int shift)
170 {
171 SkFDot6 x0, y0, x1, y1, x2, y2;
173 {
174 float scale = float(1 << (shift + 6));
175 x0 = int(pts[0].fX * scale);
176 y0 = int(pts[0].fY * scale);
177 x1 = int(pts[1].fX * scale);
178 y1 = int(pts[1].fY * scale);
179 x2 = int(pts[2].fX * scale);
180 y2 = int(pts[2].fY * scale);
181 }
183 int winding = 1;
184 if (y0 > y2)
185 {
186 SkTSwap(x0, x2);
187 SkTSwap(y0, y2);
188 winding = -1;
189 }
190 SkASSERT(y0 <= y1 && y1 <= y2);
192 int top = SkFDot6Round(y0);
193 int bot = SkFDot6Round(y2);
195 // are we a zero-height quad (line)?
196 if (top == bot)
197 return 0;
199 // compute number of steps needed (1 << shift)
200 {
201 SkFDot6 dx = ((x1 << 1) - x0 - x2) >> 2;
202 SkFDot6 dy = ((y1 << 1) - y0 - y2) >> 2;
203 shift = diff_to_shift(dx, dy);
204 SkASSERT(shift >= 0);
205 }
206 // need at least 1 subdivision for our bias trick
207 if (shift == 0) {
208 shift = 1;
209 } else if (shift > MAX_COEFF_SHIFT) {
210 shift = MAX_COEFF_SHIFT;
211 }
213 fWinding = SkToS8(winding);
214 //fCubicDShift only set for cubics
215 fCurveCount = SkToS8(1 << shift);
217 /*
218 * We want to reformulate into polynomial form, to make it clear how we
219 * should forward-difference.
220 *
221 * p0 (1 - t)^2 + p1 t(1 - t) + p2 t^2 ==> At^2 + Bt + C
222 *
223 * A = p0 - 2p1 + p2
224 * B = 2(p1 - p0)
225 * C = p0
226 *
227 * Our caller must have constrained our inputs (p0..p2) to all fit into
228 * 16.16. However, as seen above, we sometimes compute values that can be
229 * larger (e.g. B = 2*(p1 - p0)). To guard against overflow, we will store
230 * A and B at 1/2 of their actual value, and just apply a 2x scale during
231 * application in updateQuadratic(). Hence we store (shift - 1) in
232 * fCurveShift.
233 */
235 fCurveShift = SkToU8(shift - 1);
237 SkFixed A = SkFDot6ToFixedDiv2(x0 - x1 - x1 + x2); // 1/2 the real value
238 SkFixed B = SkFDot6ToFixed(x1 - x0); // 1/2 the real value
240 fQx = SkFDot6ToFixed(x0);
241 fQDx = B + (A >> shift); // biased by shift
242 fQDDx = A >> (shift - 1); // biased by shift
244 A = SkFDot6ToFixedDiv2(y0 - y1 - y1 + y2); // 1/2 the real value
245 B = SkFDot6ToFixed(y1 - y0); // 1/2 the real value
247 fQy = SkFDot6ToFixed(y0);
248 fQDy = B + (A >> shift); // biased by shift
249 fQDDy = A >> (shift - 1); // biased by shift
251 fQLastX = SkFDot6ToFixed(x2);
252 fQLastY = SkFDot6ToFixed(y2);
254 return this->updateQuadratic();
255 }
257 int SkQuadraticEdge::updateQuadratic()
258 {
259 int success;
260 int count = fCurveCount;
261 SkFixed oldx = fQx;
262 SkFixed oldy = fQy;
263 SkFixed dx = fQDx;
264 SkFixed dy = fQDy;
265 SkFixed newx, newy;
266 int shift = fCurveShift;
268 SkASSERT(count > 0);
270 do {
271 if (--count > 0)
272 {
273 newx = oldx + (dx >> shift);
274 dx += fQDDx;
275 newy = oldy + (dy >> shift);
276 dy += fQDDy;
277 }
278 else // last segment
279 {
280 newx = fQLastX;
281 newy = fQLastY;
282 }
283 success = this->updateLine(oldx, oldy, newx, newy);
284 oldx = newx;
285 oldy = newy;
286 } while (count > 0 && !success);
288 fQx = newx;
289 fQy = newy;
290 fQDx = dx;
291 fQDy = dy;
292 fCurveCount = SkToS8(count);
293 return success;
294 }
296 /////////////////////////////////////////////////////////////////////////
298 static inline int SkFDot6UpShift(SkFDot6 x, int upShift) {
299 SkASSERT((x << upShift >> upShift) == x);
300 return x << upShift;
301 }
303 /* f(1/3) = (8a + 12b + 6c + d) / 27
304 f(2/3) = (a + 6b + 12c + 8d) / 27
306 f(1/3)-b = (8a - 15b + 6c + d) / 27
307 f(2/3)-c = (a + 6b - 15c + 8d) / 27
309 use 16/512 to approximate 1/27
310 */
311 static SkFDot6 cubic_delta_from_line(SkFDot6 a, SkFDot6 b, SkFDot6 c, SkFDot6 d)
312 {
313 SkFDot6 oneThird = ((a << 3) - ((b << 4) - b) + 6*c + d) * 19 >> 9;
314 SkFDot6 twoThird = (a + 6*b - ((c << 4) - c) + (d << 3)) * 19 >> 9;
316 return SkMax32(SkAbs32(oneThird), SkAbs32(twoThird));
317 }
319 int SkCubicEdge::setCubic(const SkPoint pts[4], const SkIRect* clip, int shift)
320 {
321 SkFDot6 x0, y0, x1, y1, x2, y2, x3, y3;
323 {
324 float scale = float(1 << (shift + 6));
325 x0 = int(pts[0].fX * scale);
326 y0 = int(pts[0].fY * scale);
327 x1 = int(pts[1].fX * scale);
328 y1 = int(pts[1].fY * scale);
329 x2 = int(pts[2].fX * scale);
330 y2 = int(pts[2].fY * scale);
331 x3 = int(pts[3].fX * scale);
332 y3 = int(pts[3].fY * scale);
333 }
335 int winding = 1;
336 if (y0 > y3)
337 {
338 SkTSwap(x0, x3);
339 SkTSwap(x1, x2);
340 SkTSwap(y0, y3);
341 SkTSwap(y1, y2);
342 winding = -1;
343 }
345 int top = SkFDot6Round(y0);
346 int bot = SkFDot6Round(y3);
348 // are we a zero-height cubic (line)?
