Wed, 31 Dec 2014 06:09:35 +0100
Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.
1 /*
2 * Copyright 2012 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
8 #ifndef SkThreadPool_DEFINED
9 #define SkThreadPool_DEFINED
11 #include "SkCondVar.h"
12 #include "SkRunnable.h"
13 #include "SkTDArray.h"
14 #include "SkTInternalLList.h"
15 #include "SkThreadUtils.h"
16 #include "SkTypes.h"
18 #if defined(SK_BUILD_FOR_UNIX) || defined(SK_BUILD_FOR_MAC) || defined(SK_BUILD_FOR_ANDROID)
19 # include <unistd.h>
20 #endif
22 // Returns the number of cores on this machine.
23 static inline int num_cores() {
24 #if defined(SK_BUILD_FOR_WIN32)
25 SYSTEM_INFO sysinfo;
26 GetSystemInfo(&sysinfo);
27 return sysinfo.dwNumberOfProcessors;
28 #elif defined(SK_BUILD_FOR_UNIX) || defined(SK_BUILD_FOR_MAC) || defined(SK_BUILD_FOR_ANDROID)
29 return sysconf(_SC_NPROCESSORS_ONLN);
30 #else
31 return 1;
32 #endif
33 }
35 template <typename T>
36 class SkTThreadPool {
37 public:
38 /**
39 * Create a threadpool with count threads, or one thread per core if kThreadPerCore.
40 */
41 static const int kThreadPerCore = -1;
42 explicit SkTThreadPool(int count);
43 ~SkTThreadPool();
45 /**
46 * Queues up an SkRunnable to run when a thread is available, or synchronously if count is 0.
47 * Does not take ownership. NULL is a safe no-op. If T is not void, the runnable will be passed
48 * a reference to a T on the thread's local stack.
49 */
50 void add(SkTRunnable<T>*);
52 /**
53 * Block until all added SkRunnables have completed. Once called, calling add() is undefined.
54 */
55 void wait();
57 private:
58 struct LinkedRunnable {
59 SkTRunnable<T>* fRunnable; // Unowned.
60 SK_DECLARE_INTERNAL_LLIST_INTERFACE(LinkedRunnable);
61 };
63 enum State {
64 kRunning_State, // Normal case. We've been constructed and no one has called wait().
65 kWaiting_State, // wait has been called, but there still might be work to do or being done.
66 kHalting_State, // There's no work to do and no thread is busy. All threads can shut down.
67 };
69 SkTInternalLList<LinkedRunnable> fQueue;
70 SkCondVar fReady;
71 SkTDArray<SkThread*> fThreads;
72 State fState;
73 int fBusyThreads;
75 static void Loop(void*); // Static because we pass in this.
76 };
78 template <typename T>
79 SkTThreadPool<T>::SkTThreadPool(int count) : fState(kRunning_State), fBusyThreads(0) {
80 if (count < 0) {
81 count = num_cores();
82 }
83 // Create count threads, all running SkTThreadPool::Loop.
84 for (int i = 0; i < count; i++) {
85 SkThread* thread = SkNEW_ARGS(SkThread, (&SkTThreadPool::Loop, this));
86 *fThreads.append() = thread;
87 thread->start();
88 }
89 }
91 template <typename T>
92 SkTThreadPool<T>::~SkTThreadPool() {
93 if (kRunning_State == fState) {
94 this->wait();
95 }
96 }
98 namespace SkThreadPoolPrivate {
100 template <typename T>
101 struct ThreadLocal {
102 void run(SkTRunnable<T>* r) { r->run(data); }
103 T data;
104 };
106 template <>
107 struct ThreadLocal<void> {
108 void run(SkTRunnable<void>* r) { r->run(); }
109 };
111 } // namespace SkThreadPoolPrivate
113 template <typename T>
114 void SkTThreadPool<T>::add(SkTRunnable<T>* r) {
115 if (r == NULL) {
116 return;
117 }
119 if (fThreads.isEmpty()) {
120 SkThreadPoolPrivate::ThreadLocal<T> threadLocal;
121 threadLocal.run(r);
122 return;
123 }
125 LinkedRunnable* linkedRunnable = SkNEW(LinkedRunnable);
126 linkedRunnable->fRunnable = r;
127 fReady.lock();
128 SkASSERT(fState != kHalting_State); // Shouldn't be able to add work when we're halting.
129 fQueue.addToHead(linkedRunnable);
130 fReady.signal();
131 fReady.unlock();
132 }
135 template <typename T>
136 void SkTThreadPool<T>::wait() {
137 fReady.lock();
138 fState = kWaiting_State;
139 fReady.broadcast();
140 fReady.unlock();
142 // Wait for all threads to stop.
143 for (int i = 0; i < fThreads.count(); i++) {
144 fThreads[i]->join();
145 SkDELETE(fThreads[i]);
146 }
147 SkASSERT(fQueue.isEmpty());
148 }
150 template <typename T>
151 /*static*/ void SkTThreadPool<T>::Loop(void* arg) {
152 // The SkTThreadPool passes itself as arg to each thread as they're created.
153 SkTThreadPool<T>* pool = static_cast<SkTThreadPool<T>*>(arg);
154 SkThreadPoolPrivate::ThreadLocal<T> threadLocal;
156 while (true) {
157 // We have to be holding the lock to read the queue and to call wait.
158 pool->fReady.lock();
159 while(pool->fQueue.isEmpty()) {
160 // Does the client want to stop and are all the threads ready to stop?
161 // If so, we move into the halting state, and whack all the threads so they notice.
162 if (kWaiting_State == pool->fState && pool->fBusyThreads == 0) {
163 pool->fState = kHalting_State;
164 pool->fReady.broadcast();
165 }
166 // Any time we find ourselves in the halting state, it's quitting time.
167 if (kHalting_State == pool->fState) {
168 pool->fReady.unlock();
169 return;
170 }
171 // wait yields the lock while waiting, but will have it again when awoken.
172 pool->fReady.wait();
173 }
174 // We've got the lock back here, no matter if we ran wait or not.
176 // The queue is not empty, so we have something to run. Claim it.
177 LinkedRunnable* r = pool->fQueue.tail();
179 pool->fQueue.remove(r);
181 // Having claimed our SkRunnable, we now give up the lock while we run it.
182 // Otherwise, we'd only ever do work on one thread at a time, which rather
183 // defeats the point of this code.
184 pool->fBusyThreads++;
185 pool->fReady.unlock();
187 // OK, now really do the work.
188 threadLocal.run(r->fRunnable);
189 SkDELETE(r);
191 // Let everyone know we're not busy.
192 pool->fReady.lock();
193 pool->fBusyThreads--;
194 pool->fReady.unlock();
195 }
197 SkASSERT(false); // Unreachable. The only exit happens when pool->fState is kHalting_State.
198 }
200 typedef SkTThreadPool<void> SkThreadPool;
202 #endif