Sat, 03 Jan 2015 20:18:00 +0100
Conditionally enable double key logic according to:
private browsing mode or privacy.thirdparty.isolate preference and
implement in GetCookieStringCommon and FindCookie where it counts...
With some reservations of how to convince FindCookie users to test
condition and pass a nullptr when disabling double key logic.
1 // Copyright (c) 2010 Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 // stackwalker_x86.cc: x86-specific stackwalker.
31 //
32 // See stackwalker_x86.h for documentation.
33 //
34 // Author: Mark Mentovai
36 #include <assert.h>
37 #include <string>
39 #include "common/scoped_ptr.h"
40 #include "google_breakpad/processor/call_stack.h"
41 #include "google_breakpad/processor/code_modules.h"
42 #include "google_breakpad/processor/memory_region.h"
43 #include "google_breakpad/processor/source_line_resolver_interface.h"
44 #include "google_breakpad/processor/stack_frame_cpu.h"
45 #include "common/logging.h"
46 #include "processor/postfix_evaluator-inl.h"
47 #include "processor/stackwalker_x86.h"
48 #include "processor/windows_frame_info.h"
49 #include "processor/cfi_frame_info.h"
51 namespace google_breakpad {
54 const StackwalkerX86::CFIWalker::RegisterSet
55 StackwalkerX86::cfi_register_map_[] = {
56 // It may seem like $eip and $esp are callee-saves, because (with Unix or
57 // cdecl calling conventions) the callee is responsible for having them
58 // restored upon return. But the callee_saves flags here really means
59 // that the walker should assume they're unchanged if the CFI doesn't
60 // mention them, which is clearly wrong for $eip and $esp.
61 { ToUniqueString("$eip"), ToUniqueString(".ra"), false,
62 StackFrameX86::CONTEXT_VALID_EIP, &MDRawContextX86::eip },
63 { ToUniqueString("$esp"), ToUniqueString(".cfa"), false,
64 StackFrameX86::CONTEXT_VALID_ESP, &MDRawContextX86::esp },
65 { ToUniqueString("$ebp"), NULL, true,
66 StackFrameX86::CONTEXT_VALID_EBP, &MDRawContextX86::ebp },
67 { ToUniqueString("$eax"), NULL, false,
68 StackFrameX86::CONTEXT_VALID_EAX, &MDRawContextX86::eax },
69 { ToUniqueString("$ebx"), NULL, true,
70 StackFrameX86::CONTEXT_VALID_EBX, &MDRawContextX86::ebx },
71 { ToUniqueString("$ecx"), NULL, false,
72 StackFrameX86::CONTEXT_VALID_ECX, &MDRawContextX86::ecx },
73 { ToUniqueString("$edx"), NULL, false,
74 StackFrameX86::CONTEXT_VALID_EDX, &MDRawContextX86::edx },
75 { ToUniqueString("$esi"), NULL, true,
76 StackFrameX86::CONTEXT_VALID_ESI, &MDRawContextX86::esi },
77 { ToUniqueString("$edi"), NULL, true,
78 StackFrameX86::CONTEXT_VALID_EDI, &MDRawContextX86::edi },
79 };
81 StackwalkerX86::StackwalkerX86(const SystemInfo* system_info,
82 const MDRawContextX86* context,
83 MemoryRegion* memory,
84 const CodeModules* modules,
85 StackFrameSymbolizer* resolver_helper)
86 : Stackwalker(system_info, memory, modules, resolver_helper),
87 context_(context),
88 cfi_walker_(cfi_register_map_,
89 (sizeof(cfi_register_map_) / sizeof(cfi_register_map_[0]))) {
90 if (memory_ && memory_->GetBase() + memory_->GetSize() - 1 > 0xffffffff) {
91 // The x86 is a 32-bit CPU, the limits of the supplied stack are invalid.
92 // Mark memory_ = NULL, which will cause stackwalking to fail.
