Sat, 03 Jan 2015 20:18:00 +0100
Conditionally enable double key logic according to:
private browsing mode or privacy.thirdparty.isolate preference and
implement in GetCookieStringCommon and FindCookie where it counts...
With some reservations of how to convince FindCookie users to test
condition and pass a nullptr when disabling double key logic.
1 /*
2 * Copyright 2011 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
8 #ifndef GrDrawState_DEFINED
9 #define GrDrawState_DEFINED
11 #include "GrBackendEffectFactory.h"
12 #include "GrBlend.h"
13 #include "GrColor.h"
14 #include "GrEffectStage.h"
15 #include "GrPaint.h"
16 #include "GrPoint.h"
17 #include "GrRenderTarget.h"
18 #include "GrStencil.h"
19 #include "GrTemplates.h"
20 #include "GrTexture.h"
21 #include "GrTypesPriv.h"
22 #include "effects/GrSimpleTextureEffect.h"
24 #include "SkMatrix.h"
25 #include "SkTypes.h"
26 #include "SkXfermode.h"
28 class GrDrawState : public SkRefCnt {
29 public:
30 SK_DECLARE_INST_COUNT(GrDrawState)
32 GrDrawState() {
33 SkDEBUGCODE(fBlockEffectRemovalCnt = 0;)
34 this->reset();
35 }
37 GrDrawState(const SkMatrix& initialViewMatrix) {
38 SkDEBUGCODE(fBlockEffectRemovalCnt = 0;)
39 this->reset(initialViewMatrix);
40 }
42 /**
43 * Copies another draw state.
44 **/
45 GrDrawState(const GrDrawState& state) : INHERITED() {
46 SkDEBUGCODE(fBlockEffectRemovalCnt = 0;)
47 *this = state;
48 }
50 /**
51 * Copies another draw state with a preconcat to the view matrix.
52 **/
53 GrDrawState(const GrDrawState& state, const SkMatrix& preConcatMatrix) {
54 SkDEBUGCODE(fBlockEffectRemovalCnt = 0;)
55 *this = state;
56 if (!preConcatMatrix.isIdentity()) {
57 for (int i = 0; i < fColorStages.count(); ++i) {
58 fColorStages[i].localCoordChange(preConcatMatrix);
59 }
60 for (int i = 0; i < fCoverageStages.count(); ++i) {
61 fCoverageStages[i].localCoordChange(preConcatMatrix);
62 }
63 }
64 }
66 virtual ~GrDrawState() { SkASSERT(0 == fBlockEffectRemovalCnt); }
68 /**
69 * Resets to the default state. GrEffects will be removed from all stages.
70 */
71 void reset() { this->onReset(NULL); }
73 void reset(const SkMatrix& initialViewMatrix) { this->onReset(&initialViewMatrix); }
75 /**
76 * Initializes the GrDrawState based on a GrPaint, view matrix and render target. Note that
77 * GrDrawState encompasses more than GrPaint. Aspects of GrDrawState that have no GrPaint
78 * equivalents are set to default values. Clipping will be enabled.
79 */
80 void setFromPaint(const GrPaint& , const SkMatrix& viewMatrix, GrRenderTarget*);
82 ///////////////////////////////////////////////////////////////////////////
83 /// @name Vertex Attributes
84 ////
86 enum {
87 kMaxVertexAttribCnt = kLast_GrVertexAttribBinding + 4,
88 };
90 /**
91 * The format of vertices is represented as an array of GrVertexAttribs, with each representing
92 * the type of the attribute, its offset, and semantic binding (see GrVertexAttrib in
93 * GrTypesPriv.h).
94 *
95 * The mapping of attributes with kEffect bindings to GrEffect inputs is specified when
96 * setEffect is called.
97 */
99 /**
100 * Sets vertex attributes for next draw. The object driving the templatization
101 * should be a global GrVertexAttrib array that is never changed.
102 */
103 template <const GrVertexAttrib A[]> void setVertexAttribs(int count) {
104 this->setVertexAttribs(A, count);
105 }
107 const GrVertexAttrib* getVertexAttribs() const { return fCommon.fVAPtr; }
108 int getVertexAttribCount() const { return fCommon.fVACount; }
110 size_t getVertexSize() const;
112 /**
113 * Sets default vertex attributes for next draw. The default is a single attribute:
114 * {kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribType}
115 */
116 void setDefaultVertexAttribs();
118 /**
119 * Getters for index into getVertexAttribs() for particular bindings. -1 is returned if the
120 * binding does not appear in the current attribs. These bindings should appear only once in
121 * the attrib array.
