Sat, 03 Jan 2015 20:18:00 +0100
Conditionally enable double key logic according to:
private browsing mode or privacy.thirdparty.isolate preference and
implement in GetCookieStringCommon and FindCookie where it counts...
With some reservations of how to convince FindCookie users to test
condition and pass a nullptr when disabling double key logic.
1 /*
2 * Copyright 2013 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
8 #include "SkDither.h"
9 #include "SkPerlinNoiseShader.h"
10 #include "SkColorFilter.h"
11 #include "SkReadBuffer.h"
12 #include "SkWriteBuffer.h"
13 #include "SkShader.h"
14 #include "SkUnPreMultiply.h"
15 #include "SkString.h"
17 #if SK_SUPPORT_GPU
18 #include "GrContext.h"
19 #include "GrCoordTransform.h"
20 #include "gl/GrGLEffect.h"
21 #include "GrTBackendEffectFactory.h"
22 #include "SkGr.h"
23 #endif
25 static const int kBlockSize = 256;
26 static const int kBlockMask = kBlockSize - 1;
27 static const int kPerlinNoise = 4096;
28 static const int kRandMaximum = SK_MaxS32; // 2**31 - 1
30 namespace {
32 // noiseValue is the color component's value (or color)
33 // limitValue is the maximum perlin noise array index value allowed
34 // newValue is the current noise dimension (either width or height)
35 inline int checkNoise(int noiseValue, int limitValue, int newValue) {
36 // If the noise value would bring us out of bounds of the current noise array while we are
37 // stiching noise tiles together, wrap the noise around the current dimension of the noise to
38 // stay within the array bounds in a continuous fashion (so that tiling lines are not visible)
39 if (noiseValue >= limitValue) {
40 noiseValue -= newValue;
41 }
42 if (noiseValue >= limitValue - 1) {
43 noiseValue -= newValue - 1;
44 }
45 return noiseValue;
46 }
48 inline SkScalar smoothCurve(SkScalar t) {
49 static const SkScalar SK_Scalar3 = 3.0f;
51 // returns t * t * (3 - 2 * t)
52 return SkScalarMul(SkScalarSquare(t), SK_Scalar3 - 2 * t);
53 }
55 bool perlin_noise_type_is_valid(SkPerlinNoiseShader::Type type) {
56 return (SkPerlinNoiseShader::kFractalNoise_Type == type) ||
57 (SkPerlinNoiseShader::kTurbulence_Type == type);
58 }
60 } // end namespace
62 struct SkPerlinNoiseShader::StitchData {
63 StitchData()
64 : fWidth(0)
65 , fWrapX(0)
66 , fHeight(0)
67 , fWrapY(0)
68 {}
70 bool operator==(const StitchData& other) const {
71 return fWidth == other.fWidth &&
72 fWrapX == other.fWrapX &&
73 fHeight == other.fHeight &&
74 fWrapY == other.fWrapY;
75 }
77 int fWidth; // How much to subtract to wrap for stitching.
78 int fWrapX; // Minimum value to wrap.
79 int fHeight;
80 int fWrapY;
81 };
83 struct SkPerlinNoiseShader::PaintingData {
84 PaintingData(const SkISize& tileSize, SkScalar seed,
85 SkScalar baseFrequencyX, SkScalar baseFrequencyY)
86 : fTileSize(tileSize)
87 , fBaseFrequency(SkPoint::Make(baseFrequencyX, baseFrequencyY))
88 {
89 this->init(seed);
90 if (!fTileSize.isEmpty()) {
91 this->stitch();
92 }
94 #if SK_SUPPORT_GPU && !defined(SK_USE_SIMPLEX_NOISE)
95 fPermutationsBitmap.setConfig(SkImageInfo::MakeA8(kBlockSize, 1));
96 fPermutationsBitmap.setPixels(fLatticeSelector);
98 fNoiseBitmap.setConfig(SkImageInfo::MakeN32Premul(kBlockSize, 4));
99 fNoiseBitmap.setPixels(fNoise[0][0]);
100 #endif
101 }
103 int fSeed;
104 uint8_t fLatticeSelector[kBlockSize];
105 uint16_t fNoise[4][kBlockSize][2];
106 SkPoint fGradient[4][kBlockSize];
107 SkISize fTileSize;
108 SkVector fBaseFrequency;
109 StitchData fStitchDataInit;
111 private:
113 #if SK_SUPPORT_GPU && !defined(SK_USE_SIMPLEX_NOISE)
114 SkBitmap fPermutationsBitmap;
115 SkBitmap fNoiseBitmap;
116 #endif
118 inline int random() {
119 static const int gRandAmplitude = 16807; // 7**5; primitive root of m
120 static const int gRandQ = 127773; // m / a
121 static const int gRandR = 2836; // m % a
123 int result = gRandAmplitude * (fSeed % gRandQ) - gRandR * (fSeed / gRandQ);
124 if (result <= 0)
125 result += kRandMaximum;
126 fSeed = result;
127 return result;
128 }
130 // Only called once. Could be part of the constructor.
131 void init(SkScalar seed)
132 {
133 static const SkScalar gInvBlockSizef = SkScalarInvert(SkIntToScalar(kBlockSize));
135 // According to the SVG spec, we must truncate (not round) the seed value.
136 fSeed = SkScalarTruncToInt(seed);
137 // The seed value clamp to the range [1, kRandMaximum - 1].
138 if (fSeed <= 0) {
139 fSeed = -(fSeed % (kRandMaximum - 1)) + 1;
140 }
141 if (fSeed > kRandMaximum - 1) {
142 fSeed = kRandMaximum - 1;
143 }
144 for (int channel = 0; channel < 4; ++channel) {
145 for (int i = 0; i < kBlockSize; ++i) {
146 fLatticeSelector[i] = i;
147 fNoise[channel][i][0] = (random() % (2 * kBlockSize));
148 fNoise[channel][i][1] = (random() % (2 * kBlockSize));
149 }
150 }
151 for (int i = kBlockSize - 1; i > 0; --i) {
152 int k = fLatticeSelector[i];
153 int j = random() % kBlockSize;
154 SkASSERT(j >= 0);
155 SkASSERT(j < kBlockSize);
156 fLatticeSelector[i] = fLatticeSelector[j];
157 fLatticeSelector[j] = k;
158 }
160 // Perform the permutations now
161 {
162 // Copy noise data
163 uint16_t noise[4][kBlockSize][2];
164 for (int i = 0; i < kBlockSize; ++i) {
165 for (int channel = 0; channel < 4; ++channel) {
166 for (int j = 0; j < 2; ++j) {
167 noise[channel][i][j] = fNoise[channel][i][j];
168 }
169 }
170 }
171 // Do permutations on noise data
172 for (int i = 0; i < kBlockSize; ++i) {
173 for (int channel = 0; channel < 4; ++channel) {
174 for (int j = 0; j < 2; ++j) {
175 fNoise[channel][i][j] = noise[channel][fLatticeSelector[i]][j];
176 }
177 }
178 }
179 }
181 // Half of the largest possible value for 16 bit unsigned int
182 static const SkScalar gHalfMax16bits = 32767.5f;
184 // Compute gradients from permutated noise data
185 for (int channel = 0; channel < 4; ++channel) {
186 for (int i = 0; i < kBlockSize; ++i) {
187 fGradient[channel][i] = SkPoint::Make(
188 SkScalarMul(SkIntToScalar(fNoise[channel][i][0] - kBlockSize),
189 gInvBlockSizef),
190 SkScalarMul(SkIntToScalar(fNoise[channel][i][1] - kBlockSize),
191 gInvBlockSizef));
192 fGradient[channel][i].normalize();
193 // Put the normalized gradient back into the noise data
194 fNoise[channel][i][0] = SkScalarRoundToInt(SkScalarMul(
195 fGradient[channel][i].fX + SK_Scalar1, gHalfMax16bits));
196 fNoise[channel][i][1] = SkScalarRoundToInt(SkScalarMul(
197 fGradient[channel][i].fY + SK_Scalar1, gHalfMax16bits));
198 }
199 }
200 }
202 // Only called once. Could be part of the constructor.
203 void stitch() {
204 SkScalar tileWidth = SkIntToScalar(fTileSize.width());
205 SkScalar tileHeight = SkIntToScalar(fTileSize.height());
206 SkASSERT(tileWidth > 0 && tileHeight > 0);
207 // When stitching tiled turbulence, the frequencies must be adjusted
208 // so that the tile borders will be continuous.
