gfx/skia/trunk/src/utils/SkMD5.cpp

Sat, 03 Jan 2015 20:18:00 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Sat, 03 Jan 2015 20:18:00 +0100
branch
TOR_BUG_3246
changeset 7
129ffea94266
permissions
-rw-r--r--

Conditionally enable double key logic according to:
private browsing mode or privacy.thirdparty.isolate preference and
implement in GetCookieStringCommon and FindCookie where it counts...
With some reservations of how to convince FindCookie users to test
condition and pass a nullptr when disabling double key logic.

     1 /*
     2  * Copyright 2012 Google Inc.
     3  *
     4  * Use of this source code is governed by a BSD-style license that can be
     5  * found in the LICENSE file.
     6  *
     7  * The following code is based on the description in RFC 1321.
     8  * http://www.ietf.org/rfc/rfc1321.txt
     9  */
    11 #include "SkTypes.h"
    12 #include "SkMD5.h"
    13 #include <string.h>
    15 /** MD5 basic transformation. Transforms state based on block. */
    16 static void transform(uint32_t state[4], const uint8_t block[64]);
    18 /** Encodes input into output (4 little endian 32 bit values). */
    19 static void encode(uint8_t output[16], const uint32_t input[4]);
    21 /** Encodes input into output (little endian 64 bit value). */
    22 static void encode(uint8_t output[8], const uint64_t input);
    24 /** Decodes input (4 little endian 32 bit values) into storage, if required. */
    25 static const uint32_t* decode(uint32_t storage[16], const uint8_t input[64]);
    27 SkMD5::SkMD5() : byteCount(0) {
    28     // These are magic numbers from the specification.
    29     this->state[0] = 0x67452301;
    30     this->state[1] = 0xefcdab89;
    31     this->state[2] = 0x98badcfe;
    32     this->state[3] = 0x10325476;
    33 }
    35 void SkMD5::update(const uint8_t* input, size_t inputLength) {
    36     unsigned int bufferIndex = (unsigned int)(this->byteCount & 0x3F);
    37     unsigned int bufferAvailable = 64 - bufferIndex;
    39     unsigned int inputIndex;
    40     if (inputLength >= bufferAvailable) {
    41         if (bufferIndex) {
    42             memcpy(&this->buffer[bufferIndex], input, bufferAvailable);
    43             transform(this->state, this->buffer);
    44             inputIndex = bufferAvailable;
    45         } else {
    46             inputIndex = 0;
    47         }
    49         for (; inputIndex + 63 < inputLength; inputIndex += 64) {
    50             transform(this->state, &input[inputIndex]);
    51         }
    53         bufferIndex = 0;
    54     } else {
    55         inputIndex = 0;
    56     }
    58     memcpy(&this->buffer[bufferIndex], &input[inputIndex], inputLength - inputIndex);
    60     this->byteCount += inputLength;
    61 }
    63 void SkMD5::finish(Digest& digest) {
    64     // Get the number of bits before padding.
    65     uint8_t bits[8];
    66     encode(bits, this->byteCount << 3);
    68     // Pad out to 56 mod 64.
    69     unsigned int bufferIndex = (unsigned int)(this->byteCount & 0x3F);
    70     unsigned int paddingLength = (bufferIndex < 56) ? (56 - bufferIndex) : (120 - bufferIndex);
    71     static uint8_t PADDING[64] = {
    72         0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    73            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    74            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    75            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    76     };
    77     this->update(PADDING, paddingLength);
    79     // Append length (length before padding, will cause final update).
    80     this->update(bits, 8);
    82     // Write out digest.
    83     encode(digest.data, this->state);
    85 #if defined(SK_MD5_CLEAR_DATA)
    86     // Clear state.