122 */
124 int positionAttributeIndex() const {
125 return fCommon.fFixedFunctionVertexAttribIndices[kPosition_GrVertexAttribBinding];
126 }
127 int localCoordAttributeIndex() const {
128 return fCommon.fFixedFunctionVertexAttribIndices[kLocalCoord_GrVertexAttribBinding];
129 }
130 int colorVertexAttributeIndex() const {
131 return fCommon.fFixedFunctionVertexAttribIndices[kColor_GrVertexAttribBinding];
132 }
133 int coverageVertexAttributeIndex() const {
134 return fCommon.fFixedFunctionVertexAttribIndices[kCoverage_GrVertexAttribBinding];
135 }
137 bool hasLocalCoordAttribute() const {
138 return -1 != fCommon.fFixedFunctionVertexAttribIndices[kLocalCoord_GrVertexAttribBinding];
139 }
140 bool hasColorVertexAttribute() const {
141 return -1 != fCommon.fFixedFunctionVertexAttribIndices[kColor_GrVertexAttribBinding];
142 }
143 bool hasCoverageVertexAttribute() const {
144 return -1 != fCommon.fFixedFunctionVertexAttribIndices[kCoverage_GrVertexAttribBinding];
145 }
147 bool validateVertexAttribs() const;
149 /**
150 * Helper to save/restore vertex attribs
151 */
152 class AutoVertexAttribRestore {
153 public:
154 AutoVertexAttribRestore(GrDrawState* drawState) {
155 SkASSERT(NULL != drawState);
156 fDrawState = drawState;
157 fVAPtr = drawState->fCommon.fVAPtr;
158 fVACount = drawState->fCommon.fVACount;
159 fDrawState->setDefaultVertexAttribs();
160 }
162 ~AutoVertexAttribRestore(){
163 fDrawState->setVertexAttribs(fVAPtr, fVACount);
164 }
166 private:
167 GrDrawState* fDrawState;
168 const GrVertexAttrib* fVAPtr;
169 int fVACount;
170 };
172 /**
173 * Accessing positions, local coords, or colors, of a vertex within an array is a hassle
174 * involving casts and simple math. These helpers exist to keep GrDrawTarget clients' code a bit
175 * nicer looking.
176 */
178 /**
179 * Gets a pointer to a GrPoint of a vertex's position or texture
180 * coordinate.
181 * @param vertices the vertex array
182 * @param vertexIndex the index of the vertex in the array
183 * @param vertexSize the size of each vertex in the array
184 * @param offset the offset in bytes of the vertex component.
185 * Defaults to zero (corresponding to vertex position)
186 * @return pointer to the vertex component as a GrPoint
187 */
188 static GrPoint* GetVertexPoint(void* vertices,
189 int vertexIndex,
190 int vertexSize,
191 int offset = 0) {
192 intptr_t start = GrTCast<intptr_t>(vertices);
193 return GrTCast<GrPoint*>(start + offset +
194 vertexIndex * vertexSize);
195 }
196 static const GrPoint* GetVertexPoint(const void* vertices,
197 int vertexIndex,
198 int vertexSize,
199 int offset = 0) {
200 intptr_t start = GrTCast<intptr_t>(vertices);
201 return GrTCast<const GrPoint*>(start + offset +
202 vertexIndex * vertexSize);
203 }
205 /**
206 * Gets a pointer to a GrColor inside a vertex within a vertex array.
207 * @param vertices the vetex array
208 * @param vertexIndex the index of the vertex in the array
209 * @param vertexSize the size of each vertex in the array
210 * @param offset the offset in bytes of the vertex color
211 * @return pointer to the vertex component as a GrColor
212 */
213 static GrColor* GetVertexColor(void* vertices,
214 int vertexIndex,
215 int vertexSize,
216 int offset) {
217 intptr_t start = GrTCast<intptr_t>(vertices);
218 return GrTCast<GrColor*>(start + offset +
219 vertexIndex * vertexSize);
220 }
221 static const GrColor* GetVertexColor(const void* vertices,
222 int vertexIndex,
223 int vertexSize,
224 int offset) {
225 const intptr_t start = GrTCast<intptr_t>(vertices);
226 return GrTCast<const GrColor*>(start + offset +
227 vertexIndex * vertexSize);
228 }
230 /// @}
232 /**
233 * Determines whether src alpha is guaranteed to be one for all src pixels
234 */
235 bool srcAlphaWillBeOne() const;
237 /**
238 * Determines whether the output coverage is guaranteed to be one for all pixels hit by a draw.
239 */
240 bool hasSolidCoverage() const;
242 /// @}
244 ///////////////////////////////////////////////////////////////////////////
245 /// @name Color
246 ////
248 /**
249 * Sets color for next draw to a premultiplied-alpha color.
250 *
251 * @param color the color to set.
252 */
253 void setColor(GrColor color) { fCommon.fColor = color; }
255 GrColor getColor() const { return fCommon.fColor; }
257 /**
258 * Sets the color to be used for the next draw to be
259 * (r,g,b,a) = (alpha, alpha, alpha, alpha).
260 *
261 * @param alpha The alpha value to set as the color.
262 */
263 void setAlpha(uint8_t a) {
264 this->setColor((a << 24) | (a << 16) | (a << 8) | a);
265 }
267 /**
268 * Constructor sets the color to be 'color' which is undone by the destructor.
