gfx/skia/trunk/src/gpu/GrRedBlackTree.h

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

     1 /*
     2  * Copyright 2011 Google Inc.
     3  *
     4  * Use of this source code is governed by a BSD-style license that can be
     5  * found in the LICENSE file.
     6  */
     8 #ifndef GrRedBlackTree_DEFINED
     9 #define GrRedBlackTree_DEFINED
    11 #include "GrConfig.h"
    12 #include "SkTypes.h"
    14 template <typename T>
    15 class GrLess {
    16 public:
    17     bool operator()(const T& a, const T& b) const { return a < b; }
    18 };
    20 template <typename T>
    21 class GrLess<T*> {
    22 public:
    23     bool operator()(const T* a, const T* b) const { return *a < *b; }
    24 };
    26 class GrStrLess {
    27 public:
    28     bool operator()(const char* a, const char* b) const { return strcmp(a,b) < 0; }
    29 };
    31 /**
    32  * In debug build this will cause full traversals of the tree when the validate
    33  * is called on insert and remove. Useful for debugging but very slow.
    34  */
    35 #define DEEP_VALIDATE 0
    37 /**
    38  * A sorted tree that uses the red-black tree algorithm. Allows duplicate
    39  * entries. Data is of type T and is compared using functor C. A single C object
    40  * will be created and used for all comparisons.
    41  */
    42 template <typename T, typename C = GrLess<T> >
    43 class GrRedBlackTree : public SkNoncopyable {
    44 public:
    45     /**
    46      * Creates an empty tree.
    47      */
    48     GrRedBlackTree();
    49     virtual ~GrRedBlackTree();
    51     /**
    52      * Class used to iterater through the tree. The valid range of the tree
    53      * is given by [begin(), end()). It is legal to dereference begin() but not
    54      * end(). The iterator has preincrement and predecrement operators, it is
    55      * legal to decerement end() if the tree is not empty to get the last
    56      * element. However, a last() helper is provided.
    57      */
    58     class Iter;
    60     /**
    61      * Add an element to the tree. Duplicates are allowed.
    62      * @param t     the item to add.
    63      * @return  an iterator to the item.
    64      */
    65     Iter insert(const T& t);
    67     /**
    68      * Removes all items in the tree.
    69      */
    70     void reset();
    72     /**
    73      * @return true if there are no items in the tree, false otherwise.
    74      */
    75     bool empty() const {return 0 == fCount;}
    77     /**
    78      * @return the number of items in the tree.
    79      */
    80     int  count() const {return fCount;}
    82     /**
    83      * @return  an iterator to the first item in sorted order, or end() if empty
    84      */
    85     Iter begin();
    86     /**
    87      * Gets the last valid iterator. This is always valid, even on an empty.
    88      * However, it can never be dereferenced. Useful as a loop terminator.
    89      * @return  an iterator that is just beyond the last item in sorted order.
    90      */
    91     Iter end();
    92     /**
    93      * @return  an iterator that to the last item in sorted order, or end() if
    94      * empty.
    95      */
    96     Iter last();
    98     /**
    99      * Finds an occurrence of an item.
   100      * @param t     the item to find.
   101      * @return an iterator to a tree element equal to t or end() if none exists.
   102      */
   103     Iter find(const T& t);
   104     /**
   105      * Finds the first of an item in iterator order.
   106      * @param t     the item to find.
   107      * @return  an iterator to the first element equal to t or end() if
   108      *          none exists.
   109      */
   110     Iter findFirst(const T& t);
   111     /**
   112      * Finds the last of an item in iterator order.
   113      * @param t     the item to find.
   114      * @return  an iterator to the last element equal to t or end() if
   115      *          none exists.
   116      */
   117     Iter findLast(const T& t);
   118     /**
   119      * Gets the number of items in the tree equal to t.
   120      * @param t     the item to count.
   121      * @return  number of items equal to t in the tree
   122      */
   123     int countOf(const T& t) const;
   125     /**
   126      * Removes the item indicated by an iterator. The iterator will not be valid
   127      * afterwards.
   128      *
   129      * @param iter      iterator of item to remove. Must be valid (not end()).
