gfx/skia/trunk/src/pathops/SkDCubicLineIntersection.cpp

Sat, 03 Jan 2015 20:18:00 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Sat, 03 Jan 2015 20:18:00 +0100
branch
TOR_BUG_3246
changeset 7
129ffea94266
permissions
-rw-r--r--

Conditionally enable double key logic according to:
private browsing mode or privacy.thirdparty.isolate preference and
implement in GetCookieStringCommon and FindCookie where it counts...
With some reservations of how to convince FindCookie users to test
condition and pass a nullptr when disabling double key logic.

     1 /*
     2  * Copyright 2012 Google Inc.
     3  *
     4  * Use of this source code is governed by a BSD-style license that can be
     5  * found in the LICENSE file.
     6  */
     7 #include "SkIntersections.h"
     8 #include "SkPathOpsCubic.h"
     9 #include "SkPathOpsLine.h"
    11 /*
    12 Find the interection of a line and cubic by solving for valid t values.
    14 Analogous to line-quadratic intersection, solve line-cubic intersection by
    15 representing the cubic as:
    16   x = a(1-t)^3 + 2b(1-t)^2t + c(1-t)t^2 + dt^3
    17   y = e(1-t)^3 + 2f(1-t)^2t + g(1-t)t^2 + ht^3
    18 and the line as:
    19   y = i*x + j  (if the line is more horizontal)
    20 or:
    21   x = i*y + j  (if the line is more vertical)
    23 Then using Mathematica, solve for the values of t where the cubic intersects the
    24 line:
    26   (in) Resultant[
    27         a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - x,
    28         e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - i*x - j, x]
    29   (out) -e     +   j     +
    30        3 e t   - 3 f t   -
    31        3 e t^2 + 6 f t^2 - 3 g t^2 +
    32          e t^3 - 3 f t^3 + 3 g t^3 - h t^3 +
    33      i ( a     -
    34        3 a t + 3 b t +
    35        3 a t^2 - 6 b t^2 + 3 c t^2 -
    36          a t^3 + 3 b t^3 - 3 c t^3 + d t^3 )
    38 if i goes to infinity, we can rewrite the line in terms of x. Mathematica:
    40   (in) Resultant[
    41         a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - i*y - j,
    42         e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y,       y]
    43   (out)  a     -   j     -
    44        3 a t   + 3 b t   +
    45        3 a t^2 - 6 b t^2 + 3 c t^2 -
    46          a t^3 + 3 b t^3 - 3 c t^3 + d t^3 -
    47      i ( e     -
    48        3 e t   + 3 f t   +
    49        3 e t^2 - 6 f t^2 + 3 g t^2 -
    50          e t^3 + 3 f t^3 - 3 g t^3 + h t^3 )
    52 Solving this with Mathematica produces an expression with hundreds of terms;
    53 instead, use Numeric Solutions recipe to solve the cubic.