93 BPLOG(ERROR) << "Memory out of range for stackwalking: " <<
94 HexString(memory_->GetBase()) << "+" <<
95 HexString(memory_->GetSize());
96 memory_ = NULL;
97 }
98 }
100 StackFrameX86::~StackFrameX86() {
101 if (windows_frame_info)
102 delete windows_frame_info;
103 windows_frame_info = NULL;
104 if (cfi_frame_info)
105 delete cfi_frame_info;
106 cfi_frame_info = NULL;
107 }
109 uint64_t StackFrameX86::ReturnAddress() const
110 {
111 assert(context_validity & StackFrameX86::CONTEXT_VALID_EIP);
112 return context.eip;
113 }
115 StackFrame* StackwalkerX86::GetContextFrame() {
116 if (!context_) {
117 BPLOG(ERROR) << "Can't get context frame without context";
118 return NULL;
119 }
121 StackFrameX86* frame = new StackFrameX86();
123 // The instruction pointer is stored directly in a register, so pull it
124 // straight out of the CPU context structure.
125 frame->context = *context_;
126 frame->context_validity = StackFrameX86::CONTEXT_VALID_ALL;
127 frame->trust = StackFrame::FRAME_TRUST_CONTEXT;
128 frame->instruction = frame->context.eip;
130 return frame;
131 }
133 StackFrameX86* StackwalkerX86::GetCallerByWindowsFrameInfo(
134 const vector<StackFrame*> &frames,
135 WindowsFrameInfo* last_frame_info,
136 bool stack_scan_allowed) {
137 StackFrame::FrameTrust trust = StackFrame::FRAME_TRUST_NONE;
139 StackFrameX86* last_frame = static_cast<StackFrameX86*>(frames.back());
141 // Save the stack walking info we found, in case we need it later to
142 // find the callee of the frame we're constructing now.
143 last_frame->windows_frame_info = last_frame_info;
145 // This function only covers the full STACK WIN case. If
146 // last_frame_info is VALID_PARAMETER_SIZE-only, then we should
147 // assume the traditional frame format or use some other strategy.
148 if (last_frame_info->valid != WindowsFrameInfo::VALID_ALL)
149 return NULL;
151 // This stackwalker sets each frame's %esp to its value immediately prior
152 // to the CALL into the callee. This means that %esp points to the last
153 // callee argument pushed onto the stack, which may not be where %esp points
154 // after the callee returns. Specifically, the value is correct for the
155 // cdecl calling convention, but not other conventions. The cdecl
156 // convention requires a caller to pop its callee's arguments from the
157 // stack after the callee returns. This is usually accomplished by adding
158 // the known size of the arguments to %esp. Other calling conventions,
159 // including stdcall, thiscall, and fastcall, require the callee to pop any
160 // parameters stored on the stack before returning. This is usually
161 // accomplished by using the RET n instruction, which pops n bytes off
162 // the stack after popping the return address.
163 //
164 // Because each frame's %esp will point to a location on the stack after
165 // callee arguments have been PUSHed, when locating things in a stack frame
166 // relative to %esp, the size of the arguments to the callee need to be
167 // taken into account. This seems a little bit unclean, but it's better
168 // than the alternative, which would need to take these same things into
169 // account, but only for cdecl functions. With this implementation, we get
170 // to be agnostic about each function's calling convention. Furthermore,
171 // this is how Windows debugging tools work, so it means that the %esp
172 // values produced by this stackwalker directly correspond to the %esp
173 // values you'll see there.
174 //
175 // If the last frame has no callee (because it's the context frame), just
176 // set the callee parameter size to 0: the stack pointer can't point to
177 // callee arguments because there's no callee. This is correct as long
178 // as the context wasn't captured while arguments were being pushed for
179 // a function call. Note that there may be functions whose parameter sizes
180 // are unknown, 0 is also used in that case. When that happens, it should
181 // be possible to walk to the next frame without reference to %esp.
183 uint32_t last_frame_callee_parameter_size = 0;
184 int frames_already_walked = frames.size();
185 if (frames_already_walked >= 2) {
186 const StackFrameX86* last_frame_callee
187 = static_cast<StackFrameX86*>(frames[frames_already_walked - 2]);
188 WindowsFrameInfo* last_frame_callee_info
189 = last_frame_callee->windows_frame_info;
190 if (last_frame_callee_info &&
191 (last_frame_callee_info->valid
192 & WindowsFrameInfo::VALID_PARAMETER_SIZE)) {
193 last_frame_callee_parameter_size =
194 last_frame_callee_info->parameter_size;
195 }
196 }
198 // Set up the dictionary for the PostfixEvaluator. %ebp and %esp are used
199 // in each program string, and their previous values are known, so set them
200 // here.
