Sat, 03 Jan 2015 20:18:00 +0100
Conditionally enable double key logic according to:
private browsing mode or privacy.thirdparty.isolate preference and
implement in GetCookieStringCommon and FindCookie where it counts...
With some reservations of how to convince FindCookie users to test
condition and pass a nullptr when disabling double key logic.
1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
2 * vim: set ts=8 sts=4 et sw=4 tw=99:
3 * This Source Code Form is subject to the terms of the Mozilla Public
4 * License, v. 2.0. If a copy of the MPL was not distributed with this
5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
7 #ifndef vm_NumericConversions_h
8 #define vm_NumericConversions_h
10 #include "mozilla/Assertions.h"
11 #include "mozilla/Casting.h"
12 #include "mozilla/FloatingPoint.h"
13 #include "mozilla/TypeTraits.h"
15 #include <math.h>
17 namespace js {
19 namespace detail {
21 /*
22 * Convert a double value to ResultType (an unsigned integral type) using
23 * ECMAScript-style semantics (that is, in like manner to how ECMAScript's
24 * ToInt32 converts to int32_t).
25 *
26 * If d is infinite or NaN, return 0.
27 * Otherwise compute d2 = sign(d) * floor(abs(d)), and return the ResultType
28 * value congruent to d2 mod 2**(bit width of ResultType).
29 *
30 * The algorithm below is inspired by that found in
31 * <http://trac.webkit.org/changeset/67825/trunk/JavaScriptCore/runtime/JSValue.cpp>
32 * but has been generalized to all integer widths.
33 */
34 template<typename ResultType>
35 inline ResultType
36 ToUintWidth(double d)
37 {
38 static_assert(mozilla::IsUnsigned<ResultType>::value,
39 "ResultType must be an unsigned type");
41 uint64_t bits = mozilla::BitwiseCast<uint64_t>(d);
42 unsigned DoubleExponentShift = mozilla::FloatingPoint<double>::ExponentShift;
44 // Extract the exponent component. (Be careful here! It's not technically
45 // the exponent in NaN, infinities, and subnormals.)
46 int_fast16_t exp =
47 int_fast16_t((bits & mozilla::FloatingPoint<double>::ExponentBits) >> DoubleExponentShift) -
48 int_fast16_t(mozilla::FloatingPoint<double>::ExponentBias);
50 // If the exponent's less than zero, abs(d) < 1, so the result is 0. (This
51 // also handles subnormals.)
52 if (exp < 0)
53 return 0;
55 uint_fast16_t exponent = mozilla::SafeCast<uint_fast16_t>(exp);
57 // If the exponent is greater than or equal to the bits of precision of a
58 // double plus ResultType's width, the number is either infinite, NaN, or
59 // too large to have lower-order bits in the congruent value. (Example:
60 // 2**84 is exactly representable as a double. The next exact double is
61 // 2**84 + 2**32. Thus if ResultType is int32_t, an exponent >= 84 implies
62 // floor(abs(d)) == 0 mod 2**32.) Return 0 in all these cases.
63 const size_t ResultWidth = CHAR_BIT * sizeof(ResultType);
64 if (exponent >= DoubleExponentShift + ResultWidth)
65 return 0;
67 // The significand contains the bits that will determine the final result.
68 // Shift those bits left or right, according to the exponent, to their
69 // locations in the unsigned binary representation of floor(abs(d)).
70 static_assert(sizeof(ResultType) <= sizeof(uint64_t),
71 "Left-shifting below would lose upper bits");
72 ResultType result = (exponent > DoubleExponentShift)
73 ? ResultType(bits << (exponent - DoubleExponentShift))
74 : ResultType(bits >> (DoubleExponentShift - exponent));
76 // Two further complications remain. First, |result| may contain bogus
77 // sign/exponent bits. Second, IEEE-754 numbers' significands (excluding
78 // subnormals, but we already handled those) have an implicit leading 1
79 // which may affect the final result.
80 //
81 // It may appear that there's complexity here depending on how ResultWidth
82 // and DoubleExponentShift relate, but it turns out there's not.
83 //
84 // Assume ResultWidth < DoubleExponentShift:
85 // Only right-shifts leave bogus bits in |result|. For this to happen,
86 // we must right-shift by > |DoubleExponentShift - ResultWidth|, implying
87 // |exponent < ResultWidth|.
88 // The implicit leading bit only matters if it appears in the final
89 // result -- if |2**exponent mod 2**ResultWidth != 0|. This implies
90 // |exponent < ResultWidth|.
