Wed, 31 Dec 2014 06:09:35 +0100
Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.
1 /*
2 *******************************************************************************
3 * Copyright (C) 2007-2013, International Business Machines Corporation and
4 * others. All Rights Reserved.
5 *******************************************************************************
6 *
7 * File plurrule.cpp
8 */
10 #include <math.h>
11 #include <stdio.h>
13 #include "unicode/utypes.h"
14 #include "unicode/localpointer.h"
15 #include "unicode/plurrule.h"
16 #include "unicode/upluralrules.h"
17 #include "unicode/ures.h"
18 #include "charstr.h"
19 #include "cmemory.h"
20 #include "cstring.h"
21 #include "digitlst.h"
22 #include "hash.h"
23 #include "locutil.h"
24 #include "mutex.h"
25 #include "patternprops.h"
26 #include "plurrule_impl.h"
27 #include "putilimp.h"
28 #include "ucln_in.h"
29 #include "ustrfmt.h"
30 #include "uassert.h"
31 #include "uvectr32.h"
33 #if !UCONFIG_NO_FORMATTING
35 U_NAMESPACE_BEGIN
37 #define ARRAY_SIZE(array) (int32_t)(sizeof array / sizeof array[0])
39 static const UChar PLURAL_KEYWORD_OTHER[]={LOW_O,LOW_T,LOW_H,LOW_E,LOW_R,0};
40 static const UChar PLURAL_DEFAULT_RULE[]={LOW_O,LOW_T,LOW_H,LOW_E,LOW_R,COLON,SPACE,LOW_N,0};
41 static const UChar PK_IN[]={LOW_I,LOW_N,0};
42 static const UChar PK_NOT[]={LOW_N,LOW_O,LOW_T,0};
43 static const UChar PK_IS[]={LOW_I,LOW_S,0};
44 static const UChar PK_MOD[]={LOW_M,LOW_O,LOW_D,0};
45 static const UChar PK_AND[]={LOW_A,LOW_N,LOW_D,0};
46 static const UChar PK_OR[]={LOW_O,LOW_R,0};
47 static const UChar PK_VAR_N[]={LOW_N,0};
48 static const UChar PK_VAR_I[]={LOW_I,0};
49 static const UChar PK_VAR_F[]={LOW_F,0};
50 static const UChar PK_VAR_T[]={LOW_T,0};
51 static const UChar PK_VAR_V[]={LOW_V,0};
52 static const UChar PK_VAR_J[]={LOW_J,0};
53 static const UChar PK_WITHIN[]={LOW_W,LOW_I,LOW_T,LOW_H,LOW_I,LOW_N,0};
54 static const UChar PK_DECIMAL[]={LOW_D,LOW_E,LOW_C,LOW_I,LOW_M,LOW_A,LOW_L,0};
55 static const UChar PK_INTEGER[]={LOW_I,LOW_N,LOW_T,LOW_E,LOW_G,LOW_E,LOW_R,0};
57 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(PluralRules)
58 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(PluralKeywordEnumeration)
60 PluralRules::PluralRules(UErrorCode& /*status*/)
61 : UObject(),
62 mRules(NULL)
63 {
64 }
66 PluralRules::PluralRules(const PluralRules& other)
67 : UObject(other),
68 mRules(NULL)
69 {
70 *this=other;
71 }
73 PluralRules::~PluralRules() {
74 delete mRules;
75 }
77 PluralRules*
78 PluralRules::clone() const {
79 return new PluralRules(*this);
80 }
82 PluralRules&
83 PluralRules::operator=(const PluralRules& other) {
84 if (this != &other) {
85 delete mRules;
86 if (other.mRules==NULL) {
87 mRules = NULL;
88 }
89 else {
90 mRules = new RuleChain(*other.mRules);
91 }
92 }
94 return *this;
95 }
97 StringEnumeration* PluralRules::getAvailableLocales(UErrorCode &status) {
98 StringEnumeration *result = new PluralAvailableLocalesEnumeration(status);
99 if (result == NULL && U_SUCCESS(status)) {
100 status = U_MEMORY_ALLOCATION_ERROR;
101 }
102 if (U_FAILURE(status)) {
103 delete result;
104 result = NULL;
105 }
106 return result;
107 }
110 PluralRules* U_EXPORT2
111 PluralRules::createRules(const UnicodeString& description, UErrorCode& status) {
112 if (U_FAILURE(status)) {
113 return NULL;
114 }