209 if (fBaseFrequency.fX) {
210 SkScalar lowFrequencx =
211 SkScalarFloorToScalar(tileWidth * fBaseFrequency.fX) / tileWidth;
212 SkScalar highFrequencx =
213 SkScalarCeilToScalar(tileWidth * fBaseFrequency.fX) / tileWidth;
214 // BaseFrequency should be non-negative according to the standard.
215 if (SkScalarDiv(fBaseFrequency.fX, lowFrequencx) <
216 SkScalarDiv(highFrequencx, fBaseFrequency.fX)) {
217 fBaseFrequency.fX = lowFrequencx;
218 } else {
219 fBaseFrequency.fX = highFrequencx;
220 }
221 }
222 if (fBaseFrequency.fY) {
223 SkScalar lowFrequency =
224 SkScalarFloorToScalar(tileHeight * fBaseFrequency.fY) / tileHeight;
225 SkScalar highFrequency =
226 SkScalarCeilToScalar(tileHeight * fBaseFrequency.fY) / tileHeight;
227 if (SkScalarDiv(fBaseFrequency.fY, lowFrequency) <
228 SkScalarDiv(highFrequency, fBaseFrequency.fY)) {
229 fBaseFrequency.fY = lowFrequency;
230 } else {
231 fBaseFrequency.fY = highFrequency;
232 }
233 }
234 // Set up TurbulenceInitial stitch values.
235 fStitchDataInit.fWidth =
236 SkScalarRoundToInt(tileWidth * fBaseFrequency.fX);
237 fStitchDataInit.fWrapX = kPerlinNoise + fStitchDataInit.fWidth;
238 fStitchDataInit.fHeight =
239 SkScalarRoundToInt(tileHeight * fBaseFrequency.fY);
240 fStitchDataInit.fWrapY = kPerlinNoise + fStitchDataInit.fHeight;
241 }
243 public:
245 #if SK_SUPPORT_GPU && !defined(SK_USE_SIMPLEX_NOISE)
246 const SkBitmap& getPermutationsBitmap() const { return fPermutationsBitmap; }
248 const SkBitmap& getNoiseBitmap() const { return fNoiseBitmap; }
249 #endif
250 };
252 SkShader* SkPerlinNoiseShader::CreateFractalNoise(SkScalar baseFrequencyX, SkScalar baseFrequencyY,
253 int numOctaves, SkScalar seed,
254 const SkISize* tileSize) {
255 return SkNEW_ARGS(SkPerlinNoiseShader, (kFractalNoise_Type, baseFrequencyX, baseFrequencyY,
256 numOctaves, seed, tileSize));
257 }
259 SkShader* SkPerlinNoiseShader::CreateTubulence(SkScalar baseFrequencyX, SkScalar baseFrequencyY,
260 int numOctaves, SkScalar seed,
261 const SkISize* tileSize) {
262 return SkNEW_ARGS(SkPerlinNoiseShader, (kTurbulence_Type, baseFrequencyX, baseFrequencyY,
263 numOctaves, seed, tileSize));
264 }
266 SkPerlinNoiseShader::SkPerlinNoiseShader(SkPerlinNoiseShader::Type type,
267 SkScalar baseFrequencyX,
268 SkScalar baseFrequencyY,
269 int numOctaves,
270 SkScalar seed,
271 const SkISize* tileSize)
272 : fType(type)
273 , fBaseFrequencyX(baseFrequencyX)
274 , fBaseFrequencyY(baseFrequencyY)
275 , fNumOctaves(numOctaves > 255 ? 255 : numOctaves/*[0,255] octaves allowed*/)
276 , fSeed(seed)
277 , fTileSize(NULL == tileSize ? SkISize::Make(0, 0) : *tileSize)
278 , fStitchTiles(!fTileSize.isEmpty())
279 {
280 SkASSERT(numOctaves >= 0 && numOctaves < 256);
281 fMatrix.reset();
282 fPaintingData = SkNEW_ARGS(PaintingData, (fTileSize, fSeed, fBaseFrequencyX, fBaseFrequencyY));
283 }
285 SkPerlinNoiseShader::SkPerlinNoiseShader(SkReadBuffer& buffer)
286 : INHERITED(buffer)
287 {
288 fType = (SkPerlinNoiseShader::Type) buffer.readInt();
289 fBaseFrequencyX = buffer.readScalar();
290 fBaseFrequencyY = buffer.readScalar();
291 fNumOctaves = buffer.readInt();
292 fSeed = buffer.readScalar();
293 fStitchTiles = buffer.readBool();
294 fTileSize.fWidth = buffer.readInt();
295 fTileSize.fHeight = buffer.readInt();
296 fMatrix.reset();
297 fPaintingData = SkNEW_ARGS(PaintingData, (fTileSize, fSeed, fBaseFrequencyX, fBaseFrequencyY));
298 buffer.validate(perlin_noise_type_is_valid(fType) &&
299 (fNumOctaves >= 0) && (fNumOctaves <= 255) &&
300 (fStitchTiles != fTileSize.isEmpty()));
301 }
303 SkPerlinNoiseShader::~SkPerlinNoiseShader() {
304 // Safety, should have been done in endContext()
305 SkDELETE(fPaintingData);
306 }
308 void SkPerlinNoiseShader::flatten(SkWriteBuffer& buffer) const {
309 this->INHERITED::flatten(buffer);
310 buffer.writeInt((int) fType);
311 buffer.writeScalar(fBaseFrequencyX);
312 buffer.writeScalar(fBaseFrequencyY);
313 buffer.writeInt(fNumOctaves);
314 buffer.writeScalar(fSeed);
315 buffer.writeBool(fStitchTiles);
316 buffer.writeInt(fTileSize.fWidth);
317 buffer.writeInt(fTileSize.fHeight);
318 }
320 SkScalar SkPerlinNoiseShader::noise2D(int channel, const PaintingData& paintingData,
321 const StitchData& stitchData,
322 const SkPoint& noiseVector) const {
323 struct Noise {
324 int noisePositionIntegerValue;
325 SkScalar noisePositionFractionValue;
326 Noise(SkScalar component)
327 {
328 SkScalar position = component + kPerlinNoise;
329 noisePositionIntegerValue = SkScalarFloorToInt(position);
330 noisePositionFractionValue = position - SkIntToScalar(noisePositionIntegerValue);
331 }
332 };
333 Noise noiseX(noiseVector.x());
334 Noise noiseY(noiseVector.y());
335 SkScalar u, v;
336 // If stitching, adjust lattice points accordingly.
337 if (fStitchTiles) {
338 noiseX.noisePositionIntegerValue =
339 checkNoise(noiseX.noisePositionIntegerValue, stitchData.fWrapX, stitchData.fWidth);
340 noiseY.noisePositionIntegerValue =
341 checkNoise(noiseY.noisePositionIntegerValue, stitchData.fWrapY, stitchData.fHeight);
342 }
343 noiseX.noisePositionIntegerValue &= kBlockMask;
344 noiseY.noisePositionIntegerValue &= kBlockMask;
345 int latticeIndex =
346 paintingData.fLatticeSelector[noiseX.noisePositionIntegerValue] +
347 noiseY.noisePositionIntegerValue;
348 int nextLatticeIndex =
349 paintingData.fLatticeSelector[(noiseX.noisePositionIntegerValue + 1) & kBlockMask] +
350 noiseY.noisePositionIntegerValue;
351 SkScalar sx = smoothCurve(noiseX.noisePositionFractionValue);
352 SkScalar sy = smoothCurve(noiseY.noisePositionFractionValue);
353 // This is taken 1:1 from SVG spec: http://www.w3.org/TR/SVG11/filters.html#feTurbulenceElement
354 SkPoint fractionValue = SkPoint::Make(noiseX.noisePositionFractionValue,
355 noiseY.noisePositionFractionValue); // Offset (0,0)
356 u = paintingData.fGradient[channel][latticeIndex & kBlockMask].dot(fractionValue);
357 fractionValue.fX -= SK_Scalar1; // Offset (-1,0)
358 v = paintingData.fGradient[channel][nextLatticeIndex & kBlockMask].dot(fractionValue);
359 SkScalar a = SkScalarInterp(u, v, sx);
360 fractionValue.fY -= SK_Scalar1; // Offset (-1,-1)
361 v = paintingData.fGradient[channel][(nextLatticeIndex + 1) & kBlockMask].dot(fractionValue);
362 fractionValue.fX = noiseX.noisePositionFractionValue; // Offset (0,-1)
363 u = paintingData.fGradient[channel][(latticeIndex + 1) & kBlockMask].dot(fractionValue);
364 SkScalar b = SkScalarInterp(u, v, sx);
365 return SkScalarInterp(a, b, sy);
366 }
368 SkScalar SkPerlinNoiseShader::calculateTurbulenceValueForPoint(int channel,
369 const PaintingData& paintingData,
370 StitchData& stitchData,
371 const SkPoint& point) const {
372 if (fStitchTiles) {
373 // Set up TurbulenceInitial stitch values.