   130      */
   131     void remove(const Iter& iter) { deleteAtNode(iter.fN); }
   133 private:
   134     enum Color {
   135         kRed_Color,
   136         kBlack_Color
   137     };
   139     enum Child {
   140         kLeft_Child  = 0,
   141         kRight_Child = 1
   142     };
   144     struct Node {
   145         T       fItem;
   146         Color   fColor;
   148         Node*   fParent;
   149         Node*   fChildren[2];
   150     };
   152     void rotateRight(Node* n);
   153     void rotateLeft(Node* n);
   155     static Node* SuccessorNode(Node* x);
   156     static Node* PredecessorNode(Node* x);
   158     void deleteAtNode(Node* x);
   159     static void RecursiveDelete(Node* x);
   161     int onCountOf(const Node* n, const T& t) const;
   163 #ifdef SK_DEBUG
   164     void validate() const;
   165     int checkNode(Node* n, int* blackHeight) const;
   166     // checks relationship between a node and its children. allowRedRed means
   167     // node may be in an intermediate state where a red parent has a red child.
   168     bool validateChildRelations(const Node* n, bool allowRedRed) const;
   169     // place to stick break point if validateChildRelations is failing.
   170     bool validateChildRelationsFailed() const { return false; }
   171 #else
   172     void validate() const {}
   173 #endif
   175     int     fCount;
   176     Node*   fRoot;
   177     Node*   fFirst;
   178     Node*   fLast;
   180     const C fComp;
   181 };
   183 template <typename T, typename C>
   184 class GrRedBlackTree<T,C>::Iter {
   185 public:
   186     Iter() {};
   187     Iter(const Iter& i) {fN = i.fN; fTree = i.fTree;}
   188     Iter& operator =(const Iter& i) {
   189         fN = i.fN;
   190         fTree = i.fTree;
   191         return *this;
   192     }
   193     // altering the sort value of the item using this method will cause
   194     // errors.
   195     T& operator *() const { return fN->fItem; }
   196     bool operator ==(const Iter& i) const {
   197         return fN == i.fN && fTree == i.fTree;
   198     }
   199     bool operator !=(const Iter& i) const { return !(*this == i); }
   200     Iter& operator ++() {
   201         SkASSERT(*this != fTree->end());
   202         fN = SuccessorNode(fN);
   203         return *this;
   204     }
   205     Iter& operator --() {
   206         SkASSERT(*this != fTree->begin());
   207         if (NULL != fN) {
   208             fN = PredecessorNode(fN);
   209         } else {
   210             *this = fTree->last();
   211         }
   212         return *this;
   213     }
   215 private:
   216     friend class GrRedBlackTree;
   217     explicit Iter(Node* n, GrRedBlackTree* tree) {
   218         fN = n;
   219         fTree = tree;
   220     }
   221     Node* fN;
   222     GrRedBlackTree* fTree;
   223 };
   225 template <typename T, typename C>
   226 GrRedBlackTree<T,C>::GrRedBlackTree() : fComp() {
   227     fRoot = NULL;
   228     fFirst = NULL;
   229     fLast = NULL;
   230     fCount = 0;
   231     validate();
   232 }
   234 template <typename T, typename C>
   235 GrRedBlackTree<T,C>::~GrRedBlackTree() {
   236     RecursiveDelete(fRoot);
   237 }
   239 template <typename T, typename C>
   240 typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::begin() {
   241     return Iter(fFirst, this);
   242 }
   244 template <typename T, typename C>
   245 typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::end() {
   246     return Iter(NULL, this);
   247 }
   249 template <typename T, typename C>
   250 typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::last() {
   251     return Iter(fLast, this);
   252 }
   254 template <typename T, typename C>
   255 typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::find(const T& t) {
   256     Node* n = fRoot;
   257     while (NULL != n) {
   258         if (fComp(t, n->fItem)) {
   259             n = n->fChildren[kLeft_Child];
   260         } else {
   261             if (!fComp(n->fItem, t)) {
   262                 return Iter(n, this);
   263             }
   264             n = n->fChildren[kRight_Child];
   265         }
   266     }
   267     return end();
   268 }
   270 template <typename T, typename C>
   271 typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::findFirst(const T& t) {
   272     Node* n = fRoot;
   273     Node* leftMost = NULL;
   274     while (NULL != n) {
   275         if (fComp(t, n->fItem)) {
   276             n = n->fChildren[kLeft_Child];
   277         } else {
   278             if (!fComp(n->fItem, t)) {
   279                 // found one. check if another in left subtree.
