Wed, 31 Dec 2014 06:09:35 +0100
Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.
2 /*
3 * Copyright 2006 The Android Open Source Project
4 *
5 * Use of this source code is governed by a BSD-style license that can be
6 * found in the LICENSE file.
7 */
10 #include "SkBlitter.h"
11 #include "SkAntiRun.h"
12 #include "SkColor.h"
13 #include "SkColorFilter.h"
14 #include "SkCoreBlitters.h"
15 #include "SkFilterShader.h"
16 #include "SkReadBuffer.h"
17 #include "SkWriteBuffer.h"
18 #include "SkMask.h"
19 #include "SkMaskFilter.h"
20 #include "SkString.h"
21 #include "SkTLazy.h"
22 #include "SkUtils.h"
23 #include "SkXfermode.h"
25 SkBlitter::~SkBlitter() {}
27 bool SkBlitter::isNullBlitter() const { return false; }
29 const SkBitmap* SkBlitter::justAnOpaqueColor(uint32_t* value) {
30 return NULL;
31 }
33 void SkBlitter::blitH(int x, int y, int width) {
34 SkDEBUGFAIL("unimplemented");
35 }
37 void SkBlitter::blitAntiH(int x, int y, const SkAlpha antialias[],
38 const int16_t runs[]) {
39 SkDEBUGFAIL("unimplemented");
40 }
42 void SkBlitter::blitV(int x, int y, int height, SkAlpha alpha) {
43 if (alpha == 255) {
44 this->blitRect(x, y, 1, height);
45 } else {
46 int16_t runs[2];
47 runs[0] = 1;
48 runs[1] = 0;
50 while (--height >= 0) {
51 this->blitAntiH(x, y++, &alpha, runs);
52 }
53 }
54 }
56 void SkBlitter::blitRect(int x, int y, int width, int height) {
57 SkASSERT(width > 0);
58 while (--height >= 0) {
59 this->blitH(x, y++, width);
60 }
61 }
63 /// Default implementation doesn't check for any easy optimizations
64 /// such as alpha == 0 or 255; also uses blitV(), which some subclasses
65 /// may not support.
66 void SkBlitter::blitAntiRect(int x, int y, int width, int height,
67 SkAlpha leftAlpha, SkAlpha rightAlpha) {
68 this->blitV(x++, y, height, leftAlpha);
69 if (width > 0) {
70 this->blitRect(x, y, width, height);
71 x += width;
72 }
73 this->blitV(x, y, height, rightAlpha);
74 }
76 //////////////////////////////////////////////////////////////////////////////
78 static inline void bits_to_runs(SkBlitter* blitter, int x, int y,
79 const uint8_t bits[],
80 U8CPU left_mask, int rowBytes,
81 U8CPU right_mask) {
82 int inFill = 0;
83 int pos = 0;
85 while (--rowBytes >= 0) {
86 unsigned b = *bits++ & left_mask;
87 if (rowBytes == 0) {
88 b &= right_mask;
89 }
91 for (unsigned test = 0x80; test != 0; test >>= 1) {
92 if (b & test) {
93 if (!inFill) {
94 pos = x;
95 inFill = true;
96 }
97 } else {
98 if (inFill) {
99 blitter->blitH(pos, y, x - pos);
100 inFill = false;
101 }
102 }
103 x += 1;
104 }
105 left_mask = 0xFF;
106 }
108 // final cleanup
109 if (inFill) {
110 blitter->blitH(pos, y, x - pos);
111 }
112 }
114 void SkBlitter::blitMask(const SkMask& mask, const SkIRect& clip) {
115 SkASSERT(mask.fBounds.contains(clip));
117 if (mask.fFormat == SkMask::kBW_Format) {
118 int cx = clip.fLeft;
119 int cy = clip.fTop;
120 int maskLeft = mask.fBounds.fLeft;
121 int mask_rowBytes = mask.fRowBytes;
122 int height = clip.height();
124 const uint8_t* bits = mask.getAddr1(cx, cy);
126 if (cx == maskLeft && clip.fRight == mask.fBounds.fRight) {
127 while (--height >= 0) {
128 bits_to_runs(this, cx, cy, bits, 0xFF, mask_rowBytes, 0xFF);