374 stitchData = paintingData.fStitchDataInit;
375 }
376 SkScalar turbulenceFunctionResult = 0;
377 SkPoint noiseVector(SkPoint::Make(SkScalarMul(point.x(), paintingData.fBaseFrequency.fX),
378 SkScalarMul(point.y(), paintingData.fBaseFrequency.fY)));
379 SkScalar ratio = SK_Scalar1;
380 for (int octave = 0; octave < fNumOctaves; ++octave) {
381 SkScalar noise = noise2D(channel, paintingData, stitchData, noiseVector);
382 turbulenceFunctionResult += SkScalarDiv(
383 (fType == kFractalNoise_Type) ? noise : SkScalarAbs(noise), ratio);
384 noiseVector.fX *= 2;
385 noiseVector.fY *= 2;
386 ratio *= 2;
387 if (fStitchTiles) {
388 // Update stitch values
389 stitchData.fWidth *= 2;
390 stitchData.fWrapX = stitchData.fWidth + kPerlinNoise;
391 stitchData.fHeight *= 2;
392 stitchData.fWrapY = stitchData.fHeight + kPerlinNoise;
393 }
394 }
396 // The value of turbulenceFunctionResult comes from ((turbulenceFunctionResult) + 1) / 2
397 // by fractalNoise and (turbulenceFunctionResult) by turbulence.
398 if (fType == kFractalNoise_Type) {
399 turbulenceFunctionResult =
400 SkScalarMul(turbulenceFunctionResult, SK_ScalarHalf) + SK_ScalarHalf;
401 }
403 if (channel == 3) { // Scale alpha by paint value
404 turbulenceFunctionResult = SkScalarMul(turbulenceFunctionResult,
405 SkScalarDiv(SkIntToScalar(getPaintAlpha()), SkIntToScalar(255)));
406 }
408 // Clamp result
409 return SkScalarPin(turbulenceFunctionResult, 0, SK_Scalar1);
410 }
412 SkPMColor SkPerlinNoiseShader::shade(const SkPoint& point, StitchData& stitchData) const {
413 SkMatrix matrix = fMatrix;
414 matrix.postConcat(getLocalMatrix());
415 SkMatrix invMatrix;
416 if (!matrix.invert(&invMatrix)) {
417 invMatrix.reset();
418 } else {
419 invMatrix.postConcat(invMatrix); // Square the matrix
420 }
421 // This (1,1) translation is due to WebKit's 1 based coordinates for the noise
422 // (as opposed to 0 based, usually). The same adjustment is in the setData() function.
423 matrix.postTranslate(SK_Scalar1, SK_Scalar1);
424 SkPoint newPoint;
425 matrix.mapPoints(&newPoint, &point, 1);
426 invMatrix.mapPoints(&newPoint, &newPoint, 1);
427 newPoint.fX = SkScalarRoundToScalar(newPoint.fX);
428 newPoint.fY = SkScalarRoundToScalar(newPoint.fY);
430 U8CPU rgba[4];
431 for (int channel = 3; channel >= 0; --channel) {
432 rgba[channel] = SkScalarFloorToInt(255 *
433 calculateTurbulenceValueForPoint(channel, *fPaintingData, stitchData, newPoint));
434 }
435 return SkPreMultiplyARGB(rgba[3], rgba[0], rgba[1], rgba[2]);
436 }
438 bool SkPerlinNoiseShader::setContext(const SkBitmap& device, const SkPaint& paint,
439 const SkMatrix& matrix) {
440 fMatrix = matrix;
441 return INHERITED::setContext(device, paint, matrix);
442 }
444 void SkPerlinNoiseShader::shadeSpan(int x, int y, SkPMColor result[], int count) {
445 SkPoint point = SkPoint::Make(SkIntToScalar(x), SkIntToScalar(y));
446 StitchData stitchData;
447 for (int i = 0; i < count; ++i) {
448 result[i] = shade(point, stitchData);
449 point.fX += SK_Scalar1;
450 }
451 }
453 void SkPerlinNoiseShader::shadeSpan16(int x, int y, uint16_t result[], int count) {
454 SkPoint point = SkPoint::Make(SkIntToScalar(x), SkIntToScalar(y));
455 StitchData stitchData;
456 DITHER_565_SCAN(y);
457 for (int i = 0; i < count; ++i) {
458 unsigned dither = DITHER_VALUE(x);
459 result[i] = SkDitherRGB32To565(shade(point, stitchData), dither);
460 DITHER_INC_X(x);
461 point.fX += SK_Scalar1;
462 }
463 }
465 /////////////////////////////////////////////////////////////////////
467 #if SK_SUPPORT_GPU
469 #include "GrTBackendEffectFactory.h"
471 class GrGLNoise : public GrGLEffect {
472 public:
473 GrGLNoise(const GrBackendEffectFactory& factory,
474 const GrDrawEffect& drawEffect);
475 virtual ~GrGLNoise() {}
477 static inline EffectKey GenKey(const GrDrawEffect&, const GrGLCaps&);
479 virtual void setData(const GrGLUniformManager&, const GrDrawEffect&) SK_OVERRIDE;
481 protected:
482 SkPerlinNoiseShader::Type fType;
483 bool fStitchTiles;
484 int fNumOctaves;
485 GrGLUniformManager::UniformHandle fBaseFrequencyUni;
486 GrGLUniformManager::UniformHandle fAlphaUni;
487 GrGLUniformManager::UniformHandle fInvMatrixUni;
489 private:
490 typedef GrGLEffect INHERITED;
491 };
493 class GrGLPerlinNoise : public GrGLNoise {
494 public:
495 GrGLPerlinNoise(const GrBackendEffectFactory& factory,
496 const GrDrawEffect& drawEffect)
497 : GrGLNoise(factory, drawEffect) {}
498 virtual ~GrGLPerlinNoise() {}
500 virtual void emitCode(GrGLShaderBuilder*,
501 const GrDrawEffect&,
502 EffectKey,
503 const char* outputColor,
504 const char* inputColor,
505 const TransformedCoordsArray&,
506 const TextureSamplerArray&) SK_OVERRIDE;
508 virtual void setData(const GrGLUniformManager&, const GrDrawEffect&) SK_OVERRIDE;
510 private:
511 GrGLUniformManager::UniformHandle fStitchDataUni;
513 typedef GrGLNoise INHERITED;
514 };
516 class GrGLSimplexNoise : public GrGLNoise {
517 // Note : This is for reference only. GrGLPerlinNoise is used for processing.
518 public:
519 GrGLSimplexNoise(const GrBackendEffectFactory& factory,
520 const GrDrawEffect& drawEffect)
521 : GrGLNoise(factory, drawEffect) {}
523 virtual ~GrGLSimplexNoise() {}
525 virtual void emitCode(GrGLShaderBuilder*,
526 const GrDrawEffect&,
527 EffectKey,
528 const char* outputColor,
529 const char* inputColor,
530 const TransformedCoordsArray&,
531 const TextureSamplerArray&) SK_OVERRIDE;
533 virtual void setData(const GrGLUniformManager&, const GrDrawEffect&) SK_OVERRIDE;
535 private:
536 GrGLUniformManager::UniformHandle fSeedUni;
538 typedef GrGLNoise INHERITED;
539 };
541 /////////////////////////////////////////////////////////////////////
543 class GrNoiseEffect : public GrEffect {
544 public:
545 virtual ~GrNoiseEffect() { }
547 SkPerlinNoiseShader::Type type() const { return fType; }
548 bool stitchTiles() const { return fStitchTiles; }
549 const SkVector& baseFrequency() const { return fBaseFrequency; }
550 int numOctaves() const { return fNumOctaves; }
551 const SkMatrix& matrix() const { return fCoordTransform.getMatrix(); }
552 uint8_t alpha() const { return fAlpha; }
554 void getConstantColorComponents(GrColor*, uint32_t* validFlags) const SK_OVERRIDE {
555 *validFlags = 0; // This is noise. Nothing is constant.