116 PluralRuleParser parser;
117 PluralRules *newRules = new PluralRules(status);
118 if (U_SUCCESS(status) && newRules == NULL) {
119 status = U_MEMORY_ALLOCATION_ERROR;
120 }
121 parser.parse(description, newRules, status);
122 if (U_FAILURE(status)) {
123 delete newRules;
124 newRules = NULL;
125 }
126 return newRules;
127 }
130 PluralRules* U_EXPORT2
131 PluralRules::createDefaultRules(UErrorCode& status) {
132 return createRules(UnicodeString(TRUE, PLURAL_DEFAULT_RULE, -1), status);
133 }
135 PluralRules* U_EXPORT2
136 PluralRules::forLocale(const Locale& locale, UErrorCode& status) {
137 return forLocale(locale, UPLURAL_TYPE_CARDINAL, status);
138 }
140 PluralRules* U_EXPORT2
141 PluralRules::forLocale(const Locale& locale, UPluralType type, UErrorCode& status) {
142 if (U_FAILURE(status)) {
143 return NULL;
144 }
145 if (type >= UPLURAL_TYPE_COUNT) {
146 status = U_ILLEGAL_ARGUMENT_ERROR;
147 return NULL;
148 }
149 PluralRules *newObj = new PluralRules(status);
150 if (newObj==NULL || U_FAILURE(status)) {
151 delete newObj;
152 return NULL;
153 }
154 UnicodeString locRule = newObj->getRuleFromResource(locale, type, status);
155 // TODO: which errors, if any, should be returned?
156 if (locRule.length() == 0) {
157 // Locales with no specific rules (all numbers have the "other" category
158 // will return a U_MISSING_RESOURCE_ERROR at this point. This is not
159 // an error.
160 locRule = UnicodeString(PLURAL_DEFAULT_RULE);
161 status = U_ZERO_ERROR;
162 }
163 PluralRuleParser parser;
164 parser.parse(locRule, newObj, status);
165 // TODO: should rule parse errors be returned, or
166 // should we silently use default rules?
167 // Original impl used default rules.
168 // Ask the question to ICU Core.
170 return newObj;
171 }
173 UnicodeString
174 PluralRules::select(int32_t number) const {
175 return select(FixedDecimal(number));
176 }
178 UnicodeString
179 PluralRules::select(double number) const {
180 return select(FixedDecimal(number));
181 }
183 UnicodeString
184 PluralRules::select(const FixedDecimal &number) const {
185 if (mRules == NULL) {
186 return UnicodeString(TRUE, PLURAL_DEFAULT_RULE, -1);
187 }
188 else {
189 return mRules->select(number);
190 }
191 }
193 StringEnumeration*
194 PluralRules::getKeywords(UErrorCode& status) const {
195 if (U_FAILURE(status)) return NULL;
196 StringEnumeration* nameEnumerator = new PluralKeywordEnumeration(mRules, status);
197 if (U_FAILURE(status)) {
198 delete nameEnumerator;
199 return NULL;
200 }
202 return nameEnumerator;
203 }
205 double
206 PluralRules::getUniqueKeywordValue(const UnicodeString& /* keyword */) {
207 // Not Implemented.
208 return UPLRULES_NO_UNIQUE_VALUE;
209 }
211 int32_t
212 PluralRules::getAllKeywordValues(const UnicodeString & /* keyword */, double * /* dest */,
213 int32_t /* destCapacity */, UErrorCode& error) {
214 error = U_UNSUPPORTED_ERROR;
215 return 0;
216 }
219 static double scaleForInt(double d) {
220 double scale = 1.0;
221 while (d != floor(d)) {
222 d = d * 10.0;
223 scale = scale * 10.0;
224 }
225 return scale;
226 }
228 static int32_t
229 getSamplesFromString(const UnicodeString &samples, double *dest,
230 int32_t destCapacity, UErrorCode& status) {
231 int32_t sampleCount = 0;
232 int32_t sampleStartIdx = 0;
233 int32_t sampleEndIdx = 0;
235 //std::string ss; // TODO: debugging.