129 bits += mask_rowBytes;
130 cy += 1;
131 }
132 } else {
133 int left_edge = cx - maskLeft;
134 SkASSERT(left_edge >= 0);
135 int rite_edge = clip.fRight - maskLeft;
136 SkASSERT(rite_edge > left_edge);
138 int left_mask = 0xFF >> (left_edge & 7);
139 int rite_mask = 0xFF << (8 - (rite_edge & 7));
140 int full_runs = (rite_edge >> 3) - ((left_edge + 7) >> 3);
142 // check for empty right mask, so we don't read off the end (or go slower than we need to)
143 if (rite_mask == 0) {
144 SkASSERT(full_runs >= 0);
145 full_runs -= 1;
146 rite_mask = 0xFF;
147 }
148 if (left_mask == 0xFF) {
149 full_runs -= 1;
150 }
152 // back up manually so we can keep in sync with our byte-aligned src
153 // have cx reflect our actual starting x-coord
154 cx -= left_edge & 7;
156 if (full_runs < 0) {
157 SkASSERT((left_mask & rite_mask) != 0);
158 while (--height >= 0) {
159 bits_to_runs(this, cx, cy, bits, left_mask, 1, rite_mask);
160 bits += mask_rowBytes;
161 cy += 1;
162 }
163 } else {
164 while (--height >= 0) {
165 bits_to_runs(this, cx, cy, bits, left_mask, full_runs + 2, rite_mask);
166 bits += mask_rowBytes;
167 cy += 1;
168 }
169 }
170 }
171 } else {
172 int width = clip.width();
173 SkAutoSTMalloc<64, int16_t> runStorage(width + 1);
174 int16_t* runs = runStorage.get();
175 const uint8_t* aa = mask.getAddr8(clip.fLeft, clip.fTop);
177 sk_memset16((uint16_t*)runs, 1, width);
178 runs[width] = 0;
180 int height = clip.height();
181 int y = clip.fTop;
182 while (--height >= 0) {
183 this->blitAntiH(clip.fLeft, y, aa, runs);
184 aa += mask.fRowBytes;
185 y += 1;
186 }
187 }
188 }
190 /////////////////////// these guys are not virtual, just a helpers
192 void SkBlitter::blitMaskRegion(const SkMask& mask, const SkRegion& clip) {
193 if (clip.quickReject(mask.fBounds)) {
194 return;
195 }
197 SkRegion::Cliperator clipper(clip, mask.fBounds);
199 while (!clipper.done()) {
200 const SkIRect& cr = clipper.rect();
201 this->blitMask(mask, cr);
202 clipper.next();
203 }
204 }
206 void SkBlitter::blitRectRegion(const SkIRect& rect, const SkRegion& clip) {
207 SkRegion::Cliperator clipper(clip, rect);
209 while (!clipper.done()) {
210 const SkIRect& cr = clipper.rect();
211 this->blitRect(cr.fLeft, cr.fTop, cr.width(), cr.height());
212 clipper.next();
213 }
214 }
216 void SkBlitter::blitRegion(const SkRegion& clip) {
217 SkRegion::Iterator iter(clip);
219 while (!iter.done()) {
220 const SkIRect& cr = iter.rect();
221 this->blitRect(cr.fLeft, cr.fTop, cr.width(), cr.height());
222 iter.next();
223 }
224 }
226 ///////////////////////////////////////////////////////////////////////////////
228 void SkNullBlitter::blitH(int x, int y, int width) {}
230 void SkNullBlitter::blitAntiH(int x, int y, const SkAlpha antialias[],
231 const int16_t runs[]) {}
233 void SkNullBlitter::blitV(int x, int y, int height, SkAlpha alpha) {}
235 void SkNullBlitter::blitRect(int x, int y, int width, int height) {}
237 void SkNullBlitter::blitMask(const SkMask& mask, const SkIRect& clip) {}
239 const SkBitmap* SkNullBlitter::justAnOpaqueColor(uint32_t* value) {
240 return NULL;
241 }
243 bool SkNullBlitter::isNullBlitter() const { return true; }