201 PostfixEvaluator<uint32_t>::DictionaryType dictionary;
202 // Provide the current register values.
203 dictionary.set(ustr__ZSebp(), last_frame->context.ebp);
204 dictionary.set(ustr__ZSesp(), last_frame->context.esp);
205 // Provide constants from the debug info for last_frame and its callee.
206 // .cbCalleeParams is a Breakpad extension that allows us to use the
207 // PostfixEvaluator engine when certain types of debugging information
208 // are present without having to write the constants into the program
209 // string as literals.
210 dictionary.set(ustr__ZDcbCalleeParams(), last_frame_callee_parameter_size);
211 dictionary.set(ustr__ZDcbSavedRegs(), last_frame_info->saved_register_size);
212 dictionary.set(ustr__ZDcbLocals(), last_frame_info->local_size);
214 uint32_t raSearchStart = last_frame->context.esp +
215 last_frame_callee_parameter_size +
216 last_frame_info->local_size +
217 last_frame_info->saved_register_size;
219 uint32_t raSearchStartOld = raSearchStart;
220 uint32_t found = 0; // dummy value
221 // Scan up to three words above the calculated search value, in case
222 // the stack was aligned to a quadword boundary.
223 if (ScanForReturnAddress(raSearchStart, &raSearchStart, &found, 3) &&
224 last_frame->trust == StackFrame::FRAME_TRUST_CONTEXT &&
225 last_frame->windows_frame_info != NULL &&
226 last_frame_info->type_ == WindowsFrameInfo::STACK_INFO_FPO &&
227 raSearchStartOld == raSearchStart &&
228 found == last_frame->context.eip) {
229 // The context frame represents an FPO-optimized Windows system call.
230 // On the top of the stack we have a pointer to the current instruction.
231 // This means that the callee has returned but the return address is still
232 // on the top of the stack which is very atypical situaltion.
233 // Skip one slot from the stack and do another scan in order to get the
234 // actual return address.
235 raSearchStart += 4;
236 ScanForReturnAddress(raSearchStart, &raSearchStart, &found, 3);
237 }
239 // The difference between raSearch and raSearchStart is unknown,
240 // but making them the same seems to work well in practice.
241 dictionary.set(ustr__ZDraSearchStart(), raSearchStart);
242 dictionary.set(ustr__ZDraSearch(), raSearchStart);
244 dictionary.set(ustr__ZDcbParams(), last_frame_info->parameter_size);
246 // Decide what type of program string to use. The program string is in
247 // postfix notation and will be passed to PostfixEvaluator::Evaluate.
248 // Given the dictionary and the program string, it is possible to compute
249 // the return address and the values of other registers in the calling
250 // function. Because of bugs described below, the stack may need to be
251 // scanned for these values. The results of program string evaluation
252 // will be used to determine whether to scan for better values.
253 string program_string;
254 bool recover_ebp = true;
256 trust = StackFrame::FRAME_TRUST_CFI;
257 if (!last_frame_info->program_string.empty()) {
258 // The FPO data has its own program string, which will tell us how to
259 // get to the caller frame, and may even fill in the values of
260 // nonvolatile registers and provide pointers to local variables and
261 // parameters. In some cases, particularly with program strings that use
262 // .raSearchStart, the stack may need to be scanned afterward.
263 program_string = last_frame_info->program_string;
264 } else if (last_frame_info->allocates_base_pointer) {
265 // The function corresponding to the last frame doesn't use the frame
266 // pointer for conventional purposes, but it does allocate a new
267 // frame pointer and use it for its own purposes. Its callee's
268 // information is still accessed relative to %esp, and the previous
269 // value of %ebp can be recovered from a location in its stack frame,
270 // within the saved-register area.