236 // std::cout << "PluralRules::getSamples(), samples = \"" << samples.toUTF8String(ss) << "\"\n";
237 for (sampleCount = 0; sampleCount < destCapacity && sampleStartIdx < samples.length(); ) {
238 sampleEndIdx = samples.indexOf(COMMA, sampleStartIdx);
239 if (sampleEndIdx == -1) {
240 sampleEndIdx = samples.length();
241 }
242 const UnicodeString &sampleRange = samples.tempSubStringBetween(sampleStartIdx, sampleEndIdx);
243 // ss.erase();
244 // std::cout << "PluralRules::getSamples(), samplesRange = \"" << sampleRange.toUTF8String(ss) << "\"\n";
245 int32_t tildeIndex = sampleRange.indexOf(TILDE);
246 if (tildeIndex < 0) {
247 FixedDecimal fixed(sampleRange, status);
248 double sampleValue = fixed.source;
249 if (fixed.visibleDecimalDigitCount == 0 || sampleValue != floor(sampleValue)) {
250 dest[sampleCount++] = sampleValue;
251 }
252 } else {
254 FixedDecimal fixedLo(sampleRange.tempSubStringBetween(0, tildeIndex), status);
255 FixedDecimal fixedHi(sampleRange.tempSubStringBetween(tildeIndex+1), status);
256 double rangeLo = fixedLo.source;
257 double rangeHi = fixedHi.source;
258 if (U_FAILURE(status)) {
259 break;
260 }
261 if (rangeHi < rangeLo) {
262 status = U_INVALID_FORMAT_ERROR;
263 break;
264 }
266 // For ranges of samples with fraction decimal digits, scale the number up so that we
267 // are adding one in the units place. Avoids roundoffs from repetitive adds of tenths.
269 double scale = scaleForInt(rangeLo);
270 double t = scaleForInt(rangeHi);
271 if (t > scale) {
272 scale = t;
273 }
274 rangeLo *= scale;
275 rangeHi *= scale;
276 for (double n=rangeLo; n<=rangeHi; n+=1) {
277 // Hack Alert: don't return any decimal samples with integer values that
278 // originated from a format with trailing decimals.
279 // This API is returning doubles, which can't distinguish having displayed
280 // zeros to the right of the decimal.
281 // This results in test failures with values mapping back to a different keyword.
282 double sampleValue = n/scale;
283 if (!(sampleValue == floor(sampleValue) && fixedLo.visibleDecimalDigitCount > 0)) {
284 dest[sampleCount++] = sampleValue;
285 }
286 if (sampleCount >= destCapacity) {
287 break;
288 }
289 }
290 }
291 sampleStartIdx = sampleEndIdx + 1;
292 }
293 return sampleCount;
294 }
297 int32_t
298 PluralRules::getSamples(const UnicodeString &keyword, double *dest,
299 int32_t destCapacity, UErrorCode& status) {
300 RuleChain *rc = rulesForKeyword(keyword);
301 if (rc == NULL || destCapacity == 0 || U_FAILURE(status)) {
302 return 0;
303 }
304 int32_t numSamples = getSamplesFromString(rc->fIntegerSamples, dest, destCapacity, status);
305 if (numSamples == 0) {
306 numSamples = getSamplesFromString(rc->fDecimalSamples, dest, destCapacity, status);
307 }
308 return numSamples;
309 }
312 RuleChain *PluralRules::rulesForKeyword(const UnicodeString &keyword) const {
313 RuleChain *rc;
314 for (rc = mRules; rc != NULL; rc = rc->fNext) {
315 if (rc->fKeyword == keyword) {
316 break;
317 }
318 }
319 return rc;
320 }
323 UBool
324 PluralRules::isKeyword(const UnicodeString& keyword) const {
325 if (0 == keyword.compare(PLURAL_KEYWORD_OTHER, 5)) {
326 return true;
327 }
328 return rulesForKeyword(keyword) != NULL;
329 }
331 UnicodeString
332 PluralRules::getKeywordOther() const {
333 return UnicodeString(TRUE, PLURAL_KEYWORD_OTHER, 5);
334 }
336 UBool
337 PluralRules::operator==(const PluralRules& other) const {
