gfx/skia/trunk/src/pathops/SkDCubicToQuads.cpp

Sat, 03 Jan 2015 20:18:00 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Sat, 03 Jan 2015 20:18:00 +0100
branch
TOR_BUG_3246
changeset 7
129ffea94266
permissions
-rw-r--r--

Conditionally enable double key logic according to:
private browsing mode or privacy.thirdparty.isolate preference and
implement in GetCookieStringCommon and FindCookie where it counts...
With some reservations of how to convince FindCookie users to test
condition and pass a nullptr when disabling double key logic.

     1 /*
     2 http://stackoverflow.com/questions/2009160/how-do-i-convert-the-2-control-points-of-a-cubic-curve-to-the-single-control-poi
     3 */
     5 /*
     6 Let's call the control points of the cubic Q0..Q3 and the control points of the quadratic P0..P2.
     7 Then for degree elevation, the equations are:
     9 Q0 = P0
    10 Q1 = 1/3 P0 + 2/3 P1
    11 Q2 = 2/3 P1 + 1/3 P2
    12 Q3 = P2
    13 In your case you have Q0..Q3 and you're solving for P0..P2. There are two ways to compute P1 from
    14  the equations above:
    16 P1 = 3/2 Q1 - 1/2 Q0
    17 P1 = 3/2 Q2 - 1/2 Q3
    18 If this is a degree-elevated cubic, then both equations will give the same answer for P1. Since
    19  it's likely not, your best bet is to average them. So,
    21 P1 = -1/4 Q0 + 3/4 Q1 + 3/4 Q2 - 1/4 Q3
    24 SkDCubic defined by: P1/2 - anchor points, C1/C2 control points
    25 |x| is the euclidean norm of x
    26 mid-point approx of cubic: a quad that shares the same anchors with the cubic and has the
    27  control point at C = (3·C2 - P2 + 3·C1 - P1)/4
    29 Algorithm
    31 pick an absolute precision (prec)
    32 Compute the Tdiv as the root of (cubic) equation
    33 sqrt(3)/18 · |P2 - 3·C2 + 3·C1 - P1|/2 · Tdiv ^ 3 = prec
    34 if Tdiv < 0.5 divide the cubic at Tdiv. First segment [0..Tdiv] can be approximated with by a
    35  quadratic, with a defect less than prec, by the mid-point approximation.
    36  Repeat from step 2 with the second resulted segment (corresponding to 1-Tdiv)
    37 0.5<=Tdiv<1 - simply divide the cubic in two. The two halves can be approximated by the mid-point
    38  approximation
    39 Tdiv>=1 - the entire cubic can be approximated by the mid-point approximation
    41 confirmed by (maybe stolen from)
    42 http://www.caffeineowl.com/graphics/2d/vectorial/cubic2quad01.html
    43 // maybe in turn derived from  http://www.cccg.ca/proceedings/2004/36.pdf
    44 // also stored at http://www.cis.usouthal.edu/~hain/general/Publications/Bezier/bezier%20cccg04%20paper.pdf
    46 */
    48 #include "SkPathOpsCubic.h"
    49 #include "SkPathOpsLine.h"
    50 #include "SkPathOpsQuad.h"
    51 #include "SkReduceOrder.h"
    52 #include "SkTArray.h"
    53 #include "SkTSort.h"
    55 #define USE_CUBIC_END_POINTS 1
    57 static double calc_t_div(const SkDCubic& cubic, double precision, double start) {
    58     const double adjust = sqrt(3.) / 36;
    59     SkDCubic sub;
    60     const SkDCubic* cPtr;
    61     if (start == 0) {
    62         cPtr = &cubic;
    63     } else {
    64         // OPTIMIZE: special-case half-split ?
    65         sub = cubic.subDivide(start, 1);
    66         cPtr = &sub;
    67     }
    68     const SkDCubic& c = *cPtr;
    69     double dx = c[3].fX - 3 * (c[2].fX - c[1].fX) - c[0].fX;
    70     double dy = c[3].fY - 3 * (c[2].fY - c[1].fY) - c[0].fY;
    71     double dist = sqrt(dx * dx + dy * dy);
    72     double tDiv3 = precision / (adjust * dist);
    73     double t = SkDCubeRoot(tDiv3);
    74     if (start > 0) {
    75         t = start + (1 - start) * t;
    76     }
    77     return t;
    78 }
    80 SkDQuad SkDCubic::toQuad() const {
    81     SkDQuad quad;
    82     quad[0] = fPts[0];
    83     const SkDPoint fromC1 = {(3 * fPts[1].fX - fPts[0].fX) / 2, (3 * fPts[1].fY - fPts[0].fY) / 2};
    84     const SkDPoint fromC2 = {(3 * fPts[2].fX - fPts[3].fX) / 2, (3 * fPts[2].fY - fPts[3].fY) / 2};
    85     quad[1].fX = (fromC1.fX + fromC2.fX) / 2;
    86     quad[1].fY = (fromC1.fY + fromC2.fY) / 2;
    87     quad[2] = fPts[3];
    88     return quad;
    89 }