269 */
270 class AutoColorRestore : public ::SkNoncopyable {
271 public:
272 AutoColorRestore() : fDrawState(NULL), fOldColor(0) {}
274 AutoColorRestore(GrDrawState* drawState, GrColor color) {
275 fDrawState = NULL;
276 this->set(drawState, color);
277 }
279 void reset() {
280 if (NULL != fDrawState) {
281 fDrawState->setColor(fOldColor);
282 fDrawState = NULL;
283 }
284 }
286 void set(GrDrawState* drawState, GrColor color) {
287 this->reset();
288 fDrawState = drawState;
289 fOldColor = fDrawState->getColor();
290 fDrawState->setColor(color);
291 }
293 ~AutoColorRestore() { this->reset(); }
294 private:
295 GrDrawState* fDrawState;
296 GrColor fOldColor;
297 };
299 /// @}
301 ///////////////////////////////////////////////////////////////////////////
302 /// @name Coverage
303 ////
305 /**
306 * Sets a constant fractional coverage to be applied to the draw. The
307 * initial value (after construction or reset()) is 0xff. The constant
308 * coverage is ignored when per-vertex coverage is provided.
309 */
310 void setCoverage(uint8_t coverage) {
311 fCommon.fCoverage = GrColorPackRGBA(coverage, coverage, coverage, coverage);
312 }
314 uint8_t getCoverage() const {
315 return GrColorUnpackR(fCommon.fCoverage);
316 }
318 GrColor getCoverageColor() const {
319 return fCommon.fCoverage;
320 }
322 /// @}
324 ///////////////////////////////////////////////////////////////////////////
325 /// @name Effect Stages
326 /// Each stage hosts a GrEffect. The effect produces an output color or coverage in the fragment
327 /// shader. Its inputs are the output from the previous stage as well as some variables
328 /// available to it in the fragment and vertex shader (e.g. the vertex position, the dst color,
329 /// the fragment position, local coordinates).
330 ///
331 /// The stages are divided into two sets, color-computing and coverage-computing. The final
332 /// color stage produces the final pixel color. The coverage-computing stages function exactly
333 /// as the color-computing but the output of the final coverage stage is treated as a fractional
334 /// pixel coverage rather than as input to the src/dst color blend step.
335 ///
336 /// The input color to the first color-stage is either the constant color or interpolated
337 /// per-vertex colors. The input to the first coverage stage is either a constant coverage
338 /// (usually full-coverage) or interpolated per-vertex coverage.
339 ///
340 /// See the documentation of kCoverageDrawing_StateBit for information about disabling the
341 /// the color / coverage distinction.
342 ////
344 const GrEffectRef* addColorEffect(const GrEffectRef* effect, int attr0 = -1, int attr1 = -1) {
345 SkASSERT(NULL != effect);
346 SkNEW_APPEND_TO_TARRAY(&fColorStages, GrEffectStage, (effect, attr0, attr1));
347 return effect;
348 }
350 const GrEffectRef* addCoverageEffect(const GrEffectRef* effect, int attr0 = -1, int attr1 = -1) {
351 SkASSERT(NULL != effect);
352 SkNEW_APPEND_TO_TARRAY(&fCoverageStages, GrEffectStage, (effect, attr0, attr1));
353 return effect;
354 }
356 /**
357 * Creates a GrSimpleTextureEffect that uses local coords as texture coordinates.
358 */
359 void addColorTextureEffect(GrTexture* texture, const SkMatrix& matrix) {
360 GrEffectRef* effect = GrSimpleTextureEffect::Create(texture, matrix);
361 this->addColorEffect(effect)->unref();
362 }
364 void addCoverageTextureEffect(GrTexture* texture, const SkMatrix& matrix) {
365 GrEffectRef* effect = GrSimpleTextureEffect::Create(texture, matrix);
366 this->addCoverageEffect(effect)->unref();
367 }
369 void addColorTextureEffect(GrTexture* texture,
370 const SkMatrix& matrix,
371 const GrTextureParams& params) {
372 GrEffectRef* effect = GrSimpleTextureEffect::Create(texture, matrix, params);
373 this->addColorEffect(effect)->unref();
374 }
376 void addCoverageTextureEffect(GrTexture* texture,
377 const SkMatrix& matrix,
378 const GrTextureParams& params) {
379 GrEffectRef* effect = GrSimpleTextureEffect::Create(texture, matrix, params);
380 this->addCoverageEffect(effect)->unref();
381 }
383 /**
384 * When this object is destroyed it will remove any effects from the draw state that were added
385 * after its constructor.