338 const UnicodeString *ptrKeyword;
339 UErrorCode status= U_ZERO_ERROR;
341 if ( this == &other ) {
342 return TRUE;
343 }
344 LocalPointer<StringEnumeration> myKeywordList(getKeywords(status));
345 LocalPointer<StringEnumeration> otherKeywordList(other.getKeywords(status));
346 if (U_FAILURE(status)) {
347 return FALSE;
348 }
350 if (myKeywordList->count(status)!=otherKeywordList->count(status)) {
351 return FALSE;
352 }
353 myKeywordList->reset(status);
354 while ((ptrKeyword=myKeywordList->snext(status))!=NULL) {
355 if (!other.isKeyword(*ptrKeyword)) {
356 return FALSE;
357 }
358 }
359 otherKeywordList->reset(status);
360 while ((ptrKeyword=otherKeywordList->snext(status))!=NULL) {
361 if (!this->isKeyword(*ptrKeyword)) {
362 return FALSE;
363 }
364 }
365 if (U_FAILURE(status)) {
366 return FALSE;
367 }
369 return TRUE;
370 }
373 void
374 PluralRuleParser::parse(const UnicodeString& ruleData, PluralRules *prules, UErrorCode &status)
375 {
376 if (U_FAILURE(status)) {
377 return;
378 }
379 U_ASSERT(ruleIndex == 0); // Parsers are good for a single use only!
380 ruleSrc = &ruleData;
382 while (ruleIndex< ruleSrc->length()) {
383 getNextToken(status);
384 if (U_FAILURE(status)) {
385 return;
386 }
387 checkSyntax(status);
388 if (U_FAILURE(status)) {
389 return;
390 }
391 switch (type) {
392 case tAnd:
393 U_ASSERT(curAndConstraint != NULL);
394 curAndConstraint = curAndConstraint->add();
395 break;
396 case tOr:
397 {
398 U_ASSERT(currentChain != NULL);
399 OrConstraint *orNode=currentChain->ruleHeader;
400 while (orNode->next != NULL) {
401 orNode = orNode->next;
402 }
403 orNode->next= new OrConstraint();
404 orNode=orNode->next;
405 orNode->next=NULL;
406 curAndConstraint = orNode->add();
407 }
408 break;
409 case tIs:
410 U_ASSERT(curAndConstraint != NULL);
411 U_ASSERT(curAndConstraint->value == -1);
412 U_ASSERT(curAndConstraint->rangeList == NULL);
413 break;
414 case tNot:
415 U_ASSERT(curAndConstraint != NULL);
416 curAndConstraint->negated=TRUE;
417 break;
419 case tNotEqual:
420 curAndConstraint->negated=TRUE;
421 case tIn:
422 case tWithin:
423 case tEqual:
424 U_ASSERT(curAndConstraint != NULL);
425 curAndConstraint->rangeList = new UVector32(status);
426 curAndConstraint->rangeList->addElement(-1, status); // range Low
427 curAndConstraint->rangeList->addElement(-1, status); // range Hi
428 rangeLowIdx = 0;
429 rangeHiIdx = 1;
430 curAndConstraint->value=PLURAL_RANGE_HIGH;
431 curAndConstraint->integerOnly = (type != tWithin);
432 break;
433 case tNumber:
434 U_ASSERT(curAndConstraint != NULL);
435 if ( (curAndConstraint->op==AndConstraint::MOD)&&
436 (curAndConstraint->opNum == -1 ) ) {
437 curAndConstraint->opNum=getNumberValue(token);
438 }
439 else {
440 if (curAndConstraint->rangeList == NULL) {
441 // this is for an 'is' rule
442 curAndConstraint->value = getNumberValue(token);
443 } else {
444 // this is for an 'in' or 'within' rule
445 if (curAndConstraint->rangeList->elementAti(rangeLowIdx) == -1) {
446 curAndConstraint->rangeList->setElementAt(getNumberValue(token), rangeLowIdx);
447 curAndConstraint->rangeList->setElementAt(getNumberValue(token), rangeHiIdx);
448 }
449 else {
450 curAndConstraint->rangeList->setElementAt(getNumberValue(token), rangeHiIdx);
451 if (curAndConstraint->rangeList->elementAti(rangeLowIdx) >
452 curAndConstraint->rangeList->elementAti(rangeHiIdx)) {
453 // Range Lower bound > Range Upper bound.