245 ///////////////////////////////////////////////////////////////////////////////
247 static int compute_anti_width(const int16_t runs[]) {
248 int width = 0;
250 for (;;) {
251 int count = runs[0];
253 SkASSERT(count >= 0);
254 if (count == 0) {
255 break;
256 }
257 width += count;
258 runs += count;
259 }
260 return width;
261 }
263 static inline bool y_in_rect(int y, const SkIRect& rect) {
264 return (unsigned)(y - rect.fTop) < (unsigned)rect.height();
265 }
267 static inline bool x_in_rect(int x, const SkIRect& rect) {
268 return (unsigned)(x - rect.fLeft) < (unsigned)rect.width();
269 }
271 void SkRectClipBlitter::blitH(int left, int y, int width) {
272 SkASSERT(width > 0);
274 if (!y_in_rect(y, fClipRect)) {
275 return;
276 }
278 int right = left + width;
280 if (left < fClipRect.fLeft) {
281 left = fClipRect.fLeft;
282 }
283 if (right > fClipRect.fRight) {
284 right = fClipRect.fRight;
285 }
287 width = right - left;
288 if (width > 0) {
289 fBlitter->blitH(left, y, width);
290 }
291 }
293 void SkRectClipBlitter::blitAntiH(int left, int y, const SkAlpha aa[],
294 const int16_t runs[]) {
295 if (!y_in_rect(y, fClipRect) || left >= fClipRect.fRight) {
296 return;
297 }
299 int x0 = left;
300 int x1 = left + compute_anti_width(runs);
302 if (x1 <= fClipRect.fLeft) {
303 return;
304 }
306 SkASSERT(x0 < x1);
307 if (x0 < fClipRect.fLeft) {
308 int dx = fClipRect.fLeft - x0;
309 SkAlphaRuns::BreakAt((int16_t*)runs, (uint8_t*)aa, dx);
310 runs += dx;
311 aa += dx;
312 x0 = fClipRect.fLeft;
313 }
315 SkASSERT(x0 < x1 && runs[x1 - x0] == 0);
316 if (x1 > fClipRect.fRight) {
317 x1 = fClipRect.fRight;
318 SkAlphaRuns::BreakAt((int16_t*)runs, (uint8_t*)aa, x1 - x0);
319 ((int16_t*)runs)[x1 - x0] = 0;
320 }
322 SkASSERT(x0 < x1 && runs[x1 - x0] == 0);
323 SkASSERT(compute_anti_width(runs) == x1 - x0);
325 fBlitter->blitAntiH(x0, y, aa, runs);
326 }
328 void SkRectClipBlitter::blitV(int x, int y, int height, SkAlpha alpha) {
329 SkASSERT(height > 0);
331 if (!x_in_rect(x, fClipRect)) {
332 return;
333 }
335 int y0 = y;
336 int y1 = y + height;
338 if (y0 < fClipRect.fTop) {
339 y0 = fClipRect.fTop;
340 }
341 if (y1 > fClipRect.fBottom) {
342 y1 = fClipRect.fBottom;
343 }
345 if (y0 < y1) {
346 fBlitter->blitV(x, y0, y1 - y0, alpha);
347 }
348 }
350 void SkRectClipBlitter::blitRect(int left, int y, int width, int height) {
351 SkIRect r;
353 r.set(left, y, left + width, y + height);
354 if (r.intersect(fClipRect)) {
355 fBlitter->blitRect(r.fLeft, r.fTop, r.width(), r.height());
356 }
357 }
359 void SkRectClipBlitter::blitAntiRect(int left, int y, int width, int height,
360 SkAlpha leftAlpha, SkAlpha rightAlpha) {
361 SkIRect r;
363 // The *true* width of the rectangle blitted is width+2:
364 r.set(left, y, left + width + 2, y + height);
365 if (r.intersect(fClipRect)) {
366 if (r.fLeft != left) {
367 SkASSERT(r.fLeft > left);
368 leftAlpha = 255;
369 }
370 if (r.fRight != left + width + 2) {
371 SkASSERT(r.fRight < left + width + 2);
372 rightAlpha = 255;
373 }
374 if (255 == leftAlpha && 255 == rightAlpha) {
375 fBlitter->blitRect(r.fLeft, r.fTop, r.width(), r.height());