   280                 leftMost = n;
   281                 n = n->fChildren[kLeft_Child];
   282             } else {
   283                 n = n->fChildren[kRight_Child];
   284             }
   285         }
   286     }
   287     return Iter(leftMost, this);
   288 }
   290 template <typename T, typename C>
   291 typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::findLast(const T& t) {
   292     Node* n = fRoot;
   293     Node* rightMost = NULL;
   294     while (NULL != n) {
   295         if (fComp(t, n->fItem)) {
   296             n = n->fChildren[kLeft_Child];
   297         } else {
   298             if (!fComp(n->fItem, t)) {
   299                 // found one. check if another in right subtree.
   300                 rightMost = n;
   301             }
   302             n = n->fChildren[kRight_Child];
   303         }
   304     }
   305     return Iter(rightMost, this);
   306 }
   308 template <typename T, typename C>
   309 int GrRedBlackTree<T,C>::countOf(const T& t) const {
   310     return onCountOf(fRoot, t);
   311 }
   313 template <typename T, typename C>
   314 int GrRedBlackTree<T,C>::onCountOf(const Node* n, const T& t) const {
   315     // this is count*log(n) :(
   316     while (NULL != n) {
   317         if (fComp(t, n->fItem)) {
   318             n = n->fChildren[kLeft_Child];
   319         } else {
   320             if (!fComp(n->fItem, t)) {
   321                 int count = 1;
   322                 count += onCountOf(n->fChildren[kLeft_Child], t);
   323                 count += onCountOf(n->fChildren[kRight_Child], t);
   324                 return count;
   325             }
   326             n = n->fChildren[kRight_Child];
   327         }
   328     }
   329     return 0;
   331 }
   333 template <typename T, typename C>
   334 void GrRedBlackTree<T,C>::reset() {
   335     RecursiveDelete(fRoot);
   336     fRoot = NULL;
   337     fFirst = NULL;
   338     fLast = NULL;
   339     fCount = 0;
   340 }
   342 template <typename T, typename C>
   343 typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::insert(const T& t) {
   344     validate();
   346     ++fCount;
   348     Node* x = SkNEW(Node);
   349     x->fChildren[kLeft_Child] = NULL;
   350     x->fChildren[kRight_Child] = NULL;
   351     x->fItem = t;
   353     Node* returnNode = x;
   355     Node* gp = NULL;
   356     Node* p = NULL;
   357     Node* n = fRoot;
   358     Child pc = kLeft_Child; // suppress uninit warning
   359     Child gpc = kLeft_Child;
   361     bool first = true;
   362     bool last = true;
   363     while (NULL != n) {
   364         gpc = pc;
   365         pc = fComp(x->fItem, n->fItem) ? kLeft_Child : kRight_Child;
   366         first = first && kLeft_Child == pc;
   367         last = last && kRight_Child == pc;
   368         gp = p;
   369         p = n;
   370         n = p->fChildren[pc];
   371     }
   372     if (last) {
   373         fLast = x;
   374     }
   375     if (first) {
   376         fFirst = x;
   377     }
   379     if (NULL == p) {
   380         fRoot = x;
   381         x->fColor = kBlack_Color;
   382         x->fParent = NULL;
   383         SkASSERT(1 == fCount);
   384         return Iter(returnNode, this);
   385     }
   386     p->fChildren[pc] = x;
   387     x->fColor = kRed_Color;
   388     x->fParent = p;
   390     do {
   391         // assumptions at loop start.
   392         SkASSERT(NULL != x);
   393         SkASSERT(kRed_Color == x->fColor);
   394         // can't have a grandparent but no parent.
   395         SkASSERT(!(NULL != gp && NULL == p));
   396         // make sure pc and gpc are correct
   397         SkASSERT(NULL == p  || p->fChildren[pc] == x);
   398         SkASSERT(NULL == gp || gp->fChildren[gpc] == p);
   400         // if x's parent is black then we didn't violate any of the
   401         // red/black properties when we added x as red.
   402         if (kBlack_Color == p->fColor) {
   403             return Iter(returnNode, this);
   404         }
   405         // gp must be valid because if p was the root then it is black
   406         SkASSERT(NULL != gp);
   407         // gp must be black since it's child, p, is red.
   408         SkASSERT(kBlack_Color == gp->fColor);
   411         // x and its parent are red, violating red-black property.
   412         Node* u = gp->fChildren[1-gpc];
   413         // if x's uncle (p's sibling) is also red then we can flip
   414         // p and u to black and make gp red. But then we have to recurse
   415         // up to gp since it's parent may also be red.