454 // U_UNEXPECTED_TOKEN seems a little funny, but it is consistently
455 // used for all plural rule parse errors.
456 status = U_UNEXPECTED_TOKEN;
457 break;
458 }
459 }
460 }
461 }
462 break;
463 case tComma:
464 // TODO: rule syntax checking is inadequate, can happen with badly formed rules.
465 // Catch cases like "n mod 10, is 1" here instead.
466 if (curAndConstraint == NULL || curAndConstraint->rangeList == NULL) {
467 status = U_UNEXPECTED_TOKEN;
468 break;
469 }
470 U_ASSERT(curAndConstraint->rangeList->size() >= 2);
471 rangeLowIdx = curAndConstraint->rangeList->size();
472 curAndConstraint->rangeList->addElement(-1, status); // range Low
473 rangeHiIdx = curAndConstraint->rangeList->size();
474 curAndConstraint->rangeList->addElement(-1, status); // range Hi
475 break;
476 case tMod:
477 U_ASSERT(curAndConstraint != NULL);
478 curAndConstraint->op=AndConstraint::MOD;
479 break;
480 case tVariableN:
481 case tVariableI:
482 case tVariableF:
483 case tVariableT:
484 case tVariableV:
485 U_ASSERT(curAndConstraint != NULL);
486 curAndConstraint->digitsType = type;
487 break;
488 case tKeyword:
489 {
490 RuleChain *newChain = new RuleChain;
491 if (newChain == NULL) {
492 status = U_MEMORY_ALLOCATION_ERROR;
493 break;
494 }
495 newChain->fKeyword = token;
496 if (prules->mRules == NULL) {
497 prules->mRules = newChain;
498 } else {
499 // The new rule chain goes at the end of the linked list of rule chains,
500 // unless there is an "other" keyword & chain. "other" must remain last.
501 RuleChain *insertAfter = prules->mRules;
502 while (insertAfter->fNext!=NULL &&
503 insertAfter->fNext->fKeyword.compare(PLURAL_KEYWORD_OTHER, 5) != 0 ){
504 insertAfter=insertAfter->fNext;
505 }
506 newChain->fNext = insertAfter->fNext;
507 insertAfter->fNext = newChain;
508 }
509 OrConstraint *orNode = new OrConstraint();
510 newChain->ruleHeader = orNode;
511 curAndConstraint = orNode->add();
512 currentChain = newChain;
513 }
514 break;
516 case tInteger:
517 for (;;) {
518 getNextToken(status);
519 if (U_FAILURE(status) || type == tSemiColon || type == tEOF || type == tAt) {
520 break;
521 }
522 if (type == tEllipsis) {
523 currentChain->fIntegerSamplesUnbounded = TRUE;
524 continue;
525 }
526 currentChain->fIntegerSamples.append(token);
527 }
528 break;
530 case tDecimal:
531 for (;;) {
532 getNextToken(status);
533 if (U_FAILURE(status) || type == tSemiColon || type == tEOF || type == tAt) {
534 break;
535 }
536 if (type == tEllipsis) {
537 currentChain->fDecimalSamplesUnbounded = TRUE;
538 continue;
539 }
540 currentChain->fDecimalSamples.append(token);
541 }
542 break;
544 default:
545 break;
546 }
547 prevType=type;
548 if (U_FAILURE(status)) {
549 break;
550 }
551 }
552 }
554 UnicodeString
555 PluralRules::getRuleFromResource(const Locale& locale, UPluralType type, UErrorCode& errCode) {
556 UnicodeString emptyStr;
558 if (U_FAILURE(errCode)) {
559 return emptyStr;
560 }
561 LocalUResourceBundlePointer rb(ures_openDirect(NULL, "plurals", &errCode));
562 if(U_FAILURE(errCode)) {
563 return emptyStr;
564 }
565 const char *typeKey;
566 switch (type) {
567 case UPLURAL_TYPE_CARDINAL:
568 typeKey = "locales";
569 break;
570 case UPLURAL_TYPE_ORDINAL:
571 typeKey = "locales_ordinals";
572 break;
573 default:
574 // Must not occur: The caller should have checked for valid types.