91 // Otherwise assume ResultWidth >= DoubleExponentShift:
92 // Any left-shift less than |ResultWidth - DoubleExponentShift| leaves
93 // bogus bits in |result|. This implies |exponent < ResultWidth|. Any
94 // right-shift less than |ResultWidth| does too, which implies
95 // |DoubleExponentShift - ResultWidth < exponent|. By assumption, then,
96 // |exponent| is negative, but we excluded that above. So bogus bits
97 // need only |exponent < ResultWidth|.
98 // The implicit leading bit matters identically to the other case, so
99 // again, |exponent < ResultWidth|.
100 if (exponent < ResultWidth) {
101 ResultType implicitOne = ResultType(1) << exponent;
102 result &= implicitOne - 1; // remove bogus bits
103 result += implicitOne; // add the implicit bit
104 }
106 // Compute the congruent value in the signed range.
107 return (bits & mozilla::FloatingPoint<double>::SignBit) ? ~result + 1 : result;
108 }
110 template<typename ResultType>
111 inline ResultType
112 ToIntWidth(double d)
113 {
114 static_assert(mozilla::IsSigned<ResultType>::value,
115 "ResultType must be a signed type");
117 const ResultType MaxValue = (1ULL << (CHAR_BIT * sizeof(ResultType) - 1)) - 1;
118 const ResultType MinValue = -MaxValue - 1;
120 typedef typename mozilla::MakeUnsigned<ResultType>::Type UnsignedResult;
121 UnsignedResult u = ToUintWidth<UnsignedResult>(d);
122 if (u <= UnsignedResult(MaxValue))
123 return static_cast<ResultType>(u);
124 return (MinValue + static_cast<ResultType>(u - MaxValue)) - 1;
125 }
127 } /* namespace detail */
129 /* ES5 9.5 ToInt32 (specialized for doubles). */
130 inline int32_t
131 ToInt32(double d)
132 {
133 #if defined (__arm__) && defined (__GNUC__)
134 int32_t i;
135 uint32_t tmp0;
136 uint32_t tmp1;
137 uint32_t tmp2;
138 asm (
139 // We use a pure integer solution here. In the 'softfp' ABI, the argument
140 // will start in r0 and r1, and VFP can't do all of the necessary ECMA
141 // conversions by itself so some integer code will be required anyway. A
142 // hybrid solution is faster on A9, but this pure integer solution is
143 // notably faster for A8.
145 // %0 is the result register, and may alias either of the %[QR]1 registers.
146 // %Q4 holds the lower part of the mantissa.
147 // %R4 holds the sign, exponent, and the upper part of the mantissa.
148 // %1, %2 and %3 are used as temporary values.
150 // Extract the exponent.
151 " mov %1, %R4, LSR #20\n"
152 " bic %1, %1, #(1 << 11)\n" // Clear the sign.
154 // Set the implicit top bit of the mantissa. This clobbers a bit of the
155 // exponent, but we have already extracted that.
156 " orr %R4, %R4, #(1 << 20)\n"
158 // Special Cases
159 // We should return zero in the following special cases:
160 // - Exponent is 0x000 - 1023: +/-0 or subnormal.
161 // - Exponent is 0x7ff - 1023: +/-INFINITY or NaN
162 // - This case is implicitly handled by the standard code path anyway,
163 // as shifting the mantissa up by the exponent will result in '0'.
164 //
165 // The result is composed of the mantissa, prepended with '1' and
166 // bit-shifted left by the (decoded) exponent. Note that because the r1[20]
167 // is the bit with value '1', r1 is effectively already shifted (left) by
168 // 20 bits, and r0 is already shifted by 52 bits.
170 // Adjust the exponent to remove the encoding offset. If the decoded
171 // exponent is negative, quickly bail out with '0' as such values round to
172 // zero anyway. This also catches +/-0 and subnormals.
173 " sub %1, %1, #0xff\n"
174 " subs %1, %1, #0x300\n"
175 " bmi 8f\n"
177 // %1 = (decoded) exponent >= 0
178 // %R4 = upper mantissa and sign
180 // ---- Lower Mantissa ----
181 " subs %3, %1, #52\n" // Calculate exp-52
182 " bmi 1f\n"
184 // Shift r0 left by exp-52.
185 // Ensure that we don't overflow ARM's 8-bit shift operand range.