271 //
272 // Functions that fall into this category use the %ebp register for
273 // a purpose other than the frame pointer. They restore the caller's
274 // %ebp before returning. These functions create their stack frame
275 // after a CALL by decrementing the stack pointer in an amount
276 // sufficient to store local variables, and then PUSHing saved
277 // registers onto the stack. Arguments to a callee function, if any,
278 // are PUSHed after that. Walking up to the caller, therefore,
279 // can be done solely with calculations relative to the stack pointer
280 // (%esp). The return address is recovered from the memory location
281 // above the known sizes of the callee's parameters, saved registers,
282 // and locals. The caller's stack pointer (the value of %esp when
283 // the caller executed CALL) is the location immediately above the
284 // saved return address. The saved value of %ebp to be restored for
285 // the caller is at a known location in the saved-register area of
286 // the stack frame.
287 //
288 // For this type of frame, MSVC 14 (from Visual Studio 8/2005) in
289 // link-time code generation mode (/LTCG and /GL) can generate erroneous
290 // debugging data. The reported size of saved registers can be 0,
291 // which is clearly an error because these frames must, at the very
292 // least, save %ebp. For this reason, in addition to those given above
293 // about the use of .raSearchStart, the stack may need to be scanned
294 // for a better return address and a better frame pointer after the
295 // program string is evaluated.
296 //
297 // %eip_new = *(%esp_old + callee_params + saved_regs + locals)
298 // %ebp_new = *(%esp_old + callee_params + saved_regs - 8)
299 // %esp_new = %esp_old + callee_params + saved_regs + locals + 4
300 program_string = "$eip .raSearchStart ^ = "
301 "$ebp $esp .cbCalleeParams + .cbSavedRegs + 8 - ^ = "
302 "$esp .raSearchStart 4 + =";
303 } else {
304 // The function corresponding to the last frame doesn't use %ebp at
305 // all. The callee frame is located relative to %esp.
306 //
307 // The called procedure's instruction pointer and stack pointer are
308 // recovered in the same way as the case above, except that no
309 // frame pointer (%ebp) is used at all, so it is not saved anywhere
310 // in the callee's stack frame and does not need to be recovered.
311 // Because %ebp wasn't used in the callee, whatever value it has
312 // is the value that it had in the caller, so it can be carried
313 // straight through without bringing its validity into question.
314 //
315 // Because of the use of .raSearchStart, the stack will possibly be
316 // examined to locate a better return address after program string
317 // evaluation. The stack will not be examined to locate a saved
318 // %ebp value, because these frames do not save (or use) %ebp.
319 //
320 // %eip_new = *(%esp_old + callee_params + saved_regs + locals)
321 // %esp_new = %esp_old + callee_params + saved_regs + locals + 4
322 // %ebp_new = %ebp_old
323 program_string = "$eip .raSearchStart ^ = "
324 "$esp .raSearchStart 4 + =";
325 recover_ebp = false;
326 }
328 // Now crank it out, making sure that the program string set at least the
329 // two required variables.
330 PostfixEvaluator<uint32_t> evaluator =
331 PostfixEvaluator<uint32_t>(&dictionary, memory_);
332 PostfixEvaluator<uint32_t>::DictionaryValidityType dictionary_validity;
333 if (!evaluator.Evaluate(program_string, &dictionary_validity) ||
334 !dictionary_validity.have(ustr__ZSeip()) ||
335 !dictionary_validity.have(ustr__ZSesp())) {
336 // Program string evaluation failed. It may be that %eip is not somewhere
337 // with stack frame info, and %ebp is pointing to non-stack memory, so
338 // our evaluation couldn't succeed. We'll scan the stack for a return
339 // address. This can happen if the stack is in a module for which
340 // we don't have symbols, and that module is compiled without a
341 // frame pointer.
342 uint32_t location_start = last_frame->context.esp;
343 uint32_t location, eip;
344 if (!stack_scan_allowed
345 || !ScanForReturnAddress(location_start, &location, &eip)) {
346 // if we can't find an instruction pointer even with stack scanning,
347 // give up.