376 } else if (1 == r.width()) {
377 if (r.fLeft == left) {
378 fBlitter->blitV(r.fLeft, r.fTop, r.height(), leftAlpha);
379 } else {
380 SkASSERT(r.fLeft == left + width + 1);
381 fBlitter->blitV(r.fLeft, r.fTop, r.height(), rightAlpha);
382 }
383 } else {
384 fBlitter->blitAntiRect(r.fLeft, r.fTop, r.width() - 2, r.height(),
385 leftAlpha, rightAlpha);
386 }
387 }
388 }
390 void SkRectClipBlitter::blitMask(const SkMask& mask, const SkIRect& clip) {
391 SkASSERT(mask.fBounds.contains(clip));
393 SkIRect r = clip;
395 if (r.intersect(fClipRect)) {
396 fBlitter->blitMask(mask, r);
397 }
398 }
400 const SkBitmap* SkRectClipBlitter::justAnOpaqueColor(uint32_t* value) {
401 return fBlitter->justAnOpaqueColor(value);
402 }
404 ///////////////////////////////////////////////////////////////////////////////
406 void SkRgnClipBlitter::blitH(int x, int y, int width) {
407 SkRegion::Spanerator span(*fRgn, y, x, x + width);
408 int left, right;
410 while (span.next(&left, &right)) {
411 SkASSERT(left < right);
412 fBlitter->blitH(left, y, right - left);
413 }
414 }
416 void SkRgnClipBlitter::blitAntiH(int x, int y, const SkAlpha aa[],
417 const int16_t runs[]) {
418 int width = compute_anti_width(runs);
419 SkRegion::Spanerator span(*fRgn, y, x, x + width);
420 int left, right;
421 SkDEBUGCODE(const SkIRect& bounds = fRgn->getBounds();)
423 int prevRite = x;
424 while (span.next(&left, &right)) {
425 SkASSERT(x <= left);
426 SkASSERT(left < right);
427 SkASSERT(left >= bounds.fLeft && right <= bounds.fRight);
429 SkAlphaRuns::Break((int16_t*)runs, (uint8_t*)aa, left - x, right - left);
431 // now zero before left
432 if (left > prevRite) {
433 int index = prevRite - x;
434 ((uint8_t*)aa)[index] = 0; // skip runs after right
435 ((int16_t*)runs)[index] = SkToS16(left - prevRite);
436 }
438 prevRite = right;
439 }
441 if (prevRite > x) {
442 ((int16_t*)runs)[prevRite - x] = 0;
444 if (x < 0) {
445 int skip = runs[0];
446 SkASSERT(skip >= -x);
447 aa += skip;
448 runs += skip;
449 x += skip;
450 }
451 fBlitter->blitAntiH(x, y, aa, runs);
452 }
453 }
455 void SkRgnClipBlitter::blitV(int x, int y, int height, SkAlpha alpha) {
456 SkIRect bounds;
457 bounds.set(x, y, x + 1, y + height);
459 SkRegion::Cliperator iter(*fRgn, bounds);
461 while (!iter.done()) {
462 const SkIRect& r = iter.rect();
463 SkASSERT(bounds.contains(r));
465 fBlitter->blitV(x, r.fTop, r.height(), alpha);
466 iter.next();
467 }
468 }
470 void SkRgnClipBlitter::blitRect(int x, int y, int width, int height) {
471 SkIRect bounds;
472 bounds.set(x, y, x + width, y + height);
474 SkRegion::Cliperator iter(*fRgn, bounds);
476 while (!iter.done()) {
477 const SkIRect& r = iter.rect();
478 SkASSERT(bounds.contains(r));
480 fBlitter->blitRect(r.fLeft, r.fTop, r.width(), r.height());
481 iter.next();
482 }
483 }
485 void SkRgnClipBlitter::blitAntiRect(int x, int y, int width, int height,
486 SkAlpha leftAlpha, SkAlpha rightAlpha) {
487 // The *true* width of the rectangle to blit is width + 2
488 SkIRect bounds;
489 bounds.set(x, y, x + width + 2, y + height);
491 SkRegion::Cliperator iter(*fRgn, bounds);
493 while (!iter.done()) {
494 const SkIRect& r = iter.rect();