386 */
387 class AutoRestoreEffects : public ::SkNoncopyable {
388 public:
389 AutoRestoreEffects() : fDrawState(NULL), fColorEffectCnt(0), fCoverageEffectCnt(0) {}
391 AutoRestoreEffects(GrDrawState* ds) : fDrawState(NULL), fColorEffectCnt(0), fCoverageEffectCnt(0) {
392 this->set(ds);
393 }
395 ~AutoRestoreEffects() { this->set(NULL); }
397 void set(GrDrawState* ds) {
398 if (NULL != fDrawState) {
399 int n = fDrawState->fColorStages.count() - fColorEffectCnt;
400 SkASSERT(n >= 0);
401 fDrawState->fColorStages.pop_back_n(n);
402 n = fDrawState->fCoverageStages.count() - fCoverageEffectCnt;
403 SkASSERT(n >= 0);
404 fDrawState->fCoverageStages.pop_back_n(n);
405 SkDEBUGCODE(--fDrawState->fBlockEffectRemovalCnt;)
406 }
407 fDrawState = ds;
408 if (NULL != ds) {
409 fColorEffectCnt = ds->fColorStages.count();
410 fCoverageEffectCnt = ds->fCoverageStages.count();
411 SkDEBUGCODE(++ds->fBlockEffectRemovalCnt;)
412 }
413 }
415 private:
416 GrDrawState* fDrawState;
417 int fColorEffectCnt;
418 int fCoverageEffectCnt;
419 };
421 int numColorStages() const { return fColorStages.count(); }
422 int numCoverageStages() const { return fCoverageStages.count(); }
423 int numTotalStages() const { return this->numColorStages() + this->numCoverageStages(); }
425 const GrEffectStage& getColorStage(int stageIdx) const { return fColorStages[stageIdx]; }
426 const GrEffectStage& getCoverageStage(int stageIdx) const { return fCoverageStages[stageIdx]; }
428 /**
429 * Checks whether any of the effects will read the dst pixel color.
430 */
431 bool willEffectReadDstColor() const;
433 /// @}
435 ///////////////////////////////////////////////////////////////////////////
436 /// @name Blending
437 ////
439 /**
440 * Sets the blending function coefficients.
441 *
442 * The blend function will be:
443 * D' = sat(S*srcCoef + D*dstCoef)
444 *
445 * where D is the existing destination color, S is the incoming source
446 * color, and D' is the new destination color that will be written. sat()
447 * is the saturation function.
448 *
449 * @param srcCoef coefficient applied to the src color.
450 * @param dstCoef coefficient applied to the dst color.
451 */
452 void setBlendFunc(GrBlendCoeff srcCoeff, GrBlendCoeff dstCoeff) {
453 fCommon.fSrcBlend = srcCoeff;
454 fCommon.fDstBlend = dstCoeff;
455 #ifdef SK_DEBUG
456 if (GrBlendCoeffRefsDst(dstCoeff)) {
457 GrPrintf("Unexpected dst blend coeff. Won't work correctly with coverage stages.\n");
458 }
459 if (GrBlendCoeffRefsSrc(srcCoeff)) {
460 GrPrintf("Unexpected src blend coeff. Won't work correctly with coverage stages.\n");
461 }
462 #endif
463 }
465 GrBlendCoeff getSrcBlendCoeff() const { return fCommon.fSrcBlend; }
466 GrBlendCoeff getDstBlendCoeff() const { return fCommon.fDstBlend; }
468 void getDstBlendCoeff(GrBlendCoeff* srcBlendCoeff,
469 GrBlendCoeff* dstBlendCoeff) const {
470 *srcBlendCoeff = fCommon.fSrcBlend;
471 *dstBlendCoeff = fCommon.fDstBlend;
472 }
474 /**
475 * Sets the blending function constant referenced by the following blending
476 * coefficients:
477 * kConstC_GrBlendCoeff
478 * kIConstC_GrBlendCoeff
479 * kConstA_GrBlendCoeff
480 * kIConstA_GrBlendCoeff
481 *
482 * @param constant the constant to set
483 */
484 void setBlendConstant(GrColor constant) { fCommon.fBlendConstant = constant; }
486 /**
487 * Retrieves the last value set by setBlendConstant()
488 * @return the blending constant value
489 */
490 GrColor getBlendConstant() const { return fCommon.fBlendConstant; }
492 /**
493 * Determines whether multiplying the computed per-pixel color by the pixel's fractional
494 * coverage before the blend will give the correct final destination color. In general it
495 * will not as coverage is applied after blending.
496 */
497 bool canTweakAlphaForCoverage() const;
499 /**
500 * Optimizations for blending / coverage to that can be applied based on the current state.
501 */
502 enum BlendOptFlags {
503 /**
504 * No optimization
505 */
506 kNone_BlendOpt = 0,
507 /**
508 * Don't draw at all
509 */
510 kSkipDraw_BlendOptFlag = 0x1,
511 /**
512 * Emit the src color, disable HW blending (replace dst with src)
513 */
514 kDisableBlend_BlendOptFlag = 0x2,
515 /**
516 * The coverage value does not have to be computed separately from alpha, the the output
517 * color can be the modulation of the two.
518 */
519 kCoverageAsAlpha_BlendOptFlag = 0x4,
520 /**
521 * Instead of emitting a src color, emit coverage in the alpha channel and r,g,b are
522 * "don't cares".