348 return NULL;
349 }
351 // This seems like a reasonable return address. Since program string
352 // evaluation failed, use it and set %esp to the location above the
353 // one where the return address was found.
354 dictionary.set(ustr__ZSeip(), eip);
355 dictionary.set(ustr__ZSesp(), location + 4);
356 trust = StackFrame::FRAME_TRUST_SCAN;
357 }
359 // Since this stack frame did not use %ebp in a traditional way,
360 // locating the return address isn't entirely deterministic. In that
361 // case, the stack can be scanned to locate the return address.
362 //
363 // However, if program string evaluation resulted in both %eip and
364 // %ebp values of 0, trust that the end of the stack has been
365 // reached and don't scan for anything else.
366 if (dictionary.get(ustr__ZSeip()) != 0 ||
367 dictionary.get(ustr__ZSebp()) != 0) {
368 int offset = 0;
370 // This scan can only be done if a CodeModules object is available, to
371 // check that candidate return addresses are in fact inside a module.
372 //
373 // TODO(mmentovai): This ignores dynamically-generated code. One possible
374 // solution is to check the minidump's memory map to see if the candidate
375 // %eip value comes from a mapped executable page, although this would
376 // require dumps that contain MINIDUMP_MEMORY_INFO, which the Breakpad
377 // client doesn't currently write (it would need to call MiniDumpWriteDump
378 // with the MiniDumpWithFullMemoryInfo type bit set). Even given this
379 // ability, older OSes (pre-XP SP2) and CPUs (pre-P4) don't enforce
380 // an independent execute privilege on memory pages.
382 uint32_t eip = dictionary.get(ustr__ZSeip());
383 if (modules_ && !modules_->GetModuleForAddress(eip)) {
384 // The instruction pointer at .raSearchStart was invalid, so start
385 // looking one 32-bit word above that location.
386 uint32_t location_start = dictionary.get(ustr__ZDraSearchStart()) + 4;
387 uint32_t location;
388 if (stack_scan_allowed
389 && ScanForReturnAddress(location_start, &location, &eip)) {
390 // This is a better return address that what program string
391 // evaluation found. Use it, and set %esp to the location above the
392 // one where the return address was found.
393 dictionary.set(ustr__ZSeip(), eip);
394 dictionary.set(ustr__ZSesp(), location + 4);
395 offset = location - location_start;
396 trust = StackFrame::FRAME_TRUST_CFI_SCAN;
397 }
398 }
400 if (recover_ebp) {
401 // When trying to recover the previous value of the frame pointer (%ebp),
402 // start looking at the lowest possible address in the saved-register
403 // area, and look at the entire saved register area, increased by the
404 // size of |offset| to account for additional data that may be on the
405 // stack. The scan is performed from the highest possible address to
406 // the lowest, because the expectation is that the function's prolog
407 // would have saved %ebp early.
408 uint32_t ebp = dictionary.get(ustr__ZSebp());
410 // When a scan for return address is used, it is possible to skip one or
411 // more frames (when return address is not in a known module). One
412 // indication for skipped frames is when the value of %ebp is lower than
413 // the location of the return address on the stack
414 bool has_skipped_frames =
415 (trust != StackFrame::FRAME_TRUST_CFI && ebp <= raSearchStart + offset);
417 uint32_t value; // throwaway variable to check pointer validity
418 if (has_skipped_frames || !memory_->GetMemoryAtAddress(ebp, &value)) {
419 int fp_search_bytes = last_frame_info->saved_register_size + offset;
420 uint32_t location_end = last_frame->context.esp +
421 last_frame_callee_parameter_size;
423 for (uint32_t location = location_end + fp_search_bytes;
424 location >= location_end;
425 location -= 4) {
426 if (!memory_->GetMemoryAtAddress(location, &ebp))
427 break;
429 if (memory_->GetMemoryAtAddress(ebp, &value)) {
430 // The candidate value is a pointer to the same memory region
431 // (the stack). Prefer it as a recovered %ebp result.
432 dictionary.set(ustr__ZSebp(), ebp);
433 break;
434 }
435 }
436 }
437 }
438 }
440 // Create a new stack frame (ownership will be transferred to the caller)
441 // and fill it in.
