gfx/skia/trunk/src/pathops/SkPathOpsLine.cpp

Sat, 03 Jan 2015 20:18:00 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Sat, 03 Jan 2015 20:18:00 +0100
branch
TOR_BUG_3246
changeset 7
129ffea94266
permissions
-rw-r--r--

Conditionally enable double key logic according to:
private browsing mode or privacy.thirdparty.isolate preference and
implement in GetCookieStringCommon and FindCookie where it counts...
With some reservations of how to convince FindCookie users to test
condition and pass a nullptr when disabling double key logic.

     1 /*
     2  * Copyright 2012 Google Inc.
     3  *
     4  * Use of this source code is governed by a BSD-style license that can be
     5  * found in the LICENSE file.
     6  */
     7 #include "SkPathOpsLine.h"
     9 SkDLine SkDLine::subDivide(double t1, double t2) const {
    10     SkDVector delta = tangent();
    11     SkDLine dst = {{{
    12             fPts[0].fX - t1 * delta.fX, fPts[0].fY - t1 * delta.fY}, {
    13             fPts[0].fX - t2 * delta.fX, fPts[0].fY - t2 * delta.fY}}};
    14     return dst;
    15 }
    17 // may have this below somewhere else already:
    18 // copying here because I thought it was clever
    20 // Copyright 2001, softSurfer (www.softsurfer.com)
    21 // This code may be freely used and modified for any purpose
    22 // providing that this copyright notice is included with it.
    23 // SoftSurfer makes no warranty for this code, and cannot be held
    24 // liable for any real or imagined damage resulting from its use.
    25 // Users of this code must verify correctness for their application.
    27 // Assume that a class is already given for the object:
    28 //    Point with coordinates {float x, y;}
    29 //===================================================================
    31 // isLeft(): tests if a point is Left|On|Right of an infinite line.
    32 //    Input:  three points P0, P1, and P2
    33 //    Return: >0 for P2 left of the line through P0 and P1
    34 //            =0 for P2 on the line
    35 //            <0 for P2 right of the line
    36 //    See: the January 2001 Algorithm on Area of Triangles
    37 //    return (float) ((P1.x - P0.x)*(P2.y - P0.y) - (P2.x - P0.x)*(P1.y - P0.y));
    38 double SkDLine::isLeft(const SkDPoint& pt) const {
    39     SkDVector p0 = fPts[1] - fPts[0];
    40     SkDVector p2 = pt - fPts[0];
    41     return p0.cross(p2);
    42 }
    44 SkDPoint SkDLine::ptAtT(double t) const {
    45     if (0 == t) {
    46         return fPts[0];
    47     }
    48     if (1 == t) {
    49         return fPts[1];
    50     }
    51     double one_t = 1 - t;
    52     SkDPoint result = { one_t * fPts[0].fX + t * fPts[1].fX, one_t * fPts[0].fY + t * fPts[1].fY };
    53     return result;
    54 }
    56 double SkDLine::exactPoint(const SkDPoint& xy) const {
    57     if (xy == fPts[0]) {  // do cheapest test first
    58         return 0;
    59     }
    60     if (xy == fPts[1]) {
    61         return 1;
    62     }
    63     return -1;
    64 }
    66 double SkDLine::nearPoint(const SkDPoint& xy) const {
    67     if (!AlmostBetweenUlps(fPts[0].fX, xy.fX, fPts[1].fX)
    68             || !AlmostBetweenUlps(fPts[0].fY, xy.fY, fPts[1].fY)) {
    69         return -1;
    70     }
    71     // project a perpendicular ray from the point to the line; find the T on the line
    72     SkDVector len = fPts[1] - fPts[0]; // the x/y magnitudes of the line
    73     double denom = len.fX * len.fX + len.fY * len.fY;  // see DLine intersectRay
    74     SkDVector ab0 = xy - fPts[0];
    75     double numer = len.fX * ab0.fX + ab0.fY * len.fY;
    76     if (!between(0, numer, denom)) {
    77         return -1;
    78     }
    79     double t = numer / denom;
    80     SkDPoint realPt = ptAtT(t);
    81     double dist = realPt.distance(xy);   // OPTIMIZATION: can we compare against distSq instead ?
    82     // find the ordinal in the original line with the largest unsigned exponent
    83     double tiniest = SkTMin(SkTMin(SkTMin(fPts[0].fX, fPts[0].fY), fPts[1].fX), fPts[1].fY);
    84     double largest = SkTMax(SkTMax(SkTMax(fPts[0].fX, fPts[0].fY), fPts[1].fX), fPts[1].fY);
    85     largest = SkTMax(largest, -tiniest);
    86     if (!AlmostEqualUlps(largest, largest + dist)) { // is the dist within ULPS tolerance?
    87         return -1;
    88     }
    89     t = SkPinT(t);
    90     SkASSERT(between(0, t, 1));
    91     return t;
    92 }
