Wed, 31 Dec 2014 06:09:35 +0100
Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.
1 diff --git a/gfx/skia/src/effects/SkGradientShader.cpp b/gfx/skia/src/effects/SkGradientShader.cpp
2 --- a/gfx/skia/src/effects/SkGradientShader.cpp
3 +++ b/gfx/skia/src/effects/SkGradientShader.cpp
4 @@ -167,16 +167,17 @@ private:
6 mutable uint16_t* fCache16; // working ptr. If this is NULL, we need to recompute the cache values
7 mutable SkPMColor* fCache32; // working ptr. If this is NULL, we need to recompute the cache values
9 mutable uint16_t* fCache16Storage; // storage for fCache16, allocated on demand
10 mutable SkMallocPixelRef* fCache32PixelRef;
11 mutable unsigned fCacheAlpha; // the alpha value we used when we computed the cache. larger than 8bits so we can store uninitialized value
13 + static SkPMColor PremultiplyColor(SkColor c0, U8CPU alpha);
14 static void Build16bitCache(uint16_t[], SkColor c0, SkColor c1, int count);
15 static void Build32bitCache(SkPMColor[], SkColor c0, SkColor c1, int count,
16 U8CPU alpha);
17 void setCacheAlpha(U8CPU alpha) const;
18 void initCommon();
20 typedef SkShader INHERITED;
21 };
22 @@ -512,16 +513,31 @@ static inline U8CPU dither_fixed_to_8(Sk
23 * For dithering with premultiply, we want to ceiling the alpha component,
24 * to ensure that it is always >= any color component.
25 */
26 static inline U8CPU dither_ceil_fixed_to_8(SkFixed n) {
27 n >>= 8;
28 return ((n << 1) - (n | (n >> 8))) >> 8;
29 }
31 +SkPMColor Gradient_Shader::PremultiplyColor(SkColor c0, U8CPU paintAlpha)
32 +{
33 + SkFixed a = SkMulDiv255Round(SkColorGetA(c0), paintAlpha);
34 + SkFixed r = SkColorGetR(c0);
35 + SkFixed g = SkColorGetG(c0);
36 + SkFixed b = SkColorGetB(c0);
37 +
38 + a = SkIntToFixed(a) + 0x8000;
39 + r = SkIntToFixed(r) + 0x8000;
40 + g = SkIntToFixed(g) + 0x8000;
41 + b = SkIntToFixed(b) + 0x8000;
42 +
43 + return SkPremultiplyARGBInline(a >> 16, r >> 16, g >> 16, b >> 16);
44 +}
45 +
46 void Gradient_Shader::Build32bitCache(SkPMColor cache[], SkColor c0, SkColor c1,
47 int count, U8CPU paintAlpha) {
48 SkASSERT(count > 1);
50 // need to apply paintAlpha to our two endpoints
51 SkFixed a = SkMulDiv255Round(SkColorGetA(c0), paintAlpha);
52 SkFixed da;
53 {
54 @@ -613,24 +629,24 @@ const uint16_t* Gradient_Shader::getCach
55 }
56 }
57 return fCache16;
58 }
60 const SkPMColor* Gradient_Shader::getCache32() const {
61 if (fCache32 == NULL) {
62 // double the count for dither entries
63 - const int entryCount = kCache32Count * 2;
64 + const int entryCount = kCache32Count * 2 + 2;
65 const size_t allocSize = sizeof(SkPMColor) * entryCount;
67 if (NULL == fCache32PixelRef) {
68 fCache32PixelRef = SkNEW_ARGS(SkMallocPixelRef,
69 (NULL, allocSize, NULL));
70 }
71 - fCache32 = (SkPMColor*)fCache32PixelRef->getAddr();
72 + fCache32 = (SkPMColor*)fCache32PixelRef->getAddr() + 1;
73 if (fColorCount == 2) {
74 Build32bitCache(fCache32, fOrigColors[0], fOrigColors[1],
75 kCache32Count, fCacheAlpha);
76 } else {
77 Rec* rec = fRecs;
78 int prevIndex = 0;
79 for (int i = 1; i < fColorCount; i++) {
80 int nextIndex = SkFixedToFFFF(rec[i].fPos) >> (16 - kCache32Bits);
81 @@ -644,28 +660,31 @@ const SkPMColor* Gradient_Shader::getCac
82 }
83 SkASSERT(prevIndex == kCache32Count - 1);
84 }
86 if (fMapper) {
87 SkMallocPixelRef* newPR = SkNEW_ARGS(SkMallocPixelRef,
88 (NULL, allocSize, NULL));
89 SkPMColor* linear = fCache32; // just computed linear data
90 - SkPMColor* mapped = (SkPMColor*)newPR->getAddr(); // storage for mapped data
91 + SkPMColor* mapped = (SkPMColor*)newPR->getAddr() + 1; // storage for mapped data
92 SkUnitMapper* map = fMapper;
93 for (int i = 0; i < kCache32Count; i++) {
94 int index = map->mapUnit16((i << 8) | i) >> 8;
95 mapped[i] = linear[index];
96 mapped[i + kCache32Count] = linear[index + kCache32Count];
97 }
98 fCache32PixelRef->unref();
99 fCache32PixelRef = newPR;
100 - fCache32 = (SkPMColor*)newPR->getAddr();
101 + fCache32 = (SkPMColor*)newPR->getAddr() + 1;
102 }
103 }
104 + //Write the clamp colours into the first and last entries of fCache32
105 + fCache32[-1] = PremultiplyColor(fOrigColors[0], fCacheAlpha);
106 + fCache32[kCache32Count * 2] = PremultiplyColor(fOrigColors[fColorCount - 1], fCacheAlpha);
107 return fCache32;
108 }
110 /*
111 * Because our caller might rebuild the same (logically the same) gradient
112 * over and over, we'd like to return exactly the same "bitmap" if possible,
113 * allowing the client to utilize a cache of our bitmap (e.g. with a GPU).