    55 The near-horizontal case, in terms of:  Ax^3 + Bx^2 + Cx + D == 0
    56     A =   (-(-e + 3*f - 3*g + h) + i*(-a + 3*b - 3*c + d)     )
    57     B = 3*(-( e - 2*f +   g    ) + i*( a - 2*b +   c    )     )
    58     C = 3*(-(-e +   f          ) + i*(-a +   b          )     )
    59     D =   (-( e                ) + i*( a                ) + j )
    61 The near-vertical case, in terms of:  Ax^3 + Bx^2 + Cx + D == 0
    62     A =   ( (-a + 3*b - 3*c + d) - i*(-e + 3*f - 3*g + h)     )
    63     B = 3*( ( a - 2*b +   c    ) - i*( e - 2*f +   g    )     )
    64     C = 3*( (-a +   b          ) - i*(-e +   f          )     )
    65     D =   ( ( a                ) - i*( e                ) - j )
    67 For horizontal lines:
    68 (in) Resultant[
    69       a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - j,
    70       e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y, y]
    71 (out)  e     -   j     -
    72      3 e t   + 3 f t   +
    73      3 e t^2 - 6 f t^2 + 3 g t^2 -
    74        e t^3 + 3 f t^3 - 3 g t^3 + h t^3
    75  */
    77 class LineCubicIntersections {
    78 public:
    79     enum PinTPoint {
    80         kPointUninitialized,
    81         kPointInitialized
    82     };
    84     LineCubicIntersections(const SkDCubic& c, const SkDLine& l, SkIntersections* i)
    85         : fCubic(c)
    86         , fLine(l)
    87         , fIntersections(i)
    88         , fAllowNear(true) {
    89         i->setMax(3);
    90     }
    92     void allowNear(bool allow) {
    93         fAllowNear = allow;
    94     }
    96     // see parallel routine in line quadratic intersections
    97     int intersectRay(double roots[3]) {
    98         double adj = fLine[1].fX - fLine[0].fX;
    99         double opp = fLine[1].fY - fLine[0].fY;
   100         SkDCubic r;
   101         for (int n = 0; n < 4; ++n) {
   102             r[n].fX = (fCubic[n].fY - fLine[0].fY) * adj - (fCubic[n].fX - fLine[0].fX) * opp;
   103         }
   104         double A, B, C, D;
   105         SkDCubic::Coefficients(&r[0].fX, &A, &B, &C, &D);
   106         return SkDCubic::RootsValidT(A, B, C, D, roots);
   107     }
   109     int intersect() {
   110         addExactEndPoints();
   111         if (fAllowNear) {
   112             addNearEndPoints();
   113         }
   114         double rootVals[3];
   115         int roots = intersectRay(rootVals);
   116         for (int index = 0; index < roots; ++index) {
   117             double cubicT = rootVals[index];
   118             double lineT = findLineT(cubicT);
   119             SkDPoint pt;
   120             if (pinTs(&cubicT, &lineT, &pt, kPointUninitialized)) {
   121     #if ONE_OFF_DEBUG
   122                 SkDPoint cPt = fCubic.ptAtT(cubicT);
   123                 SkDebugf("%s pt=(%1.9g,%1.9g) cPt=(%1.9g,%1.9g)\n", __FUNCTION__, pt.fX, pt.fY,
   124                         cPt.fX, cPt.fY);
   125     #endif
   126                 for (int inner = 0; inner < fIntersections->used(); ++inner) {
   127                     if (fIntersections->pt(inner) != pt) {
   128                         continue;
   129                     }
   130                     double existingCubicT = (*fIntersections)[0][inner];
   131                     if (cubicT == existingCubicT) {
   132                         goto skipInsert;
   133                     }
   134                     // check if midway on cubic is also same point. If so, discard this
   135                     double cubicMidT = (existingCubicT + cubicT) / 2;
   136                     SkDPoint cubicMidPt = fCubic.ptAtT(cubicMidT);
   137                     if (cubicMidPt.approximatelyEqual(pt)) {
   138                         goto skipInsert;
   139                     }
   140                 }
   141                 fIntersections->insert(cubicT, lineT, pt);
   142         skipInsert:
   143                 ;
   144             }
   145         }
   146         return fIntersections->used();
   147     }
   149     int horizontalIntersect(double axisIntercept, double roots[3]) {
   150         double A, B, C, D;
   151         SkDCubic::Coefficients(&fCubic[0].fY, &A, &B, &C, &D);
   152         D -= axisIntercept;
   153         return SkDCubic::RootsValidT(A, B, C, D, roots);
   154     }