442 StackFrameX86* frame = new StackFrameX86();
444 frame->trust = trust;
445 frame->context = last_frame->context;
446 frame->context.eip = dictionary.get(ustr__ZSeip());
447 frame->context.esp = dictionary.get(ustr__ZSesp());
448 frame->context.ebp = dictionary.get(ustr__ZSebp());
449 frame->context_validity = StackFrameX86::CONTEXT_VALID_EIP |
450 StackFrameX86::CONTEXT_VALID_ESP |
451 StackFrameX86::CONTEXT_VALID_EBP;
453 // These are nonvolatile (callee-save) registers, and the program string
454 // may have filled them in.
455 if (dictionary_validity.have(ustr__ZSebx())) {
456 frame->context.ebx = dictionary.get(ustr__ZSebx());
457 frame->context_validity |= StackFrameX86::CONTEXT_VALID_EBX;
458 }
459 if (dictionary_validity.have(ustr__ZSesi())) {
460 frame->context.esi = dictionary.get(ustr__ZSesi());
461 frame->context_validity |= StackFrameX86::CONTEXT_VALID_ESI;
462 }
463 if (dictionary_validity.have(ustr__ZSedi())) {
464 frame->context.edi = dictionary.get(ustr__ZSedi());
465 frame->context_validity |= StackFrameX86::CONTEXT_VALID_EDI;
466 }
468 return frame;
469 }
471 StackFrameX86* StackwalkerX86::GetCallerByCFIFrameInfo(
472 const vector<StackFrame*> &frames,
473 CFIFrameInfo* cfi_frame_info) {
474 StackFrameX86* last_frame = static_cast<StackFrameX86*>(frames.back());
475 last_frame->cfi_frame_info = cfi_frame_info;
477 scoped_ptr<StackFrameX86> frame(new StackFrameX86());
478 if (!cfi_walker_
479 .FindCallerRegisters(*memory_, *cfi_frame_info,
480 last_frame->context, last_frame->context_validity,
481 &frame->context, &frame->context_validity))
482 return NULL;
484 // Make sure we recovered all the essentials.
485 static const int essentials = (StackFrameX86::CONTEXT_VALID_EIP
486 | StackFrameX86::CONTEXT_VALID_ESP
487 | StackFrameX86::CONTEXT_VALID_EBP);
488 if ((frame->context_validity & essentials) != essentials)
489 return NULL;
491 frame->trust = StackFrame::FRAME_TRUST_CFI;
493 return frame.release();
494 }
496 StackFrameX86* StackwalkerX86::GetCallerByEBPAtBase(
497 const vector<StackFrame*> &frames,
498 bool stack_scan_allowed) {
499 StackFrame::FrameTrust trust;
500 StackFrameX86* last_frame = static_cast<StackFrameX86*>(frames.back());
501 uint32_t last_esp = last_frame->context.esp;
502 uint32_t last_ebp = last_frame->context.ebp;
504 // Assume that the standard %ebp-using x86 calling convention is in
505 // use.
506 //
507 // The typical x86 calling convention, when frame pointers are present,
508 // is for the calling procedure to use CALL, which pushes the return
509 // address onto the stack and sets the instruction pointer (%eip) to
510 // the entry point of the called routine. The called routine then
511 // PUSHes the calling routine's frame pointer (%ebp) onto the stack
512 // before copying the stack pointer (%esp) to the frame pointer (%ebp).
513 // Therefore, the calling procedure's frame pointer is always available
514 // by dereferencing the called procedure's frame pointer, and the return
515 // address is always available at the memory location immediately above
516 // the address pointed to by the called procedure's frame pointer. The
517 // calling procedure's stack pointer (%esp) is 8 higher than the value
518 // of the called procedure's frame pointer at the time the calling
519 // procedure made the CALL: 4 bytes for the return address pushed by the
520 // CALL itself, and 4 bytes for the callee's PUSH of the caller's frame
521 // pointer.