495 SkASSERT(bounds.contains(r));
496 SkASSERT(r.fLeft >= x);
497 SkASSERT(r.fRight <= x + width + 2);
499 SkAlpha effectiveLeftAlpha = (r.fLeft == x) ? leftAlpha : 255;
500 SkAlpha effectiveRightAlpha = (r.fRight == x + width + 2) ?
501 rightAlpha : 255;
503 if (255 == effectiveLeftAlpha && 255 == effectiveRightAlpha) {
504 fBlitter->blitRect(r.fLeft, r.fTop, r.width(), r.height());
505 } else if (1 == r.width()) {
506 if (r.fLeft == x) {
507 fBlitter->blitV(r.fLeft, r.fTop, r.height(),
508 effectiveLeftAlpha);
509 } else {
510 SkASSERT(r.fLeft == x + width + 1);
511 fBlitter->blitV(r.fLeft, r.fTop, r.height(),
512 effectiveRightAlpha);
513 }
514 } else {
515 fBlitter->blitAntiRect(r.fLeft, r.fTop, r.width() - 2, r.height(),
516 effectiveLeftAlpha, effectiveRightAlpha);
517 }
518 iter.next();
519 }
520 }
523 void SkRgnClipBlitter::blitMask(const SkMask& mask, const SkIRect& clip) {
524 SkASSERT(mask.fBounds.contains(clip));
526 SkRegion::Cliperator iter(*fRgn, clip);
527 const SkIRect& r = iter.rect();
528 SkBlitter* blitter = fBlitter;
530 while (!iter.done()) {
531 blitter->blitMask(mask, r);
532 iter.next();
533 }
534 }
536 const SkBitmap* SkRgnClipBlitter::justAnOpaqueColor(uint32_t* value) {
537 return fBlitter->justAnOpaqueColor(value);
538 }
540 ///////////////////////////////////////////////////////////////////////////////
542 SkBlitter* SkBlitterClipper::apply(SkBlitter* blitter, const SkRegion* clip,
543 const SkIRect* ir) {
544 if (clip) {
545 const SkIRect& clipR = clip->getBounds();
547 if (clip->isEmpty() || (ir && !SkIRect::Intersects(clipR, *ir))) {
548 blitter = &fNullBlitter;
549 } else if (clip->isRect()) {
550 if (ir == NULL || !clipR.contains(*ir)) {
551 fRectBlitter.init(blitter, clipR);
552 blitter = &fRectBlitter;
553 }
554 } else {
555 fRgnBlitter.init(blitter, clip);
556 blitter = &fRgnBlitter;
557 }
558 }
559 return blitter;
560 }
562 ///////////////////////////////////////////////////////////////////////////////
564 #include "SkColorShader.h"
565 #include "SkColorPriv.h"
567 class Sk3DShader : public SkShader {
568 public:
569 Sk3DShader(SkShader* proxy) : fProxy(proxy) {
570 SkSafeRef(proxy);
571 fMask = NULL;
572 }
574 virtual ~Sk3DShader() {
575 SkSafeUnref(fProxy);
576 }
578 void setMask(const SkMask* mask) { fMask = mask; }
580 virtual bool setContext(const SkBitmap& device, const SkPaint& paint,
581 const SkMatrix& matrix) SK_OVERRIDE {
582 if (!this->INHERITED::setContext(device, paint, matrix)) {
583 return false;
584 }
585 if (fProxy) {
586 if (!fProxy->setContext(device, paint, matrix)) {
587 // must keep our set/end context calls balanced
588 this->INHERITED::endContext();
589 return false;
590 }
591 } else {
592 fPMColor = SkPreMultiplyColor(paint.getColor());
593 }
594 return true;
595 }
597 virtual void endContext() SK_OVERRIDE {
598 if (fProxy) {
599 fProxy->endContext();
600 }
601 this->INHERITED::endContext();
602 }
604 virtual void shadeSpan(int x, int y, SkPMColor span[], int count) SK_OVERRIDE {
605 if (fProxy) {
606 fProxy->shadeSpan(x, y, span, count);
607 }
609 if (fMask == NULL) {
610 if (fProxy == NULL) {
611 sk_memset32(span, fPMColor, count);
612 }
613 return;
614 }
616 SkASSERT(fMask->fBounds.contains(x, y));