   416         if (NULL != u && kRed_Color == u->fColor) {
   417             p->fColor = kBlack_Color;
   418             u->fColor = kBlack_Color;
   419             gp->fColor = kRed_Color;
   420             x = gp;
   421             p = x->fParent;
   422             if (NULL == p) {
   423                 // x (prev gp) is the root, color it black and be done.
   424                 SkASSERT(fRoot == x);
   425                 x->fColor = kBlack_Color;
   426                 validate();
   427                 return Iter(returnNode, this);
   428             }
   429             gp = p->fParent;
   430             pc = (p->fChildren[kLeft_Child] == x) ? kLeft_Child :
   431                                                     kRight_Child;
   432             if (NULL != gp) {
   433                 gpc = (gp->fChildren[kLeft_Child] == p) ? kLeft_Child :
   434                                                           kRight_Child;
   435             }
   436             continue;
   437         } break;
   438     } while (true);
   439     // Here p is red but u is black and we still have to resolve the fact
   440     // that x and p are both red.
   441     SkASSERT(NULL == gp->fChildren[1-gpc] || kBlack_Color == gp->fChildren[1-gpc]->fColor);
   442     SkASSERT(kRed_Color == x->fColor);
   443     SkASSERT(kRed_Color == p->fColor);
   444     SkASSERT(kBlack_Color == gp->fColor);
   446     // make x be on the same side of p as p is of gp. If it isn't already
   447     // the case then rotate x up to p and swap their labels.
   448     if (pc != gpc) {
   449         if (kRight_Child == pc) {
   450             rotateLeft(p);
   451             Node* temp = p;
   452             p = x;
   453             x = temp;
   454             pc = kLeft_Child;
   455         } else {
   456             rotateRight(p);
   457             Node* temp = p;
   458             p = x;
   459             x = temp;
   460             pc = kRight_Child;
   461         }
   462     }
   463     // we now rotate gp down, pulling up p to be it's new parent.
   464     // gp's child, u, that is not affected we know to be black. gp's new
   465     // child is p's previous child (x's pre-rotation sibling) which must be
   466     // black since p is red.
   467     SkASSERT(NULL == p->fChildren[1-pc] ||
   468              kBlack_Color == p->fChildren[1-pc]->fColor);
   469     // Since gp's two children are black it can become red if p is made
   470     // black. This leaves the black-height of both of p's new subtrees
   471     // preserved and removes the red/red parent child relationship.
   472     p->fColor = kBlack_Color;
   473     gp->fColor = kRed_Color;
   474     if (kLeft_Child == pc) {
   475         rotateRight(gp);
   476     } else {
   477         rotateLeft(gp);
   478     }
   479     validate();
   480     return Iter(returnNode, this);
   481 }
   484 template <typename T, typename C>
   485 void GrRedBlackTree<T,C>::rotateRight(Node* n) {
   486     /*            d?              d?
   487      *           /               /
   488      *          n               s
   489      *         / \     --->    / \
   490      *        s   a?          c?  n
   491      *       / \                 / \
   492      *      c?  b?              b?  a?
   493      */
   494     Node* d = n->fParent;
   495     Node* s = n->fChildren[kLeft_Child];
   496     SkASSERT(NULL != s);
   497     Node* b = s->fChildren[kRight_Child];
   499     if (NULL != d) {
   500         Child c = d->fChildren[kLeft_Child] == n ? kLeft_Child :
   501                                              kRight_Child;
   502         d->fChildren[c] = s;
   503     } else {
   504         SkASSERT(fRoot == n);
   505         fRoot = s;
   506     }
   507     s->fParent = d;
   508     s->fChildren[kRight_Child] = n;
   509     n->fParent = s;
   510     n->fChildren[kLeft_Child] = b;
   511     if (NULL != b) {
   512         b->fParent = n;
   513     }