349 if (top == bot)
350 return 0;
352 // are we completely above or below the clip?
353 if (clip && (top >= clip->fBottom || bot <= clip->fTop))
354 return 0;
356 // compute number of steps needed (1 << shift)
357 {
358 // Can't use (center of curve - center of baseline), since center-of-curve
359 // need not be the max delta from the baseline (it could even be coincident)
360 // so we try just looking at the two off-curve points
361 SkFDot6 dx = cubic_delta_from_line(x0, x1, x2, x3);
362 SkFDot6 dy = cubic_delta_from_line(y0, y1, y2, y3);
363 // add 1 (by observation)
364 shift = diff_to_shift(dx, dy) + 1;
365 }
366 // need at least 1 subdivision for our bias trick
367 SkASSERT(shift > 0);
368 if (shift > MAX_COEFF_SHIFT) {
369 shift = MAX_COEFF_SHIFT;
370 }
372 /* Since our in coming data is initially shifted down by 10 (or 8 in
373 antialias). That means the most we can shift up is 8. However, we
374 compute coefficients with a 3*, so the safest upshift is really 6
375 */
376 int upShift = 6; // largest safe value
377 int downShift = shift + upShift - 10;
378 if (downShift < 0) {
379 downShift = 0;
380 upShift = 10 - shift;
381 }
383 fWinding = SkToS8(winding);
384 fCurveCount = SkToS8(-1 << shift);
385 fCurveShift = SkToU8(shift);
386 fCubicDShift = SkToU8(downShift);
388 SkFixed B = SkFDot6UpShift(3 * (x1 - x0), upShift);
389 SkFixed C = SkFDot6UpShift(3 * (x0 - x1 - x1 + x2), upShift);
390 SkFixed D = SkFDot6UpShift(x3 + 3 * (x1 - x2) - x0, upShift);
392 fCx = SkFDot6ToFixed(x0);
393 fCDx = B + (C >> shift) + (D >> 2*shift); // biased by shift
394 fCDDx = 2*C + (3*D >> (shift - 1)); // biased by 2*shift
395 fCDDDx = 3*D >> (shift - 1); // biased by 2*shift
397 B = SkFDot6UpShift(3 * (y1 - y0), upShift);
398 C = SkFDot6UpShift(3 * (y0 - y1 - y1 + y2), upShift);
399 D = SkFDot6UpShift(y3 + 3 * (y1 - y2) - y0, upShift);
401 fCy = SkFDot6ToFixed(y0);
402 fCDy = B + (C >> shift) + (D >> 2*shift); // biased by shift
403 fCDDy = 2*C + (3*D >> (shift - 1)); // biased by 2*shift
404 fCDDDy = 3*D >> (shift - 1); // biased by 2*shift
406 fCLastX = SkFDot6ToFixed(x3);
407 fCLastY = SkFDot6ToFixed(y3);
409 if (clip)
410 {
411 do {
412 if (!this->updateCubic()) {
413 return 0;
414 }
415 } while (!this->intersectsClip(*clip));
416 this->chopLineWithClip(*clip);
417 return 1;
418 }
419 return this->updateCubic();
420 }
422 int SkCubicEdge::updateCubic()
423 {
424 int success;
425 int count = fCurveCount;
426 SkFixed oldx = fCx;
427 SkFixed oldy = fCy;
428 SkFixed newx, newy;
429 const int ddshift = fCurveShift;
430 const int dshift = fCubicDShift;
432 SkASSERT(count < 0);
434 do {
435 if (++count < 0)
436 {
437 newx = oldx + (fCDx >> dshift);
438 fCDx += fCDDx >> ddshift;
439 fCDDx += fCDDDx;
441 newy = oldy + (fCDy >> dshift);
442 fCDy += fCDDy >> ddshift;
443 fCDDy += fCDDDy;
444 }
445 else // last segment
446 {
447 // SkDebugf("LastX err=%d, LastY err=%d\n", (oldx + (fCDx >> shift) - fLastX), (oldy + (fCDy >> shift) - fLastY));
448 newx = fCLastX;
449 newy = fCLastY;
450 }
452 // we want to say SkASSERT(oldy <= newy), but our finite fixedpoint
453 // doesn't always achieve that, so we have to explicitly pin it here.
454 if (newy < oldy) {
455 newy = oldy;
456 }
458 success = this->updateLine(oldx, oldy, newx, newy);
459 oldx = newx;
460 oldy = newy;
461 } while (count < 0 && !success);
463 fCx = newx;
464 fCy = newy;
465 fCurveCount = SkToS8(count);
466 return success;
467 }