   156     int horizontalIntersect(double axisIntercept, double left, double right, bool flipped) {
   157         addExactHorizontalEndPoints(left, right, axisIntercept);
   158         if (fAllowNear) {
   159             addNearHorizontalEndPoints(left, right, axisIntercept);
   160         }
   161         double rootVals[3];
   162         int roots = horizontalIntersect(axisIntercept, rootVals);
   163         for (int index = 0; index < roots; ++index) {
   164             double cubicT = rootVals[index];
   165             SkDPoint pt = fCubic.ptAtT(cubicT);
   166             double lineT = (pt.fX - left) / (right - left);
   167             if (pinTs(&cubicT, &lineT, &pt, kPointInitialized)) {
   168                 fIntersections->insert(cubicT, lineT, pt);
   169             }
   170         }
   171         if (flipped) {
   172             fIntersections->flip();
   173         }
   174         return fIntersections->used();
   175     }
   177     int verticalIntersect(double axisIntercept, double roots[3]) {
   178         double A, B, C, D;
   179         SkDCubic::Coefficients(&fCubic[0].fX, &A, &B, &C, &D);
   180         D -= axisIntercept;
   181         return SkDCubic::RootsValidT(A, B, C, D, roots);
   182     }
   184     int verticalIntersect(double axisIntercept, double top, double bottom, bool flipped) {
   185         addExactVerticalEndPoints(top, bottom, axisIntercept);
   186         if (fAllowNear) {
   187             addNearVerticalEndPoints(top, bottom, axisIntercept);
   188         }
   189         double rootVals[3];
   190         int roots = verticalIntersect(axisIntercept, rootVals);
   191         for (int index = 0; index < roots; ++index) {
   192             double cubicT = rootVals[index];
   193             SkDPoint pt = fCubic.ptAtT(cubicT);
   194             double lineT = (pt.fY - top) / (bottom - top);
   195             if (pinTs(&cubicT, &lineT, &pt, kPointInitialized)) {
   196                 fIntersections->insert(cubicT, lineT, pt);
   197             }
   198         }
   199         if (flipped) {
   200             fIntersections->flip();
   201         }
   202         return fIntersections->used();
   203     }
   205     protected:
   207     void addExactEndPoints() {
   208         for (int cIndex = 0; cIndex < 4; cIndex += 3) {
   209             double lineT = fLine.exactPoint(fCubic[cIndex]);
   210             if (lineT < 0) {
   211                 continue;
   212             }
   213             double cubicT = (double) (cIndex >> 1);
   214             fIntersections->insert(cubicT, lineT, fCubic[cIndex]);
   215         }
   216     }
   218     /* Note that this does not look for endpoints of the line that are near the cubic.
   219        These points are found later when check ends looks for missing points */
   220     void addNearEndPoints() {
   221         for (int cIndex = 0; cIndex < 4; cIndex += 3) {
   222             double cubicT = (double) (cIndex >> 1);
   223             if (fIntersections->hasT(cubicT)) {
   224                 continue;
   225             }
   226             double lineT = fLine.nearPoint(fCubic[cIndex]);
   227             if (lineT < 0) {
   228                 continue;
   229             }
   230             fIntersections->insert(cubicT, lineT, fCubic[cIndex]);
   231         }
   232     }
   234     void addExactHorizontalEndPoints(double left, double right, double y) {
   235         for (int cIndex = 0; cIndex < 4; cIndex += 3) {
   236             double lineT = SkDLine::ExactPointH(fCubic[cIndex], left, right, y);
   237             if (lineT < 0) {
   238                 continue;
   239             }
   240             double cubicT = (double) (cIndex >> 1);
   241             fIntersections->insert(cubicT, lineT, fCubic[cIndex]);
   242         }
   243     }
   245     void addNearHorizontalEndPoints(double left, double right, double y) {
   246         for (int cIndex = 0; cIndex < 4; cIndex += 3) {
   247             double cubicT = (double) (cIndex >> 1);
   248             if (fIntersections->hasT(cubicT)) {
   249                 continue;
   250             }
   251             double lineT = SkDLine::NearPointH(fCubic[cIndex], left, right, y);
   252             if (lineT < 0) {