523 */
524 kEmitCoverage_BlendOptFlag = 0x8,
525 /**
526 * Emit transparent black instead of the src color, no need to compute coverage.
527 */
528 kEmitTransBlack_BlendOptFlag = 0x10,
529 };
530 GR_DECL_BITFIELD_OPS_FRIENDS(BlendOptFlags);
532 /**
533 * Determines what optimizations can be applied based on the blend. The coefficients may have
534 * to be tweaked in order for the optimization to work. srcCoeff and dstCoeff are optional
535 * params that receive the tweaked coefficients. Normally the function looks at the current
536 * state to see if coverage is enabled. By setting forceCoverage the caller can speculatively
537 * determine the blend optimizations that would be used if there was partial pixel coverage.
538 *
539 * Subclasses of GrDrawTarget that actually draw (as opposed to those that just buffer for
540 * playback) must call this function and respect the flags that replace the output color.
541 */
542 BlendOptFlags getBlendOpts(bool forceCoverage = false,
543 GrBlendCoeff* srcCoeff = NULL,
544 GrBlendCoeff* dstCoeff = NULL) const;
546 /// @}
548 ///////////////////////////////////////////////////////////////////////////
549 /// @name View Matrix
550 ////
552 /**
553 * Sets the view matrix to identity and updates any installed effects to compensate for the
554 * coord system change.
555 */
556 bool setIdentityViewMatrix();
558 /**
559 * Retrieves the current view matrix
560 * @return the current view matrix.
561 */
562 const SkMatrix& getViewMatrix() const { return fCommon.fViewMatrix; }
564 /**
565 * Retrieves the inverse of the current view matrix.
566 *
567 * If the current view matrix is invertible, return true, and if matrix
568 * is non-null, copy the inverse into it. If the current view matrix is
569 * non-invertible, return false and ignore the matrix parameter.
570 *
571 * @param matrix if not null, will receive a copy of the current inverse.
572 */
573 bool getViewInverse(SkMatrix* matrix) const {
574 // TODO: determine whether we really need to leave matrix unmodified
575 // at call sites when inversion fails.
576 SkMatrix inverse;
577 if (fCommon.fViewMatrix.invert(&inverse)) {
578 if (matrix) {
579 *matrix = inverse;
580 }
581 return true;
582 }
583 return false;
584 }
586 ////////////////////////////////////////////////////////////////////////////
588 /**
589 * Preconcats the current view matrix and restores the previous view matrix in the destructor.
590 * Effect matrices are automatically adjusted to compensate and adjusted back in the destructor.
591 */
592 class AutoViewMatrixRestore : public ::SkNoncopyable {
593 public:
594 AutoViewMatrixRestore() : fDrawState(NULL) {}
596 AutoViewMatrixRestore(GrDrawState* ds, const SkMatrix& preconcatMatrix) {
597 fDrawState = NULL;
598 this->set(ds, preconcatMatrix);
599 }
601 ~AutoViewMatrixRestore() { this->restore(); }
603 /**
604 * Can be called prior to destructor to restore the original matrix.
605 */
606 void restore();
608 void set(GrDrawState* drawState, const SkMatrix& preconcatMatrix);
610 /** Sets the draw state's matrix to identity. This can fail because the current view matrix
611 is not invertible. */
612 bool setIdentity(GrDrawState* drawState);
614 private:
615 void doEffectCoordChanges(const SkMatrix& coordChangeMatrix);
617 GrDrawState* fDrawState;
618 SkMatrix fViewMatrix;
619 int fNumColorStages;
620 SkAutoSTArray<8, GrEffectStage::SavedCoordChange> fSavedCoordChanges;
621 };
623 /// @}
625 ///////////////////////////////////////////////////////////////////////////
626 /// @name Render Target
627 ////
629 /**
630 * Sets the render-target used at the next drawing call
631 *
632 * @param target The render target to set.
633 */
634 void setRenderTarget(GrRenderTarget* target) {
635 fRenderTarget.reset(SkSafeRef(target));
636 }
638 /**
639 * Retrieves the currently set render-target.
640 *
641 * @return The currently set render target.
642 */
643 const GrRenderTarget* getRenderTarget() const { return fRenderTarget.get(); }
644 GrRenderTarget* getRenderTarget() { return fRenderTarget.get(); }
646 class AutoRenderTargetRestore : public ::SkNoncopyable {
647 public:
648 AutoRenderTargetRestore() : fDrawState(NULL), fSavedTarget(NULL) {}
649 AutoRenderTargetRestore(GrDrawState* ds, GrRenderTarget* newTarget) {
650 fDrawState = NULL;
651 fSavedTarget = NULL;
652 this->set(ds, newTarget);
653 }
654 ~AutoRenderTargetRestore() { this->restore(); }
656 void restore() {
657 if (NULL != fDrawState) {
658 fDrawState->setRenderTarget(fSavedTarget);
659 fDrawState = NULL;
660 }
661 SkSafeSetNull(fSavedTarget);
662 }
664 void set(GrDrawState* ds, GrRenderTarget* newTarget) {
665 this->restore();
667 if (NULL != ds) {
668 SkASSERT(NULL == fSavedTarget);
669 fSavedTarget = ds->getRenderTarget();
670 SkSafeRef(fSavedTarget);
671 ds->setRenderTarget(newTarget);
672 fDrawState = ds;
673 }
674 }
675 private:
676 GrDrawState* fDrawState;
677 GrRenderTarget* fSavedTarget;
678 };
680 /// @}
682 ///////////////////////////////////////////////////////////////////////////
683 /// @name Stencil
684 ////
686 /**
687 * Sets the stencil settings to use for the next draw.