556 }
558 protected:
559 virtual bool onIsEqual(const GrEffect& sBase) const SK_OVERRIDE {
560 const GrNoiseEffect& s = CastEffect<GrNoiseEffect>(sBase);
561 return fType == s.fType &&
562 fBaseFrequency == s.fBaseFrequency &&
563 fNumOctaves == s.fNumOctaves &&
564 fStitchTiles == s.fStitchTiles &&
565 fCoordTransform.getMatrix() == s.fCoordTransform.getMatrix() &&
566 fAlpha == s.fAlpha;
567 }
569 GrNoiseEffect(SkPerlinNoiseShader::Type type, const SkVector& baseFrequency, int numOctaves,
570 bool stitchTiles, const SkMatrix& matrix, uint8_t alpha)
571 : fType(type)
572 , fBaseFrequency(baseFrequency)
573 , fNumOctaves(numOctaves)
574 , fStitchTiles(stitchTiles)
575 , fMatrix(matrix)
576 , fAlpha(alpha) {
577 // This (1,1) translation is due to WebKit's 1 based coordinates for the noise
578 // (as opposed to 0 based, usually). The same adjustment is in the shadeSpan() functions.
579 SkMatrix m = matrix;
580 m.postTranslate(SK_Scalar1, SK_Scalar1);
581 fCoordTransform.reset(kLocal_GrCoordSet, m);
582 this->addCoordTransform(&fCoordTransform);
583 this->setWillNotUseInputColor();
584 }
586 SkPerlinNoiseShader::Type fType;
587 GrCoordTransform fCoordTransform;
588 SkVector fBaseFrequency;
589 int fNumOctaves;
590 bool fStitchTiles;
591 SkMatrix fMatrix;
592 uint8_t fAlpha;
594 private:
595 typedef GrEffect INHERITED;
596 };
598 class GrPerlinNoiseEffect : public GrNoiseEffect {
599 public:
600 static GrEffectRef* Create(SkPerlinNoiseShader::Type type, const SkVector& baseFrequency,
601 int numOctaves, bool stitchTiles,
602 const SkPerlinNoiseShader::StitchData& stitchData,
603 GrTexture* permutationsTexture, GrTexture* noiseTexture,
604 const SkMatrix& matrix, uint8_t alpha) {
605 AutoEffectUnref effect(SkNEW_ARGS(GrPerlinNoiseEffect, (type, baseFrequency, numOctaves,
606 stitchTiles, stitchData, permutationsTexture, noiseTexture, matrix, alpha)));
607 return CreateEffectRef(effect);
608 }
610 virtual ~GrPerlinNoiseEffect() { }
612 static const char* Name() { return "PerlinNoise"; }
613 virtual const GrBackendEffectFactory& getFactory() const SK_OVERRIDE {
614 return GrTBackendEffectFactory<GrPerlinNoiseEffect>::getInstance();
615 }
616 const SkPerlinNoiseShader::StitchData& stitchData() const { return fStitchData; }
618 typedef GrGLPerlinNoise GLEffect;
620 private:
621 virtual bool onIsEqual(const GrEffect& sBase) const SK_OVERRIDE {
622 const GrPerlinNoiseEffect& s = CastEffect<GrPerlinNoiseEffect>(sBase);
623 return INHERITED::onIsEqual(sBase) &&
624 fPermutationsAccess.getTexture() == s.fPermutationsAccess.getTexture() &&
625 fNoiseAccess.getTexture() == s.fNoiseAccess.getTexture() &&
626 fStitchData == s.fStitchData;
627 }
629 GrPerlinNoiseEffect(SkPerlinNoiseShader::Type type, const SkVector& baseFrequency,
630 int numOctaves, bool stitchTiles,
631 const SkPerlinNoiseShader::StitchData& stitchData,
632 GrTexture* permutationsTexture, GrTexture* noiseTexture,
633 const SkMatrix& matrix, uint8_t alpha)
634 : GrNoiseEffect(type, baseFrequency, numOctaves, stitchTiles, matrix, alpha)
635 , fPermutationsAccess(permutationsTexture)
636 , fNoiseAccess(noiseTexture)
637 , fStitchData(stitchData) {
638 this->addTextureAccess(&fPermutationsAccess);
639 this->addTextureAccess(&fNoiseAccess);
640 }
642 GR_DECLARE_EFFECT_TEST;
644 GrTextureAccess fPermutationsAccess;
645 GrTextureAccess fNoiseAccess;
646 SkPerlinNoiseShader::StitchData fStitchData;
648 typedef GrNoiseEffect INHERITED;
649 };
651 class GrSimplexNoiseEffect : public GrNoiseEffect {
652 // Note : This is for reference only. GrPerlinNoiseEffect is used for processing.
653 public:
654 static GrEffectRef* Create(SkPerlinNoiseShader::Type type, const SkVector& baseFrequency,
655 int numOctaves, bool stitchTiles, const SkScalar seed,
656 const SkMatrix& matrix, uint8_t alpha) {
657 AutoEffectUnref effect(SkNEW_ARGS(GrSimplexNoiseEffect, (type, baseFrequency, numOctaves,
658 stitchTiles, seed, matrix, alpha)));
659 return CreateEffectRef(effect);
660 }
662 virtual ~GrSimplexNoiseEffect() { }
664 static const char* Name() { return "SimplexNoise"; }
665 virtual const GrBackendEffectFactory& getFactory() const SK_OVERRIDE {
666 return GrTBackendEffectFactory<GrSimplexNoiseEffect>::getInstance();
667 }
668 const SkScalar& seed() const { return fSeed; }
670 typedef GrGLSimplexNoise GLEffect;
672 private:
673 virtual bool onIsEqual(const GrEffect& sBase) const SK_OVERRIDE {
674 const GrSimplexNoiseEffect& s = CastEffect<GrSimplexNoiseEffect>(sBase);
675 return INHERITED::onIsEqual(sBase) && fSeed == s.fSeed;
676 }
678 GrSimplexNoiseEffect(SkPerlinNoiseShader::Type type, const SkVector& baseFrequency,
679 int numOctaves, bool stitchTiles, const SkScalar seed,
680 const SkMatrix& matrix, uint8_t alpha)
681 : GrNoiseEffect(type, baseFrequency, numOctaves, stitchTiles, matrix, alpha)
682 , fSeed(seed) {
683 }
685 SkScalar fSeed;
687 typedef GrNoiseEffect INHERITED;
688 };
690 /////////////////////////////////////////////////////////////////////
691 GR_DEFINE_EFFECT_TEST(GrPerlinNoiseEffect);
693 GrEffectRef* GrPerlinNoiseEffect::TestCreate(SkRandom* random,
694 GrContext* context,
695 const GrDrawTargetCaps&,
696 GrTexture**) {
697 int numOctaves = random->nextRangeU(2, 10);
698 bool stitchTiles = random->nextBool();
699 SkScalar seed = SkIntToScalar(random->nextU());
700 SkISize tileSize = SkISize::Make(random->nextRangeU(4, 4096), random->nextRangeU(4, 4096));
701 SkScalar baseFrequencyX = random->nextRangeScalar(0.01f,
702 0.99f);
703 SkScalar baseFrequencyY = random->nextRangeScalar(0.01f,
704 0.99f);