    87     memset(this, 0, sizeof(*this));
    88 #endif
    89 }
    91 struct F { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) {
    92     //return (x & y) | ((~x) & z);
    93     return ((y ^ z) & x) ^ z; //equivelent but faster
    94 }};
    96 struct G { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) {
    97     return (x & z) | (y & (~z));
    98     //return ((x ^ y) & z) ^ y; //equivelent but slower
    99 }};
   101 struct H { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) {
   102     return x ^ y ^ z;
   103 }};
   105 struct I { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) {
   106     return y ^ (x | (~z));
   107 }};
   109 /** Rotates x left n bits. */
   110 static inline uint32_t rotate_left(uint32_t x, uint8_t n) {
   111     return (x << n) | (x >> (32 - n));
   112 }
   114 template <typename T>
   115 static inline void operation(T operation, uint32_t& a, uint32_t b, uint32_t c, uint32_t d,
   116                              uint32_t x, uint8_t s, uint32_t t) {
   117     a = b + rotate_left(a + operation(b, c, d) + x + t, s);
   118 }
   120 static void transform(uint32_t state[4], const uint8_t block[64]) {
   121     uint32_t a = state[0], b = state[1], c = state[2], d = state[3];
   123     uint32_t storage[16];
   124     const uint32_t* X = decode(storage, block);
   126     // Round 1
   127     operation(F(), a, b, c, d, X[ 0],  7, 0xd76aa478); // 1
   128     operation(F(), d, a, b, c, X[ 1], 12, 0xe8c7b756); // 2
   129     operation(F(), c, d, a, b, X[ 2], 17, 0x242070db); // 3
   130     operation(F(), b, c, d, a, X[ 3], 22, 0xc1bdceee); // 4
   131     operation(F(), a, b, c, d, X[ 4],  7, 0xf57c0faf); // 5
   132     operation(F(), d, a, b, c, X[ 5], 12, 0x4787c62a); // 6
   133     operation(F(), c, d, a, b, X[ 6], 17, 0xa8304613); // 7
   134     operation(F(), b, c, d, a, X[ 7], 22, 0xfd469501); // 8
   135     operation(F(), a, b, c, d, X[ 8],  7, 0x698098d8); // 9
   136     operation(F(), d, a, b, c, X[ 9], 12, 0x8b44f7af); // 10
   137     operation(F(), c, d, a, b, X[10], 17, 0xffff5bb1); // 11
   138     operation(F(), b, c, d, a, X[11], 22, 0x895cd7be); // 12
   139     operation(F(), a, b, c, d, X[12],  7, 0x6b901122); // 13
   140     operation(F(), d, a, b, c, X[13], 12, 0xfd987193); // 14
   141     operation(F(), c, d, a, b, X[14], 17, 0xa679438e); // 15
   142     operation(F(), b, c, d, a, X[15], 22, 0x49b40821); // 16
   144     // Round 2
   145     operation(G(), a, b, c, d, X[ 1],  5, 0xf61e2562); // 17
   146     operation(G(), d, a, b, c, X[ 6],  9, 0xc040b340); // 18
   147     operation(G(), c, d, a, b, X[11], 14, 0x265e5a51); // 19
   148     operation(G(), b, c, d, a, X[ 0], 20, 0xe9b6c7aa); // 20
   149     operation(G(), a, b, c, d, X[ 5],  5, 0xd62f105d); // 21
   150     operation(G(), d, a, b, c, X[10],  9,  0x2441453); // 22
   151     operation(G(), c, d, a, b, X[15], 14, 0xd8a1e681); // 23
   152     operation(G(), b, c, d, a, X[ 4], 20, 0xe7d3fbc8); // 24
   153     operation(G(), a, b, c, d, X[ 9],  5, 0x21e1cde6); // 25
   154     operation(G(), d, a, b, c, X[14],  9, 0xc33707d6); // 26
   155     operation(G(), c, d, a, b, X[ 3], 14, 0xf4d50d87); // 27
   156     operation(G(), b, c, d, a, X[ 8], 20, 0x455a14ed); // 28
   157     operation(G(), a, b, c, d, X[13],  5, 0xa9e3e905); // 29
   158     operation(G(), d, a, b, c, X[ 2],  9, 0xfcefa3f8); // 30
   159     operation(G(), c, d, a, b, X[ 7], 14, 0x676f02d9); // 31
   160     operation(G(), b, c, d, a, X[12], 20, 0x8d2a4c8a); // 32
   162     // Round 3
   163     operation(H(), a, b, c, d, X[ 5],  4, 0xfffa3942); // 33
   164     operation(H(), d, a, b, c, X[ 8], 11, 0x8771f681); // 34
   165     operation(H(), c, d, a, b, X[11], 16, 0x6d9d6122); // 35
   166     operation(H(), b, c, d, a, X[14], 23, 0xfde5380c); // 36
   167     operation(H(), a, b, c, d, X[ 1],  4, 0xa4beea44); // 37
   168     operation(H(), d, a, b, c, X[ 4], 11, 0x4bdecfa9); // 38