688 * Changing the clip has the side-effect of possibly zeroing
689 * out the client settable stencil bits. So multipass algorithms
690 * using stencil should not change the clip between passes.
691 * @param settings the stencil settings to use.
692 */
693 void setStencil(const GrStencilSettings& settings) {
694 fCommon.fStencilSettings = settings;
695 }
697 /**
698 * Shortcut to disable stencil testing and ops.
699 */
700 void disableStencil() {
701 fCommon.fStencilSettings.setDisabled();
702 }
704 const GrStencilSettings& getStencil() const { return fCommon.fStencilSettings; }
706 GrStencilSettings* stencil() { return &fCommon.fStencilSettings; }
708 /// @}
710 ///////////////////////////////////////////////////////////////////////////
711 /// @name State Flags
712 ////
714 /**
715 * Flags that affect rendering. Controlled using enable/disableState(). All
716 * default to disabled.
717 */
718 enum StateBits {
719 /**
720 * Perform dithering. TODO: Re-evaluate whether we need this bit
721 */
722 kDither_StateBit = 0x01,
723 /**
724 * Perform HW anti-aliasing. This means either HW FSAA, if supported by the render target,
725 * or smooth-line rendering if a line primitive is drawn and line smoothing is supported by
726 * the 3D API.
727 */
728 kHWAntialias_StateBit = 0x02,
729 /**
730 * Draws will respect the clip, otherwise the clip is ignored.
731 */
732 kClip_StateBit = 0x04,
733 /**
734 * Disables writing to the color buffer. Useful when performing stencil
735 * operations.
736 */
737 kNoColorWrites_StateBit = 0x08,
739 /**
740 * Usually coverage is applied after color blending. The color is blended using the coeffs
741 * specified by setBlendFunc(). The blended color is then combined with dst using coeffs
742 * of src_coverage, 1-src_coverage. Sometimes we are explicitly drawing a coverage mask. In
743 * this case there is no distinction between coverage and color and the caller needs direct
744 * control over the blend coeffs. When set, there will be a single blend step controlled by
745 * setBlendFunc() which will use coverage*color as the src color.
746 */
747 kCoverageDrawing_StateBit = 0x10,
749 // Users of the class may add additional bits to the vector
750 kDummyStateBit,
751 kLastPublicStateBit = kDummyStateBit-1,
752 };
754 void resetStateFlags() {
755 fCommon.fFlagBits = 0;
756 }
758 /**
759 * Enable render state settings.
760 *
761 * @param stateBits bitfield of StateBits specifying the states to enable
762 */
763 void enableState(uint32_t stateBits) {
764 fCommon.fFlagBits |= stateBits;
765 }
767 /**
768 * Disable render state settings.
769 *
770 * @param stateBits bitfield of StateBits specifying the states to disable
771 */
772 void disableState(uint32_t stateBits) {
773 fCommon.fFlagBits &= ~(stateBits);
774 }
776 /**
777 * Enable or disable stateBits based on a boolean.
778 *
779 * @param stateBits bitfield of StateBits to enable or disable
780 * @param enable if true enable stateBits, otherwise disable
781 */
782 void setState(uint32_t stateBits, bool enable) {
783 if (enable) {
784 this->enableState(stateBits);
785 } else {
786 this->disableState(stateBits);
787 }
788 }
790 bool isDitherState() const {
791 return 0 != (fCommon.fFlagBits & kDither_StateBit);
792 }
794 bool isHWAntialiasState() const {
795 return 0 != (fCommon.fFlagBits & kHWAntialias_StateBit);
796 }
798 bool isClipState() const {
799 return 0 != (fCommon.fFlagBits & kClip_StateBit);
800 }
802 bool isColorWriteDisabled() const {
803 return 0 != (fCommon.fFlagBits & kNoColorWrites_StateBit);
804 }
806 bool isCoverageDrawing() const {
807 return 0 != (fCommon.fFlagBits & kCoverageDrawing_StateBit);
808 }
810 bool isStateFlagEnabled(uint32_t stateBit) const {
811 return 0 != (stateBit & fCommon.fFlagBits);
812 }
814 /// @}
816 ///////////////////////////////////////////////////////////////////////////
817 /// @name Face Culling
818 ////
820 enum DrawFace {
821 kInvalid_DrawFace = -1,
823 kBoth_DrawFace,
824 kCCW_DrawFace,
825 kCW_DrawFace,
826 };
828 /**
829 * Controls whether clockwise, counterclockwise, or both faces are drawn.