575 errCode = U_ILLEGAL_ARGUMENT_ERROR;
576 return emptyStr;
577 }
578 LocalUResourceBundlePointer locRes(ures_getByKey(rb.getAlias(), typeKey, NULL, &errCode));
579 if(U_FAILURE(errCode)) {
580 return emptyStr;
581 }
582 int32_t resLen=0;
583 const char *curLocaleName=locale.getName();
584 const UChar* s = ures_getStringByKey(locRes.getAlias(), curLocaleName, &resLen, &errCode);
586 if (s == NULL) {
587 // Check parent locales.
588 UErrorCode status = U_ZERO_ERROR;
589 char parentLocaleName[ULOC_FULLNAME_CAPACITY];
590 const char *curLocaleName=locale.getName();
591 uprv_strcpy(parentLocaleName, curLocaleName);
593 while (uloc_getParent(parentLocaleName, parentLocaleName,
594 ULOC_FULLNAME_CAPACITY, &status) > 0) {
595 resLen=0;
596 s = ures_getStringByKey(locRes.getAlias(), parentLocaleName, &resLen, &status);
597 if (s != NULL) {
598 errCode = U_ZERO_ERROR;
599 break;
600 }
601 status = U_ZERO_ERROR;
602 }
603 }
604 if (s==NULL) {
605 return emptyStr;
606 }
608 char setKey[256];
609 u_UCharsToChars(s, setKey, resLen + 1);
610 // printf("\n PluralRule: %s\n", setKey);
612 LocalUResourceBundlePointer ruleRes(ures_getByKey(rb.getAlias(), "rules", NULL, &errCode));
613 if(U_FAILURE(errCode)) {
614 return emptyStr;
615 }
616 LocalUResourceBundlePointer setRes(ures_getByKey(ruleRes.getAlias(), setKey, NULL, &errCode));
617 if (U_FAILURE(errCode)) {
618 return emptyStr;
619 }
621 int32_t numberKeys = ures_getSize(setRes.getAlias());
622 UnicodeString result;
623 const char *key=NULL;
624 for(int32_t i=0; i<numberKeys; ++i) { // Keys are zero, one, few, ...
625 UnicodeString rules = ures_getNextUnicodeString(setRes.getAlias(), &key, &errCode);
626 UnicodeString uKey(key, -1, US_INV);
627 result.append(uKey);
628 result.append(COLON);
629 result.append(rules);
630 result.append(SEMI_COLON);
631 }
632 return result;
633 }
636 UnicodeString
637 PluralRules::getRules() const {
638 UnicodeString rules;
639 if (mRules != NULL) {
640 mRules->dumpRules(rules);
641 }
642 return rules;
643 }
646 AndConstraint::AndConstraint() {
647 op = AndConstraint::NONE;
648 opNum=-1;
649 value = -1;
650 rangeList = NULL;
651 negated = FALSE;
652 integerOnly = FALSE;
653 digitsType = none;
654 next=NULL;
655 }
658 AndConstraint::AndConstraint(const AndConstraint& other) {
659 this->op = other.op;
660 this->opNum=other.opNum;
661 this->value=other.value;
662 this->rangeList=NULL;
663 if (other.rangeList != NULL) {
664 UErrorCode status = U_ZERO_ERROR;
665 this->rangeList = new UVector32(status);
666 this->rangeList->assign(*other.rangeList, status);
667 }
668 this->integerOnly=other.integerOnly;
669 this->negated=other.negated;
670 this->digitsType = other.digitsType;
671 if (other.next==NULL) {
672 this->next=NULL;
673 }
674 else {
675 this->next = new AndConstraint(*other.next);
676 }
677 }
679 AndConstraint::~AndConstraint() {
680 delete rangeList;
681 if (next!=NULL) {
682 delete next;
683 }
684 }
687 UBool
688 AndConstraint::isFulfilled(const FixedDecimal &number) {
689 UBool result = TRUE;
690 if (digitsType == none) {
691 // An empty AndConstraint, created by a rule with a keyword but no following expression.