617 SkASSERT(fMask->fBounds.contains(x + count - 1, y));
619 size_t size = fMask->computeImageSize();
620 const uint8_t* alpha = fMask->getAddr8(x, y);
621 const uint8_t* mulp = alpha + size;
622 const uint8_t* addp = mulp + size;
624 if (fProxy) {
625 for (int i = 0; i < count; i++) {
626 if (alpha[i]) {
627 SkPMColor c = span[i];
628 if (c) {
629 unsigned a = SkGetPackedA32(c);
630 unsigned r = SkGetPackedR32(c);
631 unsigned g = SkGetPackedG32(c);
632 unsigned b = SkGetPackedB32(c);
634 unsigned mul = SkAlpha255To256(mulp[i]);
635 unsigned add = addp[i];
637 r = SkFastMin32(SkAlphaMul(r, mul) + add, a);
638 g = SkFastMin32(SkAlphaMul(g, mul) + add, a);
639 b = SkFastMin32(SkAlphaMul(b, mul) + add, a);
641 span[i] = SkPackARGB32(a, r, g, b);
642 }
643 } else {
644 span[i] = 0;
645 }
646 }
647 } else { // color
648 unsigned a = SkGetPackedA32(fPMColor);
649 unsigned r = SkGetPackedR32(fPMColor);
650 unsigned g = SkGetPackedG32(fPMColor);
651 unsigned b = SkGetPackedB32(fPMColor);
652 for (int i = 0; i < count; i++) {
653 if (alpha[i]) {
654 unsigned mul = SkAlpha255To256(mulp[i]);
655 unsigned add = addp[i];
657 span[i] = SkPackARGB32( a,
658 SkFastMin32(SkAlphaMul(r, mul) + add, a),
659 SkFastMin32(SkAlphaMul(g, mul) + add, a),
660 SkFastMin32(SkAlphaMul(b, mul) + add, a));
661 } else {
662 span[i] = 0;
663 }
664 }
665 }
666 }
668 #ifndef SK_IGNORE_TO_STRING
669 virtual void toString(SkString* str) const SK_OVERRIDE {
670 str->append("Sk3DShader: (");
672 if (NULL != fProxy) {
673 str->append("Proxy: ");
674 fProxy->toString(str);
675 }
677 this->INHERITED::toString(str);
679 str->append(")");
680 }
681 #endif
683 SK_DECLARE_PUBLIC_FLATTENABLE_DESERIALIZATION_PROCS(Sk3DShader)
685 protected:
686 Sk3DShader(SkReadBuffer& buffer) : INHERITED(buffer) {
687 fProxy = buffer.readShader();
688 fPMColor = buffer.readColor();
689 fMask = NULL;
690 }
692 virtual void flatten(SkWriteBuffer& buffer) const SK_OVERRIDE {
693 this->INHERITED::flatten(buffer);
694 buffer.writeFlattenable(fProxy);
695 buffer.writeColor(fPMColor);
696 }
698 private:
699 SkShader* fProxy;
700 SkPMColor fPMColor;
701 const SkMask* fMask;
703 typedef SkShader INHERITED;
704 };
706 class Sk3DBlitter : public SkBlitter {
707 public:
708 Sk3DBlitter(SkBlitter* proxy, Sk3DShader* shader)
709 : fProxy(proxy)
710 , f3DShader(SkRef(shader))
711 {}
713 virtual void blitH(int x, int y, int width) {
714 fProxy->blitH(x, y, width);
715 }
717 virtual void blitAntiH(int x, int y, const SkAlpha antialias[],
718 const int16_t runs[]) {
719 fProxy->blitAntiH(x, y, antialias, runs);
720 }
722 virtual void blitV(int x, int y, int height, SkAlpha alpha) {
723 fProxy->blitV(x, y, height, alpha);
724 }
726 virtual void blitRect(int x, int y, int width, int height) {
727 fProxy->blitRect(x, y, width, height);
728 }
730 virtual void blitMask(const SkMask& mask, const SkIRect& clip) {
731 if (mask.fFormat == SkMask::k3D_Format) {
732 f3DShader->setMask(&mask);
734 ((SkMask*)&mask)->fFormat = SkMask::kA8_Format;
735 fProxy->blitMask(mask, clip);
736 ((SkMask*)&mask)->fFormat = SkMask::k3D_Format;
738 f3DShader->setMask(NULL);
739 } else {
740 fProxy->blitMask(mask, clip);
741 }
742 }
744 private:
745 // fProxy is unowned. It will be deleted by SkSmallAllocator.