    94 bool SkDLine::nearRay(const SkDPoint& xy) const {
    95     // project a perpendicular ray from the point to the line; find the T on the line
    96     SkDVector len = fPts[1] - fPts[0]; // the x/y magnitudes of the line
    97     double denom = len.fX * len.fX + len.fY * len.fY;  // see DLine intersectRay
    98     SkDVector ab0 = xy - fPts[0];
    99     double numer = len.fX * ab0.fX + ab0.fY * len.fY;
   100     double t = numer / denom;
   101     SkDPoint realPt = ptAtT(t);
   102     double dist = realPt.distance(xy);   // OPTIMIZATION: can we compare against distSq instead ?
   103     // find the ordinal in the original line with the largest unsigned exponent
   104     double tiniest = SkTMin(SkTMin(SkTMin(fPts[0].fX, fPts[0].fY), fPts[1].fX), fPts[1].fY);
   105     double largest = SkTMax(SkTMax(SkTMax(fPts[0].fX, fPts[0].fY), fPts[1].fX), fPts[1].fY);
   106     largest = SkTMax(largest, -tiniest);
   107     return RoughlyEqualUlps(largest, largest + dist); // is the dist within ULPS tolerance?
   108 }
   110 // Returns true if a ray from (0,0) to (x1,y1) is coincident with a ray (0,0) to (x2,y2)
   111 // OPTIMIZE: a specialty routine could speed this up -- may not be called very often though
   112 bool SkDLine::NearRay(double x1, double y1, double x2, double y2) {
   113     double denom1 = x1 * x1 + y1 * y1;
   114     double denom2 = x2 * x2 + y2 * y2;
   115     SkDLine line = {{{0, 0}, {x1, y1}}};
   116     SkDPoint pt = {x2, y2};
   117     if (denom2 > denom1) {
   118         SkTSwap(line[1], pt);
   119     }
   120     return line.nearRay(pt);
   121 }
   123 double SkDLine::ExactPointH(const SkDPoint& xy, double left, double right, double y) {
   124     if (xy.fY == y) {
   125         if (xy.fX == left) {
   126             return 0;
   127         }
   128         if (xy.fX == right) {
   129             return 1;
   130         }
   131     }
   132     return -1;
   133 }
   135 double SkDLine::NearPointH(const SkDPoint& xy, double left, double right, double y) {
   136     if (!AlmostBequalUlps(xy.fY, y)) {
   137         return -1;
   138     }
   139     if (!AlmostBetweenUlps(left, xy.fX, right)) {
   140         return -1;
   141     }
   142     double t = (xy.fX - left) / (right - left);
   143     t = SkPinT(t);
   144     SkASSERT(between(0, t, 1));
   145     double realPtX = (1 - t) * left + t * right;
   146     SkDVector distU = {xy.fY - y, xy.fX - realPtX};
   147     double distSq = distU.fX * distU.fX + distU.fY * distU.fY;
   148     double dist = sqrt(distSq); // OPTIMIZATION: can we compare against distSq instead ?
   149     double tiniest = SkTMin(SkTMin(y, left), right);
   150     double largest = SkTMax(SkTMax(y, left), right);
   151     largest = SkTMax(largest, -tiniest);
   152     if (!AlmostEqualUlps(largest, largest + dist)) { // is the dist within ULPS tolerance?
   153         return -1;
   154     }
   155     return t;
   156 }
   158 double SkDLine::ExactPointV(const SkDPoint& xy, double top, double bottom, double x) {
   159     if (xy.fX == x) {
   160         if (xy.fY == top) {
   161             return 0;
   162         }
   163         if (xy.fY == bottom) {
   164             return 1;
   165         }
   166     }
   167     return -1;
   168 }
   170 double SkDLine::NearPointV(const SkDPoint& xy, double top, double bottom, double x) {
   171     if (!AlmostBequalUlps(xy.fX, x)) {
   172         return -1;
   173     }
   174     if (!AlmostBetweenUlps(top, xy.fY, bottom)) {
   175         return -1;
   176     }
   177     double t = (xy.fY - top) / (bottom - top);
   178     t = SkPinT(t);
   179     SkASSERT(between(0, t, 1));
   180     double realPtY = (1 - t) * top + t * bottom;
   181     SkDVector distU = {xy.fX - x, xy.fY - realPtY};
   182     double distSq = distU.fX * distU.fX + distU.fY * distU.fY;
   183     double dist = sqrt(distSq); // OPTIMIZATION: can we compare against distSq instead ?
   184     double tiniest = SkTMin(SkTMin(x, top), bottom);
   185     double largest = SkTMax(SkTMax(x, top), bottom);
   186     largest = SkTMax(largest, -tiniest);
   187     if (!AlmostEqualUlps(largest, largest + dist)) { // is the dist within ULPS tolerance?
   188         return -1;
   189     }
   190     return t;
   191 }
   193 #ifdef SK_DEBUG
   194 void SkDLine::dump() {
   195     SkDebugf("{{");
   196     fPts[0].dump();
   197     SkDebugf(", ");
   198     fPts[1].dump();
   199     SkDebugf("}}\n");
   200 }
   201 #endif

mercurial