   515     GR_DEBUGASSERT(validateChildRelations(d, true));
   516     GR_DEBUGASSERT(validateChildRelations(s, true));
   517     GR_DEBUGASSERT(validateChildRelations(n, false));
   518     GR_DEBUGASSERT(validateChildRelations(n->fChildren[kRight_Child], true));
   519     GR_DEBUGASSERT(validateChildRelations(b, true));
   520     GR_DEBUGASSERT(validateChildRelations(s->fChildren[kLeft_Child], true));
   521 }
   523 template <typename T, typename C>
   524 void GrRedBlackTree<T,C>::rotateLeft(Node* n) {
   526     Node* d = n->fParent;
   527     Node* s = n->fChildren[kRight_Child];
   528     SkASSERT(NULL != s);
   529     Node* b = s->fChildren[kLeft_Child];
   531     if (NULL != d) {
   532         Child c = d->fChildren[kRight_Child] == n ? kRight_Child :
   533                                                    kLeft_Child;
   534         d->fChildren[c] = s;
   535     } else {
   536         SkASSERT(fRoot == n);
   537         fRoot = s;
   538     }
   539     s->fParent = d;
   540     s->fChildren[kLeft_Child] = n;
   541     n->fParent = s;
   542     n->fChildren[kRight_Child] = b;
   543     if (NULL != b) {
   544         b->fParent = n;
   545     }
   547     GR_DEBUGASSERT(validateChildRelations(d, true));
   548     GR_DEBUGASSERT(validateChildRelations(s, true));
   549     GR_DEBUGASSERT(validateChildRelations(n, true));
   550     GR_DEBUGASSERT(validateChildRelations(n->fChildren[kLeft_Child], true));
   551     GR_DEBUGASSERT(validateChildRelations(b, true));
   552     GR_DEBUGASSERT(validateChildRelations(s->fChildren[kRight_Child], true));
   553 }
   555 template <typename T, typename C>
   556 typename GrRedBlackTree<T,C>::Node* GrRedBlackTree<T,C>::SuccessorNode(Node* x) {
   557     SkASSERT(NULL != x);
   558     if (NULL != x->fChildren[kRight_Child]) {
   559         x = x->fChildren[kRight_Child];
   560         while (NULL != x->fChildren[kLeft_Child]) {
   561             x = x->fChildren[kLeft_Child];
   562         }
   563         return x;
   564     }
   565     while (NULL != x->fParent && x == x->fParent->fChildren[kRight_Child]) {
   566         x = x->fParent;
   567     }
   568     return x->fParent;
   569 }
   571 template <typename T, typename C>
   572 typename GrRedBlackTree<T,C>::Node* GrRedBlackTree<T,C>::PredecessorNode(Node* x) {
   573     SkASSERT(NULL != x);
   574     if (NULL != x->fChildren[kLeft_Child]) {
   575         x = x->fChildren[kLeft_Child];
   576         while (NULL != x->fChildren[kRight_Child]) {
   577             x = x->fChildren[kRight_Child];
   578         }
   579         return x;
   580     }
   581     while (NULL != x->fParent && x == x->fParent->fChildren[kLeft_Child]) {
   582         x = x->fParent;
   583     }
   584     return x->fParent;
   585 }
   587 template <typename T, typename C>
   588 void GrRedBlackTree<T,C>::deleteAtNode(Node* x) {
   589     SkASSERT(NULL != x);
   590     validate();
   591     --fCount;
   593     bool hasLeft =  NULL != x->fChildren[kLeft_Child];
   594     bool hasRight = NULL != x->fChildren[kRight_Child];
   595     Child c = hasLeft ? kLeft_Child : kRight_Child;
   597     if (hasLeft && hasRight) {
   598         // first and last can't have two children.
   599         SkASSERT(fFirst != x);
   600         SkASSERT(fLast != x);
   601         // if x is an interior node then we find it's successor
   602         // and swap them.
   603         Node* s = x->fChildren[kRight_Child];
   604         while (NULL != s->fChildren[kLeft_Child]) {
   605             s = s->fChildren[kLeft_Child];
   606         }
   607         SkASSERT(NULL != s);
   608         // this might be expensive relative to swapping node ptrs around.
   609         // depends on T.
   610         x->fItem = s->fItem;
   611         x = s;
   612         c = kRight_Child;
   613     } else if (NULL == x->fParent) {
   614         // if x was the root we just replace it with its child and make
   615         // the new root (if the tree is not empty) black.