746 SkBlitter* fProxy;
747 SkAutoTUnref<Sk3DShader> f3DShader;
748 };
750 ///////////////////////////////////////////////////////////////////////////////
752 #include "SkCoreBlitters.h"
754 static bool just_solid_color(const SkPaint& paint) {
755 if (paint.getAlpha() == 0xFF && paint.getColorFilter() == NULL) {
756 SkShader* shader = paint.getShader();
757 if (NULL == shader ||
758 (shader->getFlags() & SkShader::kOpaqueAlpha_Flag)) {
759 return true;
760 }
761 }
762 return false;
763 }
765 /** By analyzing the paint (with an xfermode), we may decide we can take
766 special action. This enum lists our possible actions
767 */
768 enum XferInterp {
769 kNormal_XferInterp, // no special interpretation, draw normally
770 kSrcOver_XferInterp, // draw as if in srcover mode
771 kSkipDrawing_XferInterp // draw nothing
772 };
774 static XferInterp interpret_xfermode(const SkPaint& paint, SkXfermode* xfer,
775 SkColorType deviceCT) {
776 SkXfermode::Mode mode;
778 if (SkXfermode::AsMode(xfer, &mode)) {
779 switch (mode) {
780 case SkXfermode::kSrc_Mode:
781 if (just_solid_color(paint)) {
782 return kSrcOver_XferInterp;
783 }
784 break;
785 case SkXfermode::kDst_Mode:
786 return kSkipDrawing_XferInterp;
787 case SkXfermode::kSrcOver_Mode:
788 return kSrcOver_XferInterp;
789 case SkXfermode::kDstOver_Mode:
790 if (kRGB_565_SkColorType == deviceCT) {
791 return kSkipDrawing_XferInterp;
792 }
793 break;
794 case SkXfermode::kSrcIn_Mode:
795 if (kRGB_565_SkColorType == deviceCT &&
796 just_solid_color(paint)) {
797 return kSrcOver_XferInterp;
798 }
799 break;
800 case SkXfermode::kDstIn_Mode:
801 if (just_solid_color(paint)) {
802 return kSkipDrawing_XferInterp;
803 }
804 break;
805 default:
806 break;
807 }
808 }
809 return kNormal_XferInterp;
810 }
812 SkBlitter* SkBlitter::Choose(const SkBitmap& device,
813 const SkMatrix& matrix,
814 const SkPaint& origPaint,
815 SkTBlitterAllocator* allocator,
816 bool drawCoverage) {
817 SkASSERT(allocator != NULL);
819 SkBlitter* blitter = NULL;
821 // which check, in case we're being called by a client with a dummy device
822 // (e.g. they have a bounder that always aborts the draw)
823 if (kUnknown_SkColorType == device.colorType() ||
824 (drawCoverage && (kAlpha_8_SkColorType != device.colorType()))) {
825 blitter = allocator->createT<SkNullBlitter>();
826 return blitter;
827 }
829 SkShader* shader = origPaint.getShader();
830 SkColorFilter* cf = origPaint.getColorFilter();
831 SkXfermode* mode = origPaint.getXfermode();
832 Sk3DShader* shader3D = NULL;
834 SkTCopyOnFirstWrite<SkPaint> paint(origPaint);
836 if (origPaint.getMaskFilter() != NULL &&
837 origPaint.getMaskFilter()->getFormat() == SkMask::k3D_Format) {
838 shader3D = SkNEW_ARGS(Sk3DShader, (shader));
839 // we know we haven't initialized lazyPaint yet, so just do it
840 paint.writable()->setShader(shader3D)->unref();
841 shader = shader3D;
842 }
844 if (NULL != mode) {
845 switch (interpret_xfermode(*paint, mode, device.colorType())) {
846 case kSrcOver_XferInterp:
847 mode = NULL;
848 paint.writable()->setXfermode(NULL);
849 break;
850 case kSkipDrawing_XferInterp:{
851 blitter = allocator->createT<SkNullBlitter>();
852 return blitter;
853 }
854 default:
855 break;
856 }
857 }
859 /*
860 * If the xfermode is CLEAR, then we can completely ignore the installed
861 * color/shader/colorfilter, and just pretend we're SRC + color==0. This
862 * will fall into our optimizations for SRC mode.