706 SkShader* shader = random->nextBool() ?
707 SkPerlinNoiseShader::CreateFractalNoise(baseFrequencyX, baseFrequencyY, numOctaves, seed,
708 stitchTiles ? &tileSize : NULL) :
709 SkPerlinNoiseShader::CreateTubulence(baseFrequencyX, baseFrequencyY, numOctaves, seed,
710 stitchTiles ? &tileSize : NULL);
712 SkPaint paint;
713 GrEffectRef* effect = shader->asNewEffect(context, paint);
715 SkDELETE(shader);
717 return effect;
718 }
720 /////////////////////////////////////////////////////////////////////
722 void GrGLSimplexNoise::emitCode(GrGLShaderBuilder* builder,
723 const GrDrawEffect&,
724 EffectKey key,
725 const char* outputColor,
726 const char* inputColor,
727 const TransformedCoordsArray& coords,
728 const TextureSamplerArray&) {
729 sk_ignore_unused_variable(inputColor);
731 SkString vCoords = builder->ensureFSCoords2D(coords, 0);
733 fSeedUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility,
734 kFloat_GrSLType, "seed");
735 const char* seedUni = builder->getUniformCStr(fSeedUni);
736 fInvMatrixUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility,
737 kMat33f_GrSLType, "invMatrix");
738 const char* invMatrixUni = builder->getUniformCStr(fInvMatrixUni);
739 fBaseFrequencyUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility,
740 kVec2f_GrSLType, "baseFrequency");
741 const char* baseFrequencyUni = builder->getUniformCStr(fBaseFrequencyUni);
742 fAlphaUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility,
743 kFloat_GrSLType, "alpha");
744 const char* alphaUni = builder->getUniformCStr(fAlphaUni);
746 // Add vec3 modulo 289 function
747 static const GrGLShaderVar gVec3Args[] = {
748 GrGLShaderVar("x", kVec3f_GrSLType)
749 };
751 SkString mod289_3_funcName;
752 builder->fsEmitFunction(kVec3f_GrSLType,
753 "mod289", SK_ARRAY_COUNT(gVec3Args), gVec3Args,
754 "const vec2 C = vec2(1.0 / 289.0, 289.0);\n"
755 "return x - floor(x * C.xxx) * C.yyy;", &mod289_3_funcName);
757 // Add vec4 modulo 289 function
758 static const GrGLShaderVar gVec4Args[] = {
759 GrGLShaderVar("x", kVec4f_GrSLType)
760 };
762 SkString mod289_4_funcName;
763 builder->fsEmitFunction(kVec4f_GrSLType,
764 "mod289", SK_ARRAY_COUNT(gVec4Args), gVec4Args,
765 "const vec2 C = vec2(1.0 / 289.0, 289.0);\n"
766 "return x - floor(x * C.xxxx) * C.yyyy;", &mod289_4_funcName);
768 // Add vec4 permute function
769 SkString permuteCode;
770 permuteCode.appendf("const vec2 C = vec2(34.0, 1.0);\n"
771 "return %s(((x * C.xxxx) + C.yyyy) * x);", mod289_4_funcName.c_str());
772 SkString permuteFuncName;
773 builder->fsEmitFunction(kVec4f_GrSLType,
774 "permute", SK_ARRAY_COUNT(gVec4Args), gVec4Args,
775 permuteCode.c_str(), &permuteFuncName);
777 // Add vec4 taylorInvSqrt function
778 SkString taylorInvSqrtFuncName;
779 builder->fsEmitFunction(kVec4f_GrSLType,
780 "taylorInvSqrt", SK_ARRAY_COUNT(gVec4Args), gVec4Args,
781 "const vec2 C = vec2(-0.85373472095314, 1.79284291400159);\n"
782 "return x * C.xxxx + C.yyyy;", &taylorInvSqrtFuncName);
784 // Add vec3 noise function
785 static const GrGLShaderVar gNoiseVec3Args[] = {
786 GrGLShaderVar("v", kVec3f_GrSLType)
787 };
789 SkString noiseCode;
790 noiseCode.append(
791 "const vec2 C = vec2(1.0/6.0, 1.0/3.0);\n"
792 "const vec4 D = vec4(0.0, 0.5, 1.0, 2.0);\n"
794 // First corner
795 "vec3 i = floor(v + dot(v, C.yyy));\n"
796 "vec3 x0 = v - i + dot(i, C.xxx);\n"
798 // Other corners
799 "vec3 g = step(x0.yzx, x0.xyz);\n"
800 "vec3 l = 1.0 - g;\n"
801 "vec3 i1 = min(g.xyz, l.zxy);\n"
802 "vec3 i2 = max(g.xyz, l.zxy);\n"
804 "vec3 x1 = x0 - i1 + C.xxx;\n"
805 "vec3 x2 = x0 - i2 + C.yyy;\n" // 2.0*C.x = 1/3 = C.y
806 "vec3 x3 = x0 - D.yyy;\n" // -1.0+3.0*C.x = -0.5 = -D.y
807 );
809 noiseCode.appendf(
810 // Permutations
811 "i = %s(i);\n"
812 "vec4 p = %s(%s(%s(\n"
813 " i.z + vec4(0.0, i1.z, i2.z, 1.0)) +\n"
814 " i.y + vec4(0.0, i1.y, i2.y, 1.0)) +\n"
815 " i.x + vec4(0.0, i1.x, i2.x, 1.0));\n",
816 mod289_3_funcName.c_str(), permuteFuncName.c_str(), permuteFuncName.c_str(),
817 permuteFuncName.c_str());
819 noiseCode.append(
820 // Gradients: 7x7 points over a square, mapped onto an octahedron.
821 // The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294)
822 "float n_ = 0.142857142857;\n" // 1.0/7.0
823 "vec3 ns = n_ * D.wyz - D.xzx;\n"
825 "vec4 j = p - 49.0 * floor(p * ns.z * ns.z);\n" // mod(p,7*7)
827 "vec4 x_ = floor(j * ns.z);\n"
828 "vec4 y_ = floor(j - 7.0 * x_);" // mod(j,N)
830 "vec4 x = x_ *ns.x + ns.yyyy;\n"
831 "vec4 y = y_ *ns.x + ns.yyyy;\n"
832 "vec4 h = 1.0 - abs(x) - abs(y);\n"
834 "vec4 b0 = vec4(x.xy, y.xy);\n"
835 "vec4 b1 = vec4(x.zw, y.zw);\n"
836 );
838 noiseCode.append(
839 "vec4 s0 = floor(b0) * 2.0 + 1.0;\n"
840 "vec4 s1 = floor(b1) * 2.0 + 1.0;\n"
841 "vec4 sh = -step(h, vec4(0.0));\n"
843 "vec4 a0 = b0.xzyw + s0.xzyw * sh.xxyy;\n"
844 "vec4 a1 = b1.xzyw + s1.xzyw * sh.zzww;\n"
846 "vec3 p0 = vec3(a0.xy, h.x);\n"
847 "vec3 p1 = vec3(a0.zw, h.y);\n"
848 "vec3 p2 = vec3(a1.xy, h.z);\n"
849 "vec3 p3 = vec3(a1.zw, h.w);\n"
850 );
852 noiseCode.appendf(
853 // Normalise gradients
854 "vec4 norm = %s(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3)));\n"
855 "p0 *= norm.x;\n"
856 "p1 *= norm.y;\n"
857 "p2 *= norm.z;\n"
858 "p3 *= norm.w;\n"
860 // Mix final noise value
861 "vec4 m = max(0.6 - vec4(dot(x0,x0), dot(x1,x1), dot(x2,x2), dot(x3,x3)), 0.0);\n"
862 "m = m * m;\n"
863 "return 42.0 * dot(m*m, vec4(dot(p0,x0), dot(p1,x1), dot(p2,x2), dot(p3,x3)));",
864 taylorInvSqrtFuncName.c_str());
866 SkString noiseFuncName;
867 builder->fsEmitFunction(kFloat_GrSLType,
868 "snoise", SK_ARRAY_COUNT(gNoiseVec3Args), gNoiseVec3Args,
869 noiseCode.c_str(), &noiseFuncName);
871 const char* noiseVecIni = "noiseVecIni";
872 const char* factors = "factors";
873 const char* sum = "sum";
874 const char* xOffsets = "xOffsets";
875 const char* yOffsets = "yOffsets";
876 const char* channel = "channel";
878 // Fill with some prime numbers
879 builder->fsCodeAppendf("\t\tconst vec4 %s = vec4(13.0, 53.0, 101.0, 151.0);\n", xOffsets);
880 builder->fsCodeAppendf("\t\tconst vec4 %s = vec4(109.0, 167.0, 23.0, 67.0);\n", yOffsets);
882 // There are rounding errors if the floor operation is not performed here
883 builder->fsCodeAppendf(
884 "\t\tvec3 %s = vec3(floor((%s*vec3(%s, 1.0)).xy) * vec2(0.66) * %s, 0.0);\n",
885 noiseVecIni, invMatrixUni, vCoords.c_str(), baseFrequencyUni);
887 // Perturb the texcoords with three components of noise
888 builder->fsCodeAppendf("\t\t%s += 0.1 * vec3(%s(%s + vec3( 0.0, 0.0, %s)),"
889 "%s(%s + vec3( 43.0, 17.0, %s)),"
890 "%s(%s + vec3(-17.0, -43.0, %s)));\n",
891 noiseVecIni, noiseFuncName.c_str(), noiseVecIni, seedUni,
892 noiseFuncName.c_str(), noiseVecIni, seedUni,
893 noiseFuncName.c_str(), noiseVecIni, seedUni);
895 builder->fsCodeAppendf("\t\t%s = vec4(0.0);\n", outputColor);
897 builder->fsCodeAppendf("\t\tvec3 %s = vec3(1.0);\n", factors);
898 builder->fsCodeAppendf("\t\tfloat %s = 0.0;\n", sum);
900 // Loop over all octaves
901 builder->fsCodeAppendf("\t\tfor (int octave = 0; octave < %d; ++octave) {\n", fNumOctaves);
903 // Loop over the 4 channels
904 builder->fsCodeAppendf("\t\t\tfor (int %s = 3; %s >= 0; --%s) {\n", channel, channel, channel);
906 builder->fsCodeAppendf(
907 "\t\t\t\t%s[channel] += %s.x * %s(%s * %s.yyy - vec3(%s[%s], %s[%s], %s * %s.z));\n",
908 outputColor, factors, noiseFuncName.c_str(), noiseVecIni, factors, xOffsets, channel,
909 yOffsets, channel, seedUni, factors);
911 builder->fsCodeAppend("\t\t\t}\n"); // end of the for loop on channels
913 builder->fsCodeAppendf("\t\t\t%s += %s.x;\n", sum, factors);
914 builder->fsCodeAppendf("\t\t\t%s *= vec3(0.5, 2.0, 0.75);\n", factors);
916 builder->fsCodeAppend("\t\t}\n"); // end of the for loop on octaves
918 if (fType == SkPerlinNoiseShader::kFractalNoise_Type) {
919 // The value of turbulenceFunctionResult comes from ((turbulenceFunctionResult) + 1) / 2
920 // by fractalNoise and (turbulenceFunctionResult) by turbulence.