522 //
523 // %eip_new = *(%ebp_old + 4)
524 // %esp_new = %ebp_old + 8
525 // %ebp_new = *(%ebp_old)
527 uint32_t caller_eip, caller_esp, caller_ebp;
529 if (memory_->GetMemoryAtAddress(last_ebp + 4, &caller_eip) &&
530 memory_->GetMemoryAtAddress(last_ebp, &caller_ebp)) {
531 caller_esp = last_ebp + 8;
532 trust = StackFrame::FRAME_TRUST_FP;
533 } else {
534 // We couldn't read the memory %ebp refers to. It may be that %ebp
535 // is pointing to non-stack memory. We'll scan the stack for a
536 // return address. This can happen if last_frame is executing code
537 // for a module for which we don't have symbols, and that module
538 // is compiled without a frame pointer.
539 if (!stack_scan_allowed
540 || !ScanForReturnAddress(last_esp, &caller_esp, &caller_eip)) {
541 // if we can't find an instruction pointer even with stack scanning,
542 // give up.
543 return NULL;
544 }
546 // ScanForReturnAddress found a reasonable return address. Advance
547 // %esp to the location above the one where the return address was
548 // found. Assume that %ebp is unchanged.
549 caller_esp += 4;
550 caller_ebp = last_ebp;
552 trust = StackFrame::FRAME_TRUST_SCAN;
553 }
555 // Create a new stack frame (ownership will be transferred to the caller)
556 // and fill it in.
557 StackFrameX86* frame = new StackFrameX86();
559 frame->trust = trust;
560 frame->context = last_frame->context;
561 frame->context.eip = caller_eip;
562 frame->context.esp = caller_esp;
563 frame->context.ebp = caller_ebp;
564 frame->context_validity = StackFrameX86::CONTEXT_VALID_EIP |
565 StackFrameX86::CONTEXT_VALID_ESP |
566 StackFrameX86::CONTEXT_VALID_EBP;
568 return frame;
569 }
571 StackFrame* StackwalkerX86::GetCallerFrame(const CallStack* stack,
572 bool stack_scan_allowed) {
573 if (!memory_ || !stack) {
574 BPLOG(ERROR) << "Can't get caller frame without memory or stack";
575 return NULL;
576 }
578 const vector<StackFrame*> &frames = *stack->frames();
579 StackFrameX86* last_frame = static_cast<StackFrameX86*>(frames.back());
580 scoped_ptr<StackFrameX86> new_frame;
582 // If the resolver has Windows stack walking information, use that.
583 WindowsFrameInfo* windows_frame_info
584 = frame_symbolizer_->FindWindowsFrameInfo(last_frame);
585 if (windows_frame_info)
586 new_frame.reset(GetCallerByWindowsFrameInfo(frames, windows_frame_info,
587 stack_scan_allowed));
589 // If the resolver has DWARF CFI information, use that.
590 if (!new_frame.get()) {
591 CFIFrameInfo* cfi_frame_info =
592 frame_symbolizer_->FindCFIFrameInfo(last_frame);
593 if (cfi_frame_info)
594 new_frame.reset(GetCallerByCFIFrameInfo(frames, cfi_frame_info));
595 }
597 // Otherwise, hope that the program was using a traditional frame structure.
598 if (!new_frame.get())
599 new_frame.reset(GetCallerByEBPAtBase(frames, stack_scan_allowed));
601 // If nothing worked, tell the caller.
602 if (!new_frame.get())
603 return NULL;
605 // Treat an instruction address of 0 as end-of-stack.
606 if (new_frame->context.eip == 0)
607 return NULL;
609 // If the new stack pointer is at a lower address than the old, then
610 // that's clearly incorrect. Treat this as end-of-stack to enforce
611 // progress and avoid infinite loops.
612 if (new_frame->context.esp <= last_frame->context.esp)
613 return NULL;
615 // new_frame->context.eip is the return address, which is the instruction
616 // after the CALL that caused us to arrive at the callee. Set
617 // new_frame->instruction to one less than that, so it points within the
618 // CALL instruction. See StackFrame::instruction for details, and
619 // StackFrameAMD64::ReturnAddress.
620 new_frame->instruction = new_frame->context.eip - 1;
622 return new_frame.release();
623 }
625 } // namespace google_breakpad