   616         SkASSERT(fRoot == x);
   617         fRoot = x->fChildren[c];
   618         if (NULL != fRoot) {
   619             fRoot->fParent = NULL;
   620             fRoot->fColor = kBlack_Color;
   621             if (x == fLast) {
   622                 SkASSERT(c == kLeft_Child);
   623                 fLast = fRoot;
   624             } else if (x == fFirst) {
   625                 SkASSERT(c == kRight_Child);
   626                 fFirst = fRoot;
   627             }
   628         } else {
   629             SkASSERT(fFirst == fLast && x == fFirst);
   630             fFirst = NULL;
   631             fLast = NULL;
   632             SkASSERT(0 == fCount);
   633         }
   634         delete x;
   635         validate();
   636         return;
   637     }
   639     Child pc;
   640     Node* p = x->fParent;
   641     pc = p->fChildren[kLeft_Child] == x ? kLeft_Child : kRight_Child;
   643     if (NULL == x->fChildren[c]) {
   644         if (fLast == x) {
   645             fLast = p;
   646             SkASSERT(p == PredecessorNode(x));
   647         } else if (fFirst == x) {
   648             fFirst = p;
   649             SkASSERT(p == SuccessorNode(x));
   650         }
   651         // x has two implicit black children.
   652         Color xcolor = x->fColor;
   653         p->fChildren[pc] = NULL;
   654         delete x;
   655         x = NULL;
   656         // when x is red it can be with an implicit black leaf without
   657         // violating any of the red-black tree properties.
   658         if (kRed_Color == xcolor) {
   659             validate();
   660             return;
   661         }
   662         // s is p's other child (x's sibling)
   663         Node* s = p->fChildren[1-pc];
   665         //s cannot be an implicit black node because the original
   666         // black-height at x was >= 2 and s's black-height must equal the
   667         // initial black height of x.
   668         SkASSERT(NULL != s);
   669         SkASSERT(p == s->fParent);
   671         // assigned in loop
   672         Node* sl;
   673         Node* sr;
   674         bool slRed;
   675         bool srRed;
   677         do {
   678             // When we start this loop x may already be deleted it is/was
   679             // p's child on its pc side. x's children are/were black. The
   680             // first time through the loop they are implict children.
   681             // On later passes we will be walking up the tree and they will
   682             // be real nodes.
   683             // The x side of p has a black-height that is one less than the
   684             // s side. It must be rebalanced.
   685             SkASSERT(NULL != s);
   686             SkASSERT(p == s->fParent);
   687             SkASSERT(NULL == x || x->fParent == p);
   689             //sl and sr are s's children, which may be implicit.
   690             sl = s->fChildren[kLeft_Child];
   691             sr = s->fChildren[kRight_Child];
   693             // if the s is red we will rotate s and p, swap their colors so
   694             // that x's new sibling is black
   695             if (kRed_Color == s->fColor) {
   696                 // if s is red then it's parent must be black.
   697                 SkASSERT(kBlack_Color == p->fColor);
   698                 // s's children must also be black since s is red. They can't
   699                 // be implicit since s is red and it's black-height is >= 2.
   700                 SkASSERT(NULL != sl && kBlack_Color == sl->fColor);
   701                 SkASSERT(NULL != sr && kBlack_Color == sr->fColor);
   702                 p->fColor = kRed_Color;
   703                 s->fColor = kBlack_Color;
   704                 if (kLeft_Child == pc) {
   705                     rotateLeft(p);
   706                     s = sl;
   707                 } else {
   708                     rotateRight(p);
   709                     s = sr;
   710                 }
   711                 sl = s->fChildren[kLeft_Child];
   712                 sr = s->fChildren[kRight_Child];
   713             }
   714             // x and s are now both black.
   715             SkASSERT(kBlack_Color == s->fColor);
   716             SkASSERT(NULL == x || kBlack_Color == x->fColor);
   717             SkASSERT(p == s->fParent);
   718             SkASSERT(NULL == x || p == x->fParent);
   720             // when x is deleted its subtree will have reduced black-height.
   721             slRed = (NULL != sl && kRed_Color == sl->fColor);
   722             srRed = (NULL != sr && kRed_Color == sr->fColor);
   723             if (!slRed && !srRed) {
   724                 // if s can be made red that will balance out x's removal
   725                 // to make both subtrees of p have the same black-height.
   726                 if (kBlack_Color == p->fColor) {
   727                     s->fColor = kRed_Color;
   728                     // now subtree at p has black-height of one less than
   729                     // p's parent's other child's subtree. We move x up to
   730                     // p and go through the loop again. At the top of loop
   731                     // we assumed x and x's children are black, which holds
   732                     // by above ifs.
   733                     // if p is the root there is no other subtree to balance
   734                     // against.