114 * To do that, we maintain a private cache of built-bitmaps, based on our
115 @@ -875,28 +894,38 @@ void Linear_Gradient::shadeSpan(int x, i
116 dx = dxStorage[0];
117 } else {
118 SkASSERT(fDstToIndexClass == kLinear_MatrixClass);
119 dx = SkScalarToFixed(fDstToIndex.getScaleX());
120 }
122 if (SkFixedNearlyZero(dx)) {
123 // we're a vertical gradient, so no change in a span
124 - unsigned fi = proc(fx) >> (16 - kCache32Bits);
125 - sk_memset32_dither(dstC, cache[toggle + fi],
126 - cache[(toggle ^ TOGGLE_MASK) + fi], count);
127 + if (proc == clamp_tileproc) {
128 + if (fx < 0) {
129 + sk_memset32(dstC, cache[-1], count);
130 + } else if (fx > 0xFFFF) {
131 + sk_memset32(dstC, cache[kCache32Count * 2], count);
132 + } else {
133 + unsigned fi = proc(fx) >> (16 - kCache32Bits);
134 + sk_memset32_dither(dstC, cache[toggle + fi],
135 + cache[(toggle ^ TOGGLE_MASK) + fi], count);
136 + }
137 + } else {
138 + unsigned fi = proc(fx) >> (16 - kCache32Bits);
139 + sk_memset32_dither(dstC, cache[toggle + fi],
140 + cache[(toggle ^ TOGGLE_MASK) + fi], count);
141 + }
142 } else if (proc == clamp_tileproc) {
143 SkClampRange range;
144 - range.init(fx, dx, count, 0, 0xFF);
145 + range.init(fx, dx, count, cache[-1], cache[kCache32Count * 2]);
147 if ((count = range.fCount0) > 0) {
148 - sk_memset32_dither(dstC,
149 - cache[toggle + range.fV0],
150 - cache[(toggle ^ TOGGLE_MASK) + range.fV0],
151 - count);
152 + // Do we really want to dither the clamp values?
153 + sk_memset32(dstC, range.fV0, count);
154 dstC += count;
155 }
156 if ((count = range.fCount1) > 0) {
157 int unroll = count >> 3;
158 fx = range.fFx1;
159 for (int i = 0; i < unroll; i++) {
160 NO_CHECK_ITER; NO_CHECK_ITER;
161 NO_CHECK_ITER; NO_CHECK_ITER;
162 @@ -905,20 +934,17 @@ void Linear_Gradient::shadeSpan(int x, i
163 }
164 if ((count &= 7) > 0) {
165 do {
166 NO_CHECK_ITER;
167 } while (--count != 0);
168 }
169 }
170 if ((count = range.fCount2) > 0) {
171 - sk_memset32_dither(dstC,
172 - cache[toggle + range.fV1],
173 - cache[(toggle ^ TOGGLE_MASK) + range.fV1],
174 - count);
175 + sk_memset32(dstC, range.fV1, count);
176 }
177 } else if (proc == mirror_tileproc) {
178 do {
179 unsigned fi = mirror_8bits(fx >> 8);
180 SkASSERT(fi <= 0xFF);
181 fx += dx;
182 *dstC++ = cache[toggle + fi];
183 toggle ^= TOGGLE_MASK;
184 @@ -1670,19 +1699,24 @@ public:
185 }
186 SkScalar b = (SkScalarMul(fDiff.fX, fx) +
187 SkScalarMul(fDiff.fY, fy) - fStartRadius) * 2;
188 SkScalar db = (SkScalarMul(fDiff.fX, dx) +
189 SkScalarMul(fDiff.fY, dy)) * 2;
190 if (proc == clamp_tileproc) {
191 for (; count > 0; --count) {
192 SkFixed t = two_point_radial(b, fx, fy, fSr2D2, foura, fOneOverTwoA, posRoot);
193 - SkFixed index = SkClampMax(t, 0xFFFF);
194 - SkASSERT(index <= 0xFFFF);
195 - *dstC++ = cache[index >> (16 - kCache32Bits)];
196 + if (t < 0) {
197 + *dstC++ = cache[-1];
198 + } else if (t > 0xFFFF) {
199 + *dstC++ = cache[kCache32Count * 2];
200 + } else {
201 + SkASSERT(t <= 0xFFFF);
202 + *dstC++ = cache[t >> (16 - kCache32Bits)];
203 + }
204 fx += dx;
205 fy += dy;
206 b += db;
207 }
208 } else if (proc == mirror_tileproc) {
209 for (; count > 0; --count) {
210 SkFixed t = two_point_radial(b, fx, fy, fSr2D2, foura, fOneOverTwoA, posRoot);
211 SkFixed index = mirror_tileproc(t);