830 * @param face the face(s) to draw.
831 */
832 void setDrawFace(DrawFace face) {
833 SkASSERT(kInvalid_DrawFace != face);
834 fCommon.fDrawFace = face;
835 }
837 /**
838 * Gets whether the target is drawing clockwise, counterclockwise,
839 * or both faces.
840 * @return the current draw face(s).
841 */
842 DrawFace getDrawFace() const { return fCommon.fDrawFace; }
844 /// @}
846 ///////////////////////////////////////////////////////////////////////////
848 bool operator ==(const GrDrawState& s) const {
849 if (fRenderTarget.get() != s.fRenderTarget.get() ||
850 fColorStages.count() != s.fColorStages.count() ||
851 fCoverageStages.count() != s.fCoverageStages.count() ||
852 fCommon != s.fCommon) {
853 return false;
854 }
855 for (int i = 0; i < fColorStages.count(); i++) {
856 if (fColorStages[i] != s.fColorStages[i]) {
857 return false;
858 }
859 }
860 for (int i = 0; i < fCoverageStages.count(); i++) {
861 if (fCoverageStages[i] != s.fCoverageStages[i]) {
862 return false;
863 }
864 }
865 return true;
866 }
867 bool operator !=(const GrDrawState& s) const { return !(*this == s); }
869 GrDrawState& operator= (const GrDrawState& s) {
870 SkASSERT(0 == fBlockEffectRemovalCnt || 0 == this->numTotalStages());
871 this->setRenderTarget(s.fRenderTarget.get());
872 fCommon = s.fCommon;
873 fColorStages = s.fColorStages;
874 fCoverageStages = s.fCoverageStages;
875 return *this;
876 }
878 private:
880 void onReset(const SkMatrix* initialViewMatrix) {
881 SkASSERT(0 == fBlockEffectRemovalCnt || 0 == this->numTotalStages());
882 fColorStages.reset();
883 fCoverageStages.reset();
885 fRenderTarget.reset(NULL);
887 this->setDefaultVertexAttribs();
889 fCommon.fColor = 0xffffffff;
890 if (NULL == initialViewMatrix) {
891 fCommon.fViewMatrix.reset();
892 } else {
893 fCommon.fViewMatrix = *initialViewMatrix;
894 }
895 fCommon.fSrcBlend = kOne_GrBlendCoeff;
896 fCommon.fDstBlend = kZero_GrBlendCoeff;
897 fCommon.fBlendConstant = 0x0;
898 fCommon.fFlagBits = 0x0;
899 fCommon.fStencilSettings.setDisabled();
900 fCommon.fCoverage = 0xffffffff;
901 fCommon.fDrawFace = kBoth_DrawFace;
902 }
904 /** Fields that are identical in GrDrawState and GrDrawState::DeferredState. */
905 struct CommonState {
906 // These fields are roughly sorted by decreasing likelihood of being different in op==
907 GrColor fColor;
908 SkMatrix fViewMatrix;
909 GrBlendCoeff fSrcBlend;
910 GrBlendCoeff fDstBlend;
911 GrColor fBlendConstant;
912 uint32_t fFlagBits;
913 const GrVertexAttrib* fVAPtr;
914 int fVACount;
915 GrStencilSettings fStencilSettings;
916 GrColor fCoverage;
917 DrawFace fDrawFace;
919 // This is simply a different representation of info in fVertexAttribs and thus does
920 // not need to be compared in op==.
921 int fFixedFunctionVertexAttribIndices[kGrFixedFunctionVertexAttribBindingCnt];
923 bool operator== (const CommonState& other) const {
924 bool result = fColor == other.fColor &&
925 fViewMatrix.cheapEqualTo(other.fViewMatrix) &&
926 fSrcBlend == other.fSrcBlend &&
927 fDstBlend == other.fDstBlend &&
928 fBlendConstant == other.fBlendConstant &&
929 fFlagBits == other.fFlagBits &&
930 fVACount == other.fVACount &&
931 !memcmp(fVAPtr, other.fVAPtr, fVACount * sizeof(GrVertexAttrib)) &&
932 fStencilSettings == other.fStencilSettings &&
933 fCoverage == other.fCoverage &&
934 fDrawFace == other.fDrawFace;
935 SkASSERT(!result || 0 == memcmp(fFixedFunctionVertexAttribIndices,
936 other.fFixedFunctionVertexAttribIndices,
937 sizeof(fFixedFunctionVertexAttribIndices)));
938 return result;
939 }
940 bool operator!= (const CommonState& other) const { return !(*this == other); }
941 };
943 /** GrDrawState uses GrEffectStages to hold stage state which holds a ref on GrEffectRef.