692 return TRUE;
693 }
694 double n = number.get(digitsType); // pulls n | i | v | f value for the number.
695 // Will always be positive.
696 // May be non-integer (n option only)
697 do {
698 if (integerOnly && n != uprv_floor(n)) {
699 result = FALSE;
700 break;
701 }
703 if (op == MOD) {
704 n = fmod(n, opNum);
705 }
706 if (rangeList == NULL) {
707 result = value == -1 || // empty rule
708 n == value; // 'is' rule
709 break;
710 }
711 result = FALSE; // 'in' or 'within' rule
712 for (int32_t r=0; r<rangeList->size(); r+=2) {
713 if (rangeList->elementAti(r) <= n && n <= rangeList->elementAti(r+1)) {
714 result = TRUE;
715 break;
716 }
717 }
718 } while (FALSE);
720 if (negated) {
721 result = !result;
722 }
723 return result;
724 }
727 AndConstraint*
728 AndConstraint::add()
729 {
730 this->next = new AndConstraint();
731 return this->next;
732 }
734 OrConstraint::OrConstraint() {
735 childNode=NULL;
736 next=NULL;
737 }
739 OrConstraint::OrConstraint(const OrConstraint& other) {
740 if ( other.childNode == NULL ) {
741 this->childNode = NULL;
742 }
743 else {
744 this->childNode = new AndConstraint(*(other.childNode));
745 }
746 if (other.next == NULL ) {
747 this->next = NULL;
748 }
749 else {
750 this->next = new OrConstraint(*(other.next));
751 }
752 }
754 OrConstraint::~OrConstraint() {
755 if (childNode!=NULL) {
756 delete childNode;
757 }
758 if (next!=NULL) {
759 delete next;
760 }
761 }
763 AndConstraint*
764 OrConstraint::add()
765 {
766 OrConstraint *curOrConstraint=this;
767 {
768 while (curOrConstraint->next!=NULL) {
769 curOrConstraint = curOrConstraint->next;
770 }
771 U_ASSERT(curOrConstraint->childNode == NULL);
772 curOrConstraint->childNode = new AndConstraint();
773 }
774 return curOrConstraint->childNode;
775 }
777 UBool
778 OrConstraint::isFulfilled(const FixedDecimal &number) {
779 OrConstraint* orRule=this;
780 UBool result=FALSE;
782 while (orRule!=NULL && !result) {
783 result=TRUE;
784 AndConstraint* andRule = orRule->childNode;
785 while (andRule!=NULL && result) {
786 result = andRule->isFulfilled(number);
787 andRule=andRule->next;
788 }
789 orRule = orRule->next;
790 }
792 return result;
793 }
796 RuleChain::RuleChain(): fKeyword(), fNext(NULL), ruleHeader(NULL), fDecimalSamples(), fIntegerSamples(),
797 fDecimalSamplesUnbounded(FALSE), fIntegerSamplesUnbounded(FALSE) {
798 }
800 RuleChain::RuleChain(const RuleChain& other) :
801 fKeyword(other.fKeyword), fNext(NULL), ruleHeader(NULL), fDecimalSamples(other.fDecimalSamples),
802 fIntegerSamples(other.fIntegerSamples), fDecimalSamplesUnbounded(other.fDecimalSamplesUnbounded),
803 fIntegerSamplesUnbounded(other.fIntegerSamplesUnbounded) {
804 if (other.ruleHeader != NULL) {
805 this->ruleHeader = new OrConstraint(*(other.ruleHeader));
806 }
807 if (other.fNext != NULL ) {
808 this->fNext = new RuleChain(*other.fNext);