921 builder->fsCodeAppendf("\t\t%s = %s * vec4(0.5 / %s) + vec4(0.5);\n",
922 outputColor, outputColor, sum);
923 } else {
924 builder->fsCodeAppendf("\t\t%s = abs(%s / vec4(%s));\n",
925 outputColor, outputColor, sum);
926 }
928 builder->fsCodeAppendf("\t\t%s.a *= %s;\n", outputColor, alphaUni);
930 // Clamp values
931 builder->fsCodeAppendf("\t\t%s = clamp(%s, 0.0, 1.0);\n", outputColor, outputColor);
933 // Pre-multiply the result
934 builder->fsCodeAppendf("\t\t%s = vec4(%s.rgb * %s.aaa, %s.a);\n",
935 outputColor, outputColor, outputColor, outputColor);
936 }
938 void GrGLPerlinNoise::emitCode(GrGLShaderBuilder* builder,
939 const GrDrawEffect&,
940 EffectKey key,
941 const char* outputColor,
942 const char* inputColor,
943 const TransformedCoordsArray& coords,
944 const TextureSamplerArray& samplers) {
945 sk_ignore_unused_variable(inputColor);
947 SkString vCoords = builder->ensureFSCoords2D(coords, 0);
949 fInvMatrixUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility,
950 kMat33f_GrSLType, "invMatrix");
951 const char* invMatrixUni = builder->getUniformCStr(fInvMatrixUni);
952 fBaseFrequencyUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility,
953 kVec2f_GrSLType, "baseFrequency");
954 const char* baseFrequencyUni = builder->getUniformCStr(fBaseFrequencyUni);
955 fAlphaUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility,
956 kFloat_GrSLType, "alpha");
957 const char* alphaUni = builder->getUniformCStr(fAlphaUni);
959 const char* stitchDataUni = NULL;
960 if (fStitchTiles) {
961 fStitchDataUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility,
962 kVec2f_GrSLType, "stitchData");
963 stitchDataUni = builder->getUniformCStr(fStitchDataUni);
964 }
966 // There are 4 lines, so the center of each line is 1/8, 3/8, 5/8 and 7/8
967 const char* chanCoordR = "0.125";
968 const char* chanCoordG = "0.375";
969 const char* chanCoordB = "0.625";
970 const char* chanCoordA = "0.875";
971 const char* chanCoord = "chanCoord";
972 const char* stitchData = "stitchData";
973 const char* ratio = "ratio";
974 const char* noiseXY = "noiseXY";
975 const char* noiseVec = "noiseVec";
976 const char* noiseSmooth = "noiseSmooth";
977 const char* fractVal = "fractVal";
978 const char* uv = "uv";
979 const char* ab = "ab";
980 const char* latticeIdx = "latticeIdx";
981 const char* lattice = "lattice";
982 const char* inc8bit = "0.00390625"; // 1.0 / 256.0
983 // This is the math to convert the two 16bit integer packed into rgba 8 bit input into a
984 // [-1,1] vector and perform a dot product between that vector and the provided vector.
985 const char* dotLattice = "dot(((%s.ga + %s.rb * vec2(%s)) * vec2(2.0) - vec2(1.0)), %s);";
987 // Add noise function
988 static const GrGLShaderVar gPerlinNoiseArgs[] = {
989 GrGLShaderVar(chanCoord, kFloat_GrSLType),
990 GrGLShaderVar(noiseVec, kVec2f_GrSLType)
991 };
993 static const GrGLShaderVar gPerlinNoiseStitchArgs[] = {
994 GrGLShaderVar(chanCoord, kFloat_GrSLType),
995 GrGLShaderVar(noiseVec, kVec2f_GrSLType),
996 GrGLShaderVar(stitchData, kVec2f_GrSLType)
997 };
999 SkString noiseCode;
1001 noiseCode.appendf("\tvec4 %s = vec4(floor(%s), fract(%s));", noiseXY, noiseVec, noiseVec);
1003 // smooth curve : t * t * (3 - 2 * t)
1004 noiseCode.appendf("\n\tvec2 %s = %s.zw * %s.zw * (vec2(3.0) - vec2(2.0) * %s.zw);",
1005 noiseSmooth, noiseXY, noiseXY, noiseXY);
1007 // Adjust frequencies if we're stitching tiles
1008 if (fStitchTiles) {
1009 noiseCode.appendf("\n\tif(%s.x >= %s.x) { %s.x -= %s.x; }",
1010 noiseXY, stitchData, noiseXY, stitchData);
1011 noiseCode.appendf("\n\tif(%s.x >= (%s.x - 1.0)) { %s.x -= (%s.x - 1.0); }",
1012 noiseXY, stitchData, noiseXY, stitchData);
1013 noiseCode.appendf("\n\tif(%s.y >= %s.y) { %s.y -= %s.y; }",
1014 noiseXY, stitchData, noiseXY, stitchData);
1015 noiseCode.appendf("\n\tif(%s.y >= (%s.y - 1.0)) { %s.y -= (%s.y - 1.0); }",
1016 noiseXY, stitchData, noiseXY, stitchData);
1017 }
1019 // Get texture coordinates and normalize
1020 noiseCode.appendf("\n\t%s.xy = fract(floor(mod(%s.xy, 256.0)) / vec2(256.0));\n",
1021 noiseXY, noiseXY);
1023 // Get permutation for x
1024 {
1025 SkString xCoords("");
1026 xCoords.appendf("vec2(%s.x, 0.5)", noiseXY);
1028 noiseCode.appendf("\n\tvec2 %s;\n\t%s.x = ", latticeIdx, latticeIdx);
1029 builder->appendTextureLookup(&noiseCode, samplers[0], xCoords.c_str(), kVec2f_GrSLType);
1030 noiseCode.append(".r;");
1031 }
1033 // Get permutation for x + 1
1034 {
1035 SkString xCoords("");
1036 xCoords.appendf("vec2(fract(%s.x + %s), 0.5)", noiseXY, inc8bit);
1038 noiseCode.appendf("\n\t%s.y = ", latticeIdx);
1039 builder->appendTextureLookup(&noiseCode, samplers[0], xCoords.c_str(), kVec2f_GrSLType);
1040 noiseCode.append(".r;");
1041 }
1043 #if defined(SK_BUILD_FOR_ANDROID)
1044 // Android rounding for Tegra devices, like, for example: Xoom (Tegra 2), Nexus 7 (Tegra 3).