   735                     x = p;
   736                     p = x->fParent;
   737                     if (NULL == p) {
   738                         SkASSERT(fRoot == x);
   739                         validate();
   740                         return;
   741                     } else {
   742                         pc = p->fChildren[kLeft_Child] == x ? kLeft_Child :
   743                                                               kRight_Child;
   745                     }
   746                     s = p->fChildren[1-pc];
   747                     SkASSERT(NULL != s);
   748                     SkASSERT(p == s->fParent);
   749                     continue;
   750                 } else if (kRed_Color == p->fColor) {
   751                     // we can make p black and s red. This balance out p's
   752                     // two subtrees and keep the same black-height as it was
   753                     // before the delete.
   754                     s->fColor = kRed_Color;
   755                     p->fColor = kBlack_Color;
   756                     validate();
   757                     return;
   758                 }
   759             }
   760             break;
   761         } while (true);
   762         // if we made it here one or both of sl and sr is red.
   763         // s and x are black. We make sure that a red child is on
   764         // the same side of s as s is of p.
   765         SkASSERT(slRed || srRed);
   766         if (kLeft_Child == pc && !srRed) {
   767             s->fColor = kRed_Color;
   768             sl->fColor = kBlack_Color;
   769             rotateRight(s);
   770             sr = s;
   771             s = sl;
   772             //sl = s->fChildren[kLeft_Child]; don't need this
   773         } else if (kRight_Child == pc && !slRed) {
   774             s->fColor = kRed_Color;
   775             sr->fColor = kBlack_Color;
   776             rotateLeft(s);
   777             sl = s;
   778             s = sr;
   779             //sr = s->fChildren[kRight_Child]; don't need this
   780         }
   781         // now p is either red or black, x and s are red and s's 1-pc
   782         // child is red.
   783         // We rotate p towards x, pulling s up to replace p. We make
   784         // p be black and s takes p's old color.
   785         // Whether p was red or black, we've increased its pc subtree
   786         // rooted at x by 1 (balancing the imbalance at the start) and
   787         // we've also its subtree rooted at s's black-height by 1. This
   788         // can be balanced by making s's red child be black.
   789         s->fColor = p->fColor;
   790         p->fColor = kBlack_Color;
   791         if (kLeft_Child == pc) {
   792             SkASSERT(NULL != sr && kRed_Color == sr->fColor);
   793             sr->fColor = kBlack_Color;
   794             rotateLeft(p);
   795         } else {
   796             SkASSERT(NULL != sl && kRed_Color == sl->fColor);
   797             sl->fColor = kBlack_Color;
   798             rotateRight(p);
   799         }
   800     }
   801     else {
   802         // x has exactly one implicit black child. x cannot be red.
   803         // Proof by contradiction: Assume X is red. Let c0 be x's implicit
   804         // child and c1 be its non-implicit child. c1 must be black because
   805         // red nodes always have two black children. Then the two subtrees
   806         // of x rooted at c0 and c1 will have different black-heights.
   807         SkASSERT(kBlack_Color == x->fColor);
   808         // So we know x is black and has one implicit black child, c0. c1
   809         // must be red, otherwise the subtree at c1 will have a different
   810         // black-height than the subtree rooted at c0.
   811         SkASSERT(kRed_Color == x->fChildren[c]->fColor);
   812         // replace x with c1, making c1 black, preserves all red-black tree
   813         // props.
   814         Node* c1 = x->fChildren[c];
   815         if (x == fFirst) {
   816             SkASSERT(c == kRight_Child);
   817             fFirst = c1;
   818             while (NULL != fFirst->fChildren[kLeft_Child]) {
   819                 fFirst = fFirst->fChildren[kLeft_Child];
   820             }
   821             SkASSERT(fFirst == SuccessorNode(x));
   822         } else if (x == fLast) {
   823             SkASSERT(c == kLeft_Child);
   824             fLast = c1;
   825             while (NULL != fLast->fChildren[kRight_Child]) {
   826                 fLast = fLast->fChildren[kRight_Child];
   827             }
   828             SkASSERT(fLast == PredecessorNode(x));
   829         }
   830         c1->fParent = p;
   831         p->fChildren[pc] = c1;
   832         c1->fColor = kBlack_Color;