    91 static bool add_simple_ts(const SkDCubic& cubic, double precision, SkTArray<double, true>* ts) {
    92     double tDiv = calc_t_div(cubic, precision, 0);
    93     if (tDiv >= 1) {
    94         return true;
    95     }
    96     if (tDiv >= 0.5) {
    97         ts->push_back(0.5);
    98         return true;
    99     }
   100     return false;
   101 }
   103 static void addTs(const SkDCubic& cubic, double precision, double start, double end,
   104         SkTArray<double, true>* ts) {
   105     double tDiv = calc_t_div(cubic, precision, 0);
   106     double parts = ceil(1.0 / tDiv);
   107     for (double index = 0; index < parts; ++index) {
   108         double newT = start + (index / parts) * (end - start);
   109         if (newT > 0 && newT < 1) {
   110             ts->push_back(newT);
   111         }
   112     }
   113 }
   115 // flavor that returns T values only, deferring computing the quads until they are needed
   116 // FIXME: when called from recursive intersect 2, this could take the original cubic
   117 // and do a more precise job when calling chop at and sub divide by computing the fractional ts.
   118 // it would still take the prechopped cubic for reduce order and find cubic inflections
   119 void SkDCubic::toQuadraticTs(double precision, SkTArray<double, true>* ts) const {
   120     SkReduceOrder reducer;
   121     int order = reducer.reduce(*this, SkReduceOrder::kAllow_Quadratics);
   122     if (order < 3) {
   123         return;
   124     }
   125     double inflectT[5];
   126     int inflections = findInflections(inflectT);
   127     SkASSERT(inflections <= 2);
   128     if (!endsAreExtremaInXOrY()) {
   129         inflections += findMaxCurvature(&inflectT[inflections]);
   130         SkASSERT(inflections <= 5);
   131     }
   132     SkTQSort<double>(inflectT, &inflectT[inflections - 1]);
   133     // OPTIMIZATION: is this filtering common enough that it needs to be pulled out into its
   134     // own subroutine?
   135     while (inflections && approximately_less_than_zero(inflectT[0])) {
   136         memmove(inflectT, &inflectT[1], sizeof(inflectT[0]) * --inflections);
   137     }
   138     int start = 0;
   139     int next = 1;
   140     while (next < inflections) {
   141         if (!approximately_equal(inflectT[start], inflectT[next])) {
   142             ++start;
   143         ++next;
   144             continue;
   145         }
   146         memmove(&inflectT[start], &inflectT[next], sizeof(inflectT[0]) * (--inflections - start));
   147     }
   149     while (inflections && approximately_greater_than_one(inflectT[inflections - 1])) {
   150         --inflections;
   151     }
   152     SkDCubicPair pair;
   153     if (inflections == 1) {
   154         pair = chopAt(inflectT[0]);
   155         int orderP1 = reducer.reduce(pair.first(), SkReduceOrder::kNo_Quadratics);
   156         if (orderP1 < 2) {
   157             --inflections;
   158         } else {
   159             int orderP2 = reducer.reduce(pair.second(), SkReduceOrder::kNo_Quadratics);
   160             if (orderP2 < 2) {
   161                 --inflections;
   162             }
   163         }
   164     }
   165     if (inflections == 0 && add_simple_ts(*this, precision, ts)) {
   166         return;
   167     }
   168     if (inflections == 1) {
   169         pair = chopAt(inflectT[0]);
   170         addTs(pair.first(), precision, 0, inflectT[0], ts);
   171         addTs(pair.second(), precision, inflectT[0], 1, ts);
   172         return;
   173     }
   174     if (inflections > 1) {
   175         SkDCubic part = subDivide(0, inflectT[0]);
   176         addTs(part, precision, 0, inflectT[0], ts);
   177         int last = inflections - 1;
   178         for (int idx = 0; idx < last; ++idx) {
   179             part = subDivide(inflectT[idx], inflectT[idx + 1]);
   180             addTs(part, precision, inflectT[idx], inflectT[idx + 1], ts);
   181         }
   182         part = subDivide(inflectT[last], 1);
   183         addTs(part, precision, inflectT[last], 1, ts);
   184         return;
   185     }
   186     addTs(*this, precision, 0, 1, ts);
   187 }

mercurial