809 }
810 }
812 RuleChain::~RuleChain() {
813 delete fNext;
814 delete ruleHeader;
815 }
818 UnicodeString
819 RuleChain::select(const FixedDecimal &number) const {
820 if (!number.isNanOrInfinity) {
821 for (const RuleChain *rules = this; rules != NULL; rules = rules->fNext) {
822 if (rules->ruleHeader->isFulfilled(number)) {
823 return rules->fKeyword;
824 }
825 }
826 }
827 return UnicodeString(TRUE, PLURAL_KEYWORD_OTHER, 5);
828 }
830 static UnicodeString tokenString(tokenType tok) {
831 UnicodeString s;
832 switch (tok) {
833 case tVariableN:
834 s.append(LOW_N); break;
835 case tVariableI:
836 s.append(LOW_I); break;
837 case tVariableF:
838 s.append(LOW_F); break;
839 case tVariableV:
840 s.append(LOW_V); break;
841 case tVariableT:
842 s.append(LOW_T); break;
843 default:
844 s.append(TILDE);
845 }
846 return s;
847 }
849 void
850 RuleChain::dumpRules(UnicodeString& result) {
851 UChar digitString[16];
853 if ( ruleHeader != NULL ) {
854 result += fKeyword;
855 result += COLON;
856 result += SPACE;
857 OrConstraint* orRule=ruleHeader;
858 while ( orRule != NULL ) {
859 AndConstraint* andRule=orRule->childNode;
860 while ( andRule != NULL ) {
861 if ((andRule->op==AndConstraint::NONE) && (andRule->rangeList==NULL) && (andRule->value == -1)) {
862 // Empty Rules.
863 } else if ( (andRule->op==AndConstraint::NONE) && (andRule->rangeList==NULL) ) {
864 result += tokenString(andRule->digitsType);
865 result += UNICODE_STRING_SIMPLE(" is ");
866 if (andRule->negated) {
867 result += UNICODE_STRING_SIMPLE("not ");
868 }
869 uprv_itou(digitString,16, andRule->value,10,0);
870 result += UnicodeString(digitString);
871 }
872 else {
873 result += tokenString(andRule->digitsType);
874 result += SPACE;
875 if (andRule->op==AndConstraint::MOD) {
876 result += UNICODE_STRING_SIMPLE("mod ");
877 uprv_itou(digitString,16, andRule->opNum,10,0);
878 result += UnicodeString(digitString);
879 }
880 if (andRule->rangeList==NULL) {
881 if (andRule->negated) {
882 result += UNICODE_STRING_SIMPLE(" is not ");
883 uprv_itou(digitString,16, andRule->value,10,0);
884 result += UnicodeString(digitString);
885 }
886 else {
887 result += UNICODE_STRING_SIMPLE(" is ");
888 uprv_itou(digitString,16, andRule->value,10,0);
889 result += UnicodeString(digitString);
890 }
891 }
892 else {
893 if (andRule->negated) {
894 if ( andRule->integerOnly ) {
895 result += UNICODE_STRING_SIMPLE(" not in ");
896 }
897 else {
898 result += UNICODE_STRING_SIMPLE(" not within ");
899 }
900 }
901 else {
902 if ( andRule->integerOnly ) {
903 result += UNICODE_STRING_SIMPLE(" in ");
904 }
905 else {
906 result += UNICODE_STRING_SIMPLE(" within ");
907 }
908 }
909 for (int32_t r=0; r<andRule->rangeList->size(); r+=2) {
910 int32_t rangeLo = andRule->rangeList->elementAti(r);
911 int32_t rangeHi = andRule->rangeList->elementAti(r+1);