   169     operation(H(), c, d, a, b, X[ 7], 16, 0xf6bb4b60); // 39
   170     operation(H(), b, c, d, a, X[10], 23, 0xbebfbc70); // 40
   171     operation(H(), a, b, c, d, X[13],  4, 0x289b7ec6); // 41
   172     operation(H(), d, a, b, c, X[ 0], 11, 0xeaa127fa); // 42
   173     operation(H(), c, d, a, b, X[ 3], 16, 0xd4ef3085); // 43
   174     operation(H(), b, c, d, a, X[ 6], 23,  0x4881d05); // 44
   175     operation(H(), a, b, c, d, X[ 9],  4, 0xd9d4d039); // 45
   176     operation(H(), d, a, b, c, X[12], 11, 0xe6db99e5); // 46
   177     operation(H(), c, d, a, b, X[15], 16, 0x1fa27cf8); // 47
   178     operation(H(), b, c, d, a, X[ 2], 23, 0xc4ac5665); // 48
   180     // Round 4
   181     operation(I(), a, b, c, d, X[ 0],  6, 0xf4292244); // 49
   182     operation(I(), d, a, b, c, X[ 7], 10, 0x432aff97); // 50
   183     operation(I(), c, d, a, b, X[14], 15, 0xab9423a7); // 51
   184     operation(I(), b, c, d, a, X[ 5], 21, 0xfc93a039); // 52
   185     operation(I(), a, b, c, d, X[12],  6, 0x655b59c3); // 53
   186     operation(I(), d, a, b, c, X[ 3], 10, 0x8f0ccc92); // 54
   187     operation(I(), c, d, a, b, X[10], 15, 0xffeff47d); // 55
   188     operation(I(), b, c, d, a, X[ 1], 21, 0x85845dd1); // 56
   189     operation(I(), a, b, c, d, X[ 8],  6, 0x6fa87e4f); // 57
   190     operation(I(), d, a, b, c, X[15], 10, 0xfe2ce6e0); // 58
   191     operation(I(), c, d, a, b, X[ 6], 15, 0xa3014314); // 59
   192     operation(I(), b, c, d, a, X[13], 21, 0x4e0811a1); // 60
   193     operation(I(), a, b, c, d, X[ 4],  6, 0xf7537e82); // 61
   194     operation(I(), d, a, b, c, X[11], 10, 0xbd3af235); // 62
   195     operation(I(), c, d, a, b, X[ 2], 15, 0x2ad7d2bb); // 63
   196     operation(I(), b, c, d, a, X[ 9], 21, 0xeb86d391); // 64
   198     state[0] += a;
   199     state[1] += b;
   200     state[2] += c;
   201     state[3] += d;
   203 #if defined(SK_MD5_CLEAR_DATA)
   204     // Clear sensitive information.
   205     if (X == &storage) {
   206         memset(storage, 0, sizeof(storage));
   207     }
   208 #endif
   209 }
   211 static void encode(uint8_t output[16], const uint32_t input[4]) {
   212     for (size_t i = 0, j = 0; i < 4; i++, j += 4) {
   213         output[j  ] = (uint8_t) (input[i]        & 0xff);
   214         output[j+1] = (uint8_t)((input[i] >>  8) & 0xff);
   215         output[j+2] = (uint8_t)((input[i] >> 16) & 0xff);
   216         output[j+3] = (uint8_t)((input[i] >> 24) & 0xff);
   217     }
   218 }
   220 static void encode(uint8_t output[8], const uint64_t input) {
   221     output[0] = (uint8_t) (input        & 0xff);
   222     output[1] = (uint8_t)((input >>  8) & 0xff);
   223     output[2] = (uint8_t)((input >> 16) & 0xff);
   224     output[3] = (uint8_t)((input >> 24) & 0xff);
   225     output[4] = (uint8_t)((input >> 32) & 0xff);
   226     output[5] = (uint8_t)((input >> 40) & 0xff);
   227     output[6] = (uint8_t)((input >> 48) & 0xff);
   228     output[7] = (uint8_t)((input >> 56) & 0xff);
   229 }
   231 static inline bool is_aligned(const void *pointer, size_t byte_count) {
   232     return reinterpret_cast<uintptr_t>(pointer) % byte_count == 0;
   233 }
   235 static const uint32_t* decode(uint32_t storage[16], const uint8_t input[64]) {
   236 #if defined(SK_CPU_LENDIAN) && defined(SK_CPU_FAST_UNALIGNED_ACCESS)
   237    return reinterpret_cast<const uint32_t*>(input);
   238 #else
   239 #if defined(SK_CPU_LENDIAN)
   240     if (is_aligned(input, 4)) {
   241         return reinterpret_cast<const uint32_t*>(input);
   242     }
   243 #endif
   244     for (size_t i = 0, j = 0; j < 64; i++, j += 4) {
   245         storage[i] =  ((uint32_t)input[j  ])        |
   246                      (((uint32_t)input[j+1]) <<  8) |
   247                      (((uint32_t)input[j+2]) << 16) |
   248                      (((uint32_t)input[j+3]) << 24);
   249     }
   250     return storage;
   251 #endif
   252 }

mercurial