   253                 continue;
   254             }
   255             fIntersections->insert(cubicT, lineT, fCubic[cIndex]);
   256         }
   257         // FIXME: see if line end is nearly on cubic
   258     }
   260     void addExactVerticalEndPoints(double top, double bottom, double x) {
   261         for (int cIndex = 0; cIndex < 4; cIndex += 3) {
   262             double lineT = SkDLine::ExactPointV(fCubic[cIndex], top, bottom, x);
   263             if (lineT < 0) {
   264                 continue;
   265             }
   266             double cubicT = (double) (cIndex >> 1);
   267             fIntersections->insert(cubicT, lineT, fCubic[cIndex]);
   268         }
   269     }
   271     void addNearVerticalEndPoints(double top, double bottom, double x) {
   272         for (int cIndex = 0; cIndex < 4; cIndex += 3) {
   273             double cubicT = (double) (cIndex >> 1);
   274             if (fIntersections->hasT(cubicT)) {
   275                 continue;
   276             }
   277             double lineT = SkDLine::NearPointV(fCubic[cIndex], top, bottom, x);
   278             if (lineT < 0) {
   279                 continue;
   280             }
   281             fIntersections->insert(cubicT, lineT, fCubic[cIndex]);
   282         }
   283         // FIXME: see if line end is nearly on cubic
   284     }
   286     double findLineT(double t) {
   287         SkDPoint xy = fCubic.ptAtT(t);
   288         double dx = fLine[1].fX - fLine[0].fX;
   289         double dy = fLine[1].fY - fLine[0].fY;
   290         if (fabs(dx) > fabs(dy)) {
   291             return (xy.fX - fLine[0].fX) / dx;
   292         }
   293         return (xy.fY - fLine[0].fY) / dy;
   294     }
   296     bool pinTs(double* cubicT, double* lineT, SkDPoint* pt, PinTPoint ptSet) {
   297         if (!approximately_one_or_less(*lineT)) {
   298             return false;
   299         }
   300         if (!approximately_zero_or_more(*lineT)) {
   301             return false;
   302         }
   303         double cT = *cubicT = SkPinT(*cubicT);
   304         double lT = *lineT = SkPinT(*lineT);
   305         if (lT == 0 || lT == 1 || (ptSet == kPointUninitialized && cT != 0 && cT != 1)) {
   306             *pt = fLine.ptAtT(lT);
   307         } else if (ptSet == kPointUninitialized) {
   308             *pt = fCubic.ptAtT(cT);
   309         }
   310         SkPoint gridPt = pt->asSkPoint();
   311         if (gridPt == fLine[0].asSkPoint()) {
   312             *lineT = 0;
   313         } else if (gridPt == fLine[1].asSkPoint()) {
   314             *lineT = 1;
   315         }
   316         if (gridPt == fCubic[0].asSkPoint() && approximately_equal(*cubicT, 0)) {
   317             *cubicT = 0;
   318         } else if (gridPt == fCubic[3].asSkPoint() && approximately_equal(*cubicT, 1)) {
   319             *cubicT = 1;
   320         }
   321         return true;
   322     }
   324 private:
   325     const SkDCubic& fCubic;
   326     const SkDLine& fLine;
   327     SkIntersections* fIntersections;
   328     bool fAllowNear;
   329 };
   331 int SkIntersections::horizontal(const SkDCubic& cubic, double left, double right, double y,
   332         bool flipped) {
   333     SkDLine line = {{{ left, y }, { right, y }}};
   334     LineCubicIntersections c(cubic, line, this);
   335     return c.horizontalIntersect(y, left, right, flipped);
   336 }
   338 int SkIntersections::vertical(const SkDCubic& cubic, double top, double bottom, double x,
   339         bool flipped) {
   340     SkDLine line = {{{ x, top }, { x, bottom }}};
   341     LineCubicIntersections c(cubic, line, this);
   342     return c.verticalIntersect(x, top, bottom, flipped);
   343 }
   345 int SkIntersections::intersect(const SkDCubic& cubic, const SkDLine& line) {
   346     LineCubicIntersections c(cubic, line, this);
   347     c.allowNear(fAllowNear);
   348     return c.intersect();
   349 }
   351 int SkIntersections::intersectRay(const SkDCubic& cubic, const SkDLine& line) {
   352     LineCubicIntersections c(cubic, line, this);
   353     fUsed = c.intersectRay(fT[0]);
   354     for (int index = 0; index < fUsed; ++index) {
   355         fPt[index] = cubic.ptAtT(fT[0][index]);
   356     }
   357     return fUsed;
   358 }

mercurial