   833         delete x;
   834         validate();
   835     }
   836     validate();
   837 }
   839 template <typename T, typename C>
   840 void GrRedBlackTree<T,C>::RecursiveDelete(Node* x) {
   841     if (NULL != x) {
   842         RecursiveDelete(x->fChildren[kLeft_Child]);
   843         RecursiveDelete(x->fChildren[kRight_Child]);
   844         delete x;
   845     }
   846 }
   848 #ifdef SK_DEBUG
   849 template <typename T, typename C>
   850 void GrRedBlackTree<T,C>::validate() const {
   851     if (fCount) {
   852         SkASSERT(NULL == fRoot->fParent);
   853         SkASSERT(NULL != fFirst);
   854         SkASSERT(NULL != fLast);
   856         SkASSERT(kBlack_Color == fRoot->fColor);
   857         if (1 == fCount) {
   858             SkASSERT(fFirst == fRoot);
   859             SkASSERT(fLast == fRoot);
   860             SkASSERT(0 == fRoot->fChildren[kLeft_Child]);
   861             SkASSERT(0 == fRoot->fChildren[kRight_Child]);
   862         }
   863     } else {
   864         SkASSERT(NULL == fRoot);
   865         SkASSERT(NULL == fFirst);
   866         SkASSERT(NULL == fLast);
   867     }
   868 #if DEEP_VALIDATE
   869     int bh;
   870     int count = checkNode(fRoot, &bh);
   871     SkASSERT(count == fCount);
   872 #endif
   873 }
   875 template <typename T, typename C>
   876 int GrRedBlackTree<T,C>::checkNode(Node* n, int* bh) const {
   877     if (NULL != n) {
   878         SkASSERT(validateChildRelations(n, false));
   879         if (kBlack_Color == n->fColor) {
   880             *bh += 1;
   881         }
   882         SkASSERT(!fComp(n->fItem, fFirst->fItem));
   883         SkASSERT(!fComp(fLast->fItem, n->fItem));
   884         int leftBh = *bh;
   885         int rightBh = *bh;
   886         int cl = checkNode(n->fChildren[kLeft_Child], &leftBh);
   887         int cr = checkNode(n->fChildren[kRight_Child], &rightBh);
   888         SkASSERT(leftBh == rightBh);
   889         *bh = leftBh;
   890         return 1 + cl + cr;
   891     }
   892     return 0;
   893 }
   895 template <typename T, typename C>
   896 bool GrRedBlackTree<T,C>::validateChildRelations(const Node* n,
   897                                                  bool allowRedRed) const {
   898     if (NULL != n) {
   899         if (NULL != n->fChildren[kLeft_Child] ||
   900             NULL != n->fChildren[kRight_Child]) {
   901             if (n->fChildren[kLeft_Child] == n->fChildren[kRight_Child]) {
   902                 return validateChildRelationsFailed();
   903             }
   904             if (n->fChildren[kLeft_Child] == n->fParent &&
   905                 NULL != n->fParent) {
   906                 return validateChildRelationsFailed();
   907             }
   908             if (n->fChildren[kRight_Child] == n->fParent &&
   909                 NULL != n->fParent) {
   910                 return validateChildRelationsFailed();
   911             }
   912             if (NULL != n->fChildren[kLeft_Child]) {
   913                 if (!allowRedRed &&
   914                     kRed_Color == n->fChildren[kLeft_Child]->fColor &&
   915                     kRed_Color == n->fColor) {
   916                     return validateChildRelationsFailed();
   917                 }
   918                 if (n->fChildren[kLeft_Child]->fParent != n) {
   919                     return validateChildRelationsFailed();
   920                 }
   921                 if (!(fComp(n->fChildren[kLeft_Child]->fItem, n->fItem) ||
   922                       (!fComp(n->fChildren[kLeft_Child]->fItem, n->fItem) &&
   923                        !fComp(n->fItem, n->fChildren[kLeft_Child]->fItem)))) {
   924                     return validateChildRelationsFailed();
   925                 }
   926             }
   927             if (NULL != n->fChildren[kRight_Child]) {
   928                 if (!allowRedRed &&
   929                     kRed_Color == n->fChildren[kRight_Child]->fColor &&
   930                     kRed_Color == n->fColor) {
   931                     return validateChildRelationsFailed();
   932                 }
   933                 if (n->fChildren[kRight_Child]->fParent != n) {
   934                     return validateChildRelationsFailed();
   935                 }
   936                 if (!(fComp(n->fItem, n->fChildren[kRight_Child]->fItem) ||
   937                       (!fComp(n->fChildren[kRight_Child]->fItem, n->fItem) &&
   938                        !fComp(n->fItem, n->fChildren[kRight_Child]->fItem)))) {
   939                     return validateChildRelationsFailed();
   940                 }
   941             }
   942         }
   943     }
   944     return true;
   945 }
   946 #endif
   948 #endif

mercurial