186 // We need to handle anything up to an 11-bit value here as we know that
187 // 52 <= exp <= 1024 (0x400). Any shift beyond 31 bits results in zero
188 // anyway, so as long as we don't touch the bottom 5 bits, we can use
189 // a logical OR to push long shifts into the 32 <= (exp&0xff) <= 255 range.
190 " bic %2, %3, #0xff\n"
191 " orr %3, %3, %2, LSR #3\n"
192 // We can now perform a straight shift, avoiding the need for any
193 // conditional instructions or extra branches.
194 " mov %Q4, %Q4, LSL %3\n"
195 " b 2f\n"
196 "1:\n" // Shift r0 right by 52-exp.
197 // We know that 0 <= exp < 52, and we can shift up to 255 bits so 52-exp
198 // will always be a valid shift and we can sk%3 the range check for this case.
199 " rsb %3, %1, #52\n"
200 " mov %Q4, %Q4, LSR %3\n"
202 // %1 = (decoded) exponent
203 // %R4 = upper mantissa and sign
204 // %Q4 = partially-converted integer
206 "2:\n"
207 // ---- Upper Mantissa ----
208 // This is much the same as the lower mantissa, with a few different
209 // boundary checks and some masking to hide the exponent & sign bit in the
210 // upper word.
211 // Note that the upper mantissa is pre-shifted by 20 in %R4, but we shift
212 // it left more to remove the sign and exponent so it is effectively
213 // pre-shifted by 31 bits.
214 " subs %3, %1, #31\n" // Calculate exp-31
215 " mov %1, %R4, LSL #11\n" // Re-use %1 as a temporary register.
216 " bmi 3f\n"
218 // Shift %R4 left by exp-31.
219 // Avoid overflowing the 8-bit shift range, as before.
220 " bic %2, %3, #0xff\n"
221 " orr %3, %3, %2, LSR #3\n"
222 // Perform the shift.
223 " mov %2, %1, LSL %3\n"
224 " b 4f\n"
225 "3:\n" // Shift r1 right by 31-exp.
226 // We know that 0 <= exp < 31, and we can shift up to 255 bits so 31-exp
227 // will always be a valid shift and we can skip the range check for this case.
228 " rsb %3, %3, #0\n" // Calculate 31-exp from -(exp-31)
229 " mov %2, %1, LSR %3\n" // Thumb-2 can't do "LSR %3" in "orr".
231 // %Q4 = partially-converted integer (lower)
232 // %R4 = upper mantissa and sign
233 // %2 = partially-converted integer (upper)
235 "4:\n"
236 // Combine the converted parts.
237 " orr %Q4, %Q4, %2\n"
238 // Negate the result if we have to, and move it to %0 in the process. To
239 // avoid conditionals, we can do this by inverting on %R4[31], then adding
240 // %R4[31]>>31.
241 " eor %Q4, %Q4, %R4, ASR #31\n"
242 " add %0, %Q4, %R4, LSR #31\n"
243 " b 9f\n"
244 "8:\n"
245 // +/-INFINITY, +/-0, subnormals, NaNs, and anything else out-of-range that
246 // will result in a conversion of '0'.
247 " mov %0, #0\n"
248 "9:\n"
249 : "=r" (i), "=&r" (tmp0), "=&r" (tmp1), "=&r" (tmp2), "=&r" (d)
250 : "4" (d)
251 : "cc"
252 );
253 return i;
254 #else
255 return detail::ToIntWidth<int32_t>(d);
256 #endif
257 }
259 /* ES5 9.6 (specialized for doubles). */
260 inline uint32_t
261 ToUint32(double d)
262 {
263 return detail::ToUintWidth<uint32_t>(d);
264 }
266 /* WEBIDL 4.2.10 */
267 inline int64_t
268 ToInt64(double d)
269 {
270 return detail::ToIntWidth<int64_t>(d);
271 }
273 /* WEBIDL 4.2.11 */
274 inline uint64_t
275 ToUint64(double d)
276 {
277 return detail::ToUintWidth<uint64_t>(d);
278 }
280 /* ES5 9.4 ToInteger (specialized for doubles). */
281 inline double
282 ToInteger(double d)
283 {
284 if (d == 0)
285 return d;
287 if (!mozilla::IsFinite(d)) {
288 if (mozilla::IsNaN(d))
289 return 0;
290 return d;
291 }
293 return d < 0 ? ceil(d) : floor(d);
294 }
296 } /* namespace js */
298 #endif /* vm_NumericConversions_h */