1045 // The issue is that colors aren't accurate enough on Tegra devices. For example, if an 8 bit
1046 // value of 124 (or 0.486275 here) is entered, we can get a texture value of 123.513725
1047 // (or 0.484368 here). The following rounding operation prevents these precision issues from
1048 // affecting the result of the noise by making sure that we only have multiples of 1/255.
1049 // (Note that 1/255 is about 0.003921569, which is the value used here).
1050 noiseCode.appendf("\n\t%s = floor(%s * vec2(255.0) + vec2(0.5)) * vec2(0.003921569);",
1051 latticeIdx, latticeIdx);
1052 #endif
1054 // Get (x,y) coordinates with the permutated x
1055 noiseCode.appendf("\n\t%s = fract(%s + %s.yy);", latticeIdx, latticeIdx, noiseXY);
1057 noiseCode.appendf("\n\tvec2 %s = %s.zw;", fractVal, noiseXY);
1059 noiseCode.appendf("\n\n\tvec2 %s;", uv);
1060 // Compute u, at offset (0,0)
1061 {
1062 SkString latticeCoords("");
1063 latticeCoords.appendf("vec2(%s.x, %s)", latticeIdx, chanCoord);
1064 noiseCode.appendf("\n\tvec4 %s = ", lattice);
1065 builder->appendTextureLookup(&noiseCode, samplers[1], latticeCoords.c_str(),
1066 kVec2f_GrSLType);
1067 noiseCode.appendf(".bgra;\n\t%s.x = ", uv);
1068 noiseCode.appendf(dotLattice, lattice, lattice, inc8bit, fractVal);
1069 }
1071 noiseCode.appendf("\n\t%s.x -= 1.0;", fractVal);
1072 // Compute v, at offset (-1,0)
1073 {
1074 SkString latticeCoords("");
1075 latticeCoords.appendf("vec2(%s.y, %s)", latticeIdx, chanCoord);
1076 noiseCode.append("\n\tlattice = ");
1077 builder->appendTextureLookup(&noiseCode, samplers[1], latticeCoords.c_str(),
1078 kVec2f_GrSLType);
1079 noiseCode.appendf(".bgra;\n\t%s.y = ", uv);
1080 noiseCode.appendf(dotLattice, lattice, lattice, inc8bit, fractVal);
1081 }
1083 // Compute 'a' as a linear interpolation of 'u' and 'v'
1084 noiseCode.appendf("\n\tvec2 %s;", ab);
1085 noiseCode.appendf("\n\t%s.x = mix(%s.x, %s.y, %s.x);", ab, uv, uv, noiseSmooth);
1087 noiseCode.appendf("\n\t%s.y -= 1.0;", fractVal);
1088 // Compute v, at offset (-1,-1)
1089 {
1090 SkString latticeCoords("");
1091 latticeCoords.appendf("vec2(fract(%s.y + %s), %s)", latticeIdx, inc8bit, chanCoord);
1092 noiseCode.append("\n\tlattice = ");
1093 builder->appendTextureLookup(&noiseCode, samplers[1], latticeCoords.c_str(),
1094 kVec2f_GrSLType);
1095 noiseCode.appendf(".bgra;\n\t%s.y = ", uv);
1096 noiseCode.appendf(dotLattice, lattice, lattice, inc8bit, fractVal);
1097 }
1099 noiseCode.appendf("\n\t%s.x += 1.0;", fractVal);
1100 // Compute u, at offset (0,-1)
1101 {
1102 SkString latticeCoords("");
1103 latticeCoords.appendf("vec2(fract(%s.x + %s), %s)", latticeIdx, inc8bit, chanCoord);
1104 noiseCode.append("\n\tlattice = ");
1105 builder->appendTextureLookup(&noiseCode, samplers[1], latticeCoords.c_str(),
1106 kVec2f_GrSLType);
1107 noiseCode.appendf(".bgra;\n\t%s.x = ", uv);
1108 noiseCode.appendf(dotLattice, lattice, lattice, inc8bit, fractVal);
1109 }
1111 // Compute 'b' as a linear interpolation of 'u' and 'v'
1112 noiseCode.appendf("\n\t%s.y = mix(%s.x, %s.y, %s.x);", ab, uv, uv, noiseSmooth);
1113 // Compute the noise as a linear interpolation of 'a' and 'b'
1114 noiseCode.appendf("\n\treturn mix(%s.x, %s.y, %s.y);\n", ab, ab, noiseSmooth);
1116 SkString noiseFuncName;
1117 if (fStitchTiles) {
1118 builder->fsEmitFunction(kFloat_GrSLType,
1119 "perlinnoise", SK_ARRAY_COUNT(gPerlinNoiseStitchArgs),
1120 gPerlinNoiseStitchArgs, noiseCode.c_str(), &noiseFuncName);
1121 } else {
1122 builder->fsEmitFunction(kFloat_GrSLType,
1123 "perlinnoise", SK_ARRAY_COUNT(gPerlinNoiseArgs),
1124 gPerlinNoiseArgs, noiseCode.c_str(), &noiseFuncName);
1125 }
1127 // There are rounding errors if the floor operation is not performed here
1128 builder->fsCodeAppendf("\n\t\tvec2 %s = floor((%s * vec3(%s, 1.0)).xy) * %s;",
1129 noiseVec, invMatrixUni, vCoords.c_str(), baseFrequencyUni);
1131 // Clear the color accumulator
1132 builder->fsCodeAppendf("\n\t\t%s = vec4(0.0);", outputColor);
1134 if (fStitchTiles) {
1135 // Set up TurbulenceInitial stitch values.
1136 builder->fsCodeAppendf("\n\t\tvec2 %s = %s;", stitchData, stitchDataUni);
1137 }
1139 builder->fsCodeAppendf("\n\t\tfloat %s = 1.0;", ratio);
1141 // Loop over all octaves
1142 builder->fsCodeAppendf("\n\t\tfor (int octave = 0; octave < %d; ++octave) {", fNumOctaves);
1144 builder->fsCodeAppendf("\n\t\t\t%s += ", outputColor);
1145 if (fType != SkPerlinNoiseShader::kFractalNoise_Type) {
1146 builder->fsCodeAppend("abs(");
1147 }
1148 if (fStitchTiles) {
1149 builder->fsCodeAppendf(
1150 "vec4(\n\t\t\t\t%s(%s, %s, %s),\n\t\t\t\t%s(%s, %s, %s),"
1151 "\n\t\t\t\t%s(%s, %s, %s),\n\t\t\t\t%s(%s, %s, %s))",
1152 noiseFuncName.c_str(), chanCoordR, noiseVec, stitchData,
1153 noiseFuncName.c_str(), chanCoordG, noiseVec, stitchData,
1154 noiseFuncName.c_str(), chanCoordB, noiseVec, stitchData,
1155 noiseFuncName.c_str(), chanCoordA, noiseVec, stitchData);
1156 } else {
1157 builder->fsCodeAppendf(
1158 "vec4(\n\t\t\t\t%s(%s, %s),\n\t\t\t\t%s(%s, %s),"
1159 "\n\t\t\t\t%s(%s, %s),\n\t\t\t\t%s(%s, %s))",
1160 noiseFuncName.c_str(), chanCoordR, noiseVec,
1161 noiseFuncName.c_str(), chanCoordG, noiseVec,
1162 noiseFuncName.c_str(), chanCoordB, noiseVec,
1163 noiseFuncName.c_str(), chanCoordA, noiseVec);
1164 }
1165 if (fType != SkPerlinNoiseShader::kFractalNoise_Type) {
1166 builder->fsCodeAppendf(")"); // end of "abs("
1167 }
1168 builder->fsCodeAppendf(" * %s;", ratio);
1170 builder->fsCodeAppendf("\n\t\t\t%s *= vec2(2.0);", noiseVec);
1171 builder->fsCodeAppendf("\n\t\t\t%s *= 0.5;", ratio);
1173 if (fStitchTiles) {
1174 builder->fsCodeAppendf("\n\t\t\t%s *= vec2(2.0);", stitchData);
1175 }
1176 builder->fsCodeAppend("\n\t\t}"); // end of the for loop on octaves
1178 if (fType == SkPerlinNoiseShader::kFractalNoise_Type) {
1179 // The value of turbulenceFunctionResult comes from ((turbulenceFunctionResult) + 1) / 2
1180 // by fractalNoise and (turbulenceFunctionResult) by turbulence.