863 */
864 if (SkXfermode::IsMode(mode, SkXfermode::kClear_Mode)) {
865 SkPaint* p = paint.writable();
866 shader = p->setShader(NULL);
867 cf = p->setColorFilter(NULL);
868 mode = p->setXfermodeMode(SkXfermode::kSrc_Mode);
869 p->setColor(0);
870 }
872 if (NULL == shader) {
873 if (mode) {
874 // xfermodes (and filters) require shaders for our current blitters
875 shader = SkNEW(SkColorShader);
876 paint.writable()->setShader(shader)->unref();
877 } else if (cf) {
878 // if no shader && no xfermode, we just apply the colorfilter to
879 // our color and move on.
880 SkPaint* writablePaint = paint.writable();
881 writablePaint->setColor(cf->filterColor(paint->getColor()));
882 writablePaint->setColorFilter(NULL);
883 cf = NULL;
884 }
885 }
887 if (cf) {
888 SkASSERT(shader);
889 shader = SkNEW_ARGS(SkFilterShader, (shader, cf));
890 paint.writable()->setShader(shader)->unref();
891 // blitters should ignore the presence/absence of a filter, since
892 // if there is one, the shader will take care of it.
893 }
895 /*
896 * We need to have balanced calls to the shader:
897 * setContext
898 * endContext
899 * We make the first call here, in case it fails we can abort the draw.
900 * The endContext() call is made by the blitter (assuming setContext did
901 * not fail) in its destructor.
902 */
903 if (shader && !shader->setContext(device, *paint, matrix)) {
904 blitter = allocator->createT<SkNullBlitter>();
905 return blitter;
906 }
909 switch (device.colorType()) {
910 case kAlpha_8_SkColorType:
911 if (drawCoverage) {
912 SkASSERT(NULL == shader);
913 SkASSERT(NULL == paint->getXfermode());
914 blitter = allocator->createT<SkA8_Coverage_Blitter>(device, *paint);
915 } else if (shader) {
916 blitter = allocator->createT<SkA8_Shader_Blitter>(device, *paint);
917 } else {
918 blitter = allocator->createT<SkA8_Blitter>(device, *paint);
919 }
920 break;
922 case kRGB_565_SkColorType:
923 blitter = SkBlitter_ChooseD565(device, *paint, allocator);
924 break;
926 case kPMColor_SkColorType:
927 if (shader) {
928 blitter = allocator->createT<SkARGB32_Shader_Blitter>(device, *paint);
929 } else if (paint->getColor() == SK_ColorBLACK) {
930 blitter = allocator->createT<SkARGB32_Black_Blitter>(device, *paint);
931 } else if (paint->getAlpha() == 0xFF) {
932 blitter = allocator->createT<SkARGB32_Opaque_Blitter>(device, *paint);
933 } else {
934 blitter = allocator->createT<SkARGB32_Blitter>(device, *paint);
935 }
936 break;
938 default:
939 SkDEBUGFAIL("unsupported device config");
940 blitter = allocator->createT<SkNullBlitter>();
941 break;
942 }
944 if (shader3D) {
945 SkBlitter* innerBlitter = blitter;
946 // innerBlitter was allocated by allocator, which will delete it.
947 blitter = allocator->createT<Sk3DBlitter>(innerBlitter, shader3D);
948 }
949 return blitter;
950 }
952 ///////////////////////////////////////////////////////////////////////////////
954 const uint16_t gMask_0F0F = 0xF0F;
955 const uint32_t gMask_00FF00FF = 0xFF00FF;
957 ///////////////////////////////////////////////////////////////////////////////
959 SkShaderBlitter::SkShaderBlitter(const SkBitmap& device, const SkPaint& paint)
960 : INHERITED(device) {
961 fShader = paint.getShader();
962 SkASSERT(fShader);
963 SkASSERT(fShader->setContextHasBeenCalled());
965 fShader->ref();
966 fShaderFlags = fShader->getFlags();
967 }
969 SkShaderBlitter::~SkShaderBlitter() {
970 SkASSERT(fShader->setContextHasBeenCalled());
971 fShader->endContext();
972 fShader->unref();
973 }