944 DeferredState must directly reference GrEffects, however. */
945 struct SavedEffectStage {
946 SavedEffectStage() : fEffect(NULL) {}
947 const GrEffect* fEffect;
948 GrEffectStage::SavedCoordChange fCoordChange;
949 };
951 public:
952 /**
953 * DeferredState contains all of the data of a GrDrawState but does not hold refs on GrResource
954 * objects. Resources are allowed to hit zero ref count while in DeferredStates. Their internal
955 * dispose mechanism returns them to the cache. This allows recycling resources through the
956 * the cache while they are in a deferred draw queue.
957 */
958 class DeferredState {
959 public:
960 DeferredState() : fRenderTarget(NULL) {
961 SkDEBUGCODE(fInitialized = false;)
962 }
963 // TODO: Remove this when DeferredState no longer holds a ref to the RT
964 ~DeferredState() { SkSafeUnref(fRenderTarget); }
966 void saveFrom(const GrDrawState& drawState) {
967 fCommon = drawState.fCommon;
968 // TODO: Here we will copy the GrRenderTarget pointer without taking a ref.
969 fRenderTarget = drawState.fRenderTarget.get();
970 SkSafeRef(fRenderTarget);
971 // Here we ref the effects directly rather than the effect-refs. TODO: When the effect-
972 // ref gets fully unref'ed it will cause the underlying effect to unref its resources
973 // and recycle them to the cache (if no one else is holding a ref to the resources).
974 fStages.reset(drawState.fColorStages.count() + drawState.fCoverageStages.count());
975 fColorStageCnt = drawState.fColorStages.count();
976 for (int i = 0; i < fColorStageCnt; ++i) {
977 fStages[i].saveFrom(drawState.fColorStages[i]);
978 }
979 for (int i = 0; i < drawState.fCoverageStages.count(); ++i) {
980 fStages[i + fColorStageCnt].saveFrom(drawState.fCoverageStages[i]);
981 }
982 SkDEBUGCODE(fInitialized = true;)
983 }
985 void restoreTo(GrDrawState* drawState) {
986 SkASSERT(fInitialized);
987 drawState->fCommon = fCommon;
988 drawState->setRenderTarget(fRenderTarget);
989 // reinflate color/cov stage arrays.
990 drawState->fColorStages.reset();
991 for (int i = 0; i < fColorStageCnt; ++i) {
992 SkNEW_APPEND_TO_TARRAY(&drawState->fColorStages, GrEffectStage, (fStages[i]));
993 }
994 int coverageStageCnt = fStages.count() - fColorStageCnt;
995 drawState->fCoverageStages.reset();
996 for (int i = 0; i < coverageStageCnt; ++i) {
997 SkNEW_APPEND_TO_TARRAY(&drawState->fCoverageStages,
998 GrEffectStage, (fStages[i + fColorStageCnt]));
999 }
1000 }
1002 bool isEqual(const GrDrawState& state) const {
1003 int numCoverageStages = fStages.count() - fColorStageCnt;
1004 if (fRenderTarget != state.fRenderTarget.get() ||
1005 fColorStageCnt != state.fColorStages.count() ||
1006 numCoverageStages != state.fCoverageStages.count() ||
1007 fCommon != state.fCommon) {
1008 return false;
1009 }
1010 bool explicitLocalCoords = state.hasLocalCoordAttribute();
1011 for (int i = 0; i < fColorStageCnt; ++i) {
1012 if (!fStages[i].isEqual(state.fColorStages[i], explicitLocalCoords)) {
1013 return false;
1014 }
1015 }
1016 for (int i = 0; i < numCoverageStages; ++i) {
1017 int s = fColorStageCnt + i;
1018 if (!fStages[s].isEqual(state.fCoverageStages[i], explicitLocalCoords)) {
1019 return false;
1020 }
1021 }
1022 return true;
1023 }
1025 private:
1026 typedef SkAutoSTArray<8, GrEffectStage::DeferredStage> DeferredStageArray;
1028 GrRenderTarget* fRenderTarget;
1029 CommonState fCommon;
1030 int fColorStageCnt;
1031 DeferredStageArray fStages;
1033 SkDEBUGCODE(bool fInitialized;)
1034 };
1036 private:
1038 SkAutoTUnref<GrRenderTarget> fRenderTarget;
1039 CommonState fCommon;
1041 typedef SkSTArray<4, GrEffectStage> EffectStageArray;
1042 EffectStageArray fColorStages;
1043 EffectStageArray fCoverageStages;
1045 // Some of the auto restore objects assume that no effects are removed during their lifetime.
1046 // This is used to assert that this condition holds.
1047 SkDEBUGCODE(int fBlockEffectRemovalCnt;)
1049 /**
1050 * Sets vertex attributes for next draw.
1051 *
1052 * @param attribs the array of vertex attributes to set.
1053 * @param count the number of attributes being set, limited to kMaxVertexAttribCnt.
1054 */
1055 void setVertexAttribs(const GrVertexAttrib attribs[], int count);
1057 typedef SkRefCnt INHERITED;
1058 };
1060 GR_MAKE_BITFIELD_OPS(GrDrawState::BlendOptFlags);
1062 #endif