1181 builder->fsCodeAppendf("\n\t\t%s = %s * vec4(0.5) + vec4(0.5);", outputColor, outputColor);
1182 }
1184 builder->fsCodeAppendf("\n\t\t%s.a *= %s;", outputColor, alphaUni);
1186 // Clamp values
1187 builder->fsCodeAppendf("\n\t\t%s = clamp(%s, 0.0, 1.0);", outputColor, outputColor);
1189 // Pre-multiply the result
1190 builder->fsCodeAppendf("\n\t\t%s = vec4(%s.rgb * %s.aaa, %s.a);\n",
1191 outputColor, outputColor, outputColor, outputColor);
1192 }
1194 GrGLNoise::GrGLNoise(const GrBackendEffectFactory& factory, const GrDrawEffect& drawEffect)
1195 : INHERITED (factory)
1196 , fType(drawEffect.castEffect<GrPerlinNoiseEffect>().type())
1197 , fStitchTiles(drawEffect.castEffect<GrPerlinNoiseEffect>().stitchTiles())
1198 , fNumOctaves(drawEffect.castEffect<GrPerlinNoiseEffect>().numOctaves()) {
1199 }
1201 GrGLEffect::EffectKey GrGLNoise::GenKey(const GrDrawEffect& drawEffect, const GrGLCaps&) {
1202 const GrPerlinNoiseEffect& turbulence = drawEffect.castEffect<GrPerlinNoiseEffect>();
1204 EffectKey key = turbulence.numOctaves();
1206 key = key << 3; // Make room for next 3 bits
1208 switch (turbulence.type()) {
1209 case SkPerlinNoiseShader::kFractalNoise_Type:
1210 key |= 0x1;
1211 break;
1212 case SkPerlinNoiseShader::kTurbulence_Type:
1213 key |= 0x2;
1214 break;
1215 default:
1216 // leave key at 0
1217 break;
1218 }
1220 if (turbulence.stitchTiles()) {
1221 key |= 0x4; // Flip the 3rd bit if tile stitching is on
1222 }
1224 return key;
1225 }
1227 void GrGLNoise::setData(const GrGLUniformManager& uman, const GrDrawEffect& drawEffect) {
1228 const GrPerlinNoiseEffect& turbulence = drawEffect.castEffect<GrPerlinNoiseEffect>();
1230 const SkVector& baseFrequency = turbulence.baseFrequency();
1231 uman.set2f(fBaseFrequencyUni, baseFrequency.fX, baseFrequency.fY);
1232 uman.set1f(fAlphaUni, SkScalarDiv(SkIntToScalar(turbulence.alpha()), SkIntToScalar(255)));
1234 SkMatrix m = turbulence.matrix();
1235 m.postTranslate(-SK_Scalar1, -SK_Scalar1);
1236 SkMatrix invM;
1237 if (!m.invert(&invM)) {
1238 invM.reset();
1239 } else {
1240 invM.postConcat(invM); // Square the matrix
1241 }
1242 uman.setSkMatrix(fInvMatrixUni, invM);
1243 }
1245 void GrGLPerlinNoise::setData(const GrGLUniformManager& uman, const GrDrawEffect& drawEffect) {
1246 INHERITED::setData(uman, drawEffect);
1248 const GrPerlinNoiseEffect& turbulence = drawEffect.castEffect<GrPerlinNoiseEffect>();
1249 if (turbulence.stitchTiles()) {
1250 const SkPerlinNoiseShader::StitchData& stitchData = turbulence.stitchData();
1251 uman.set2f(fStitchDataUni, SkIntToScalar(stitchData.fWidth),
1252 SkIntToScalar(stitchData.fHeight));
1253 }
1254 }
1256 void GrGLSimplexNoise::setData(const GrGLUniformManager& uman, const GrDrawEffect& drawEffect) {
1257 INHERITED::setData(uman, drawEffect);
1259 const GrSimplexNoiseEffect& turbulence = drawEffect.castEffect<GrSimplexNoiseEffect>();
1260 uman.set1f(fSeedUni, turbulence.seed());
1261 }
1263 /////////////////////////////////////////////////////////////////////
1265 GrEffectRef* SkPerlinNoiseShader::asNewEffect(GrContext* context, const SkPaint& paint) const {
1266 SkASSERT(NULL != context);
1268 if (0 == fNumOctaves) {
1269 SkColor clearColor = 0;
1270 if (kFractalNoise_Type == fType) {
1271 clearColor = SkColorSetARGB(paint.getAlpha() / 2, 127, 127, 127);
1272 }
1273 SkAutoTUnref<SkColorFilter> cf(SkColorFilter::CreateModeFilter(
1274 clearColor, SkXfermode::kSrc_Mode));
1275 return cf->asNewEffect(context);
1276 }
1278 // Either we don't stitch tiles, either we have a valid tile size
1279 SkASSERT(!fStitchTiles || !fTileSize.isEmpty());
1281 #ifdef SK_USE_SIMPLEX_NOISE
1282 // Simplex noise is currently disabled but can be enabled by defining SK_USE_SIMPLEX_NOISE
1283 sk_ignore_unused_variable(context);
1284 GrEffectRef* effect =
1285 GrSimplexNoiseEffect::Create(fType, fPaintingData->fBaseFrequency,
1286 fNumOctaves, fStitchTiles, fSeed,
1287 this->getLocalMatrix(), paint.getAlpha());
1288 #else
1289 GrTexture* permutationsTexture = GrLockAndRefCachedBitmapTexture(
1290 context, fPaintingData->getPermutationsBitmap(), NULL);
1291 GrTexture* noiseTexture = GrLockAndRefCachedBitmapTexture(
1292 context, fPaintingData->getNoiseBitmap(), NULL);
1294 GrEffectRef* effect = (NULL != permutationsTexture) && (NULL != noiseTexture) ?
1295 GrPerlinNoiseEffect::Create(fType, fPaintingData->fBaseFrequency,
1296 fNumOctaves, fStitchTiles,
1297 fPaintingData->fStitchDataInit,
1298 permutationsTexture, noiseTexture,
1299 this->getLocalMatrix(), paint.getAlpha()) :
1300 NULL;
1302 // Unlock immediately, this is not great, but we don't have a way of
1303 // knowing when else to unlock it currently. TODO: Remove this when
1304 // unref becomes the unlock replacement for all types of textures.
1305 if (NULL != permutationsTexture) {
1306 GrUnlockAndUnrefCachedBitmapTexture(permutationsTexture);
1307 }
1308 if (NULL != noiseTexture) {
1309 GrUnlockAndUnrefCachedBitmapTexture(noiseTexture);
1310 }
1311 #endif
1313 return effect;
1314 }
1316 #else
1318 GrEffectRef* SkPerlinNoiseShader::asNewEffect(GrContext*, const SkPaint&) const {
1319 SkDEBUGFAIL("Should not call in GPU-less build");
1320 return NULL;
1321 }
1323 #endif
1325 #ifndef SK_IGNORE_TO_STRING
1326 void SkPerlinNoiseShader::toString(SkString* str) const {
1327 str->append("SkPerlinNoiseShader: (");
1329 str->append("type: ");
1330 switch (fType) {
1331 case kFractalNoise_Type:
1332 str->append("\"fractal noise\"");
1333 break;
1334 case kTurbulence_Type:
1335 str->append("\"turbulence\"");
1336 break;
1337 default:
1338 str->append("\"unknown\"");
1339 break;
1340 }
1341 str->append(" base frequency: (");
1342 str->appendScalar(fBaseFrequencyX);
1343 str->append(", ");
1344 str->appendScalar(fBaseFrequencyY);
1345 str->append(") number of octaves: ");
1346 str->appendS32(fNumOctaves);
1347 str->append(" seed: ");
1348 str->appendScalar(fSeed);
1349 str->append(" stitch tiles: ");
1350 str->append(fStitchTiles ? "true " : "false ");
1352 this->INHERITED::toString(str);
1354 str->append(")");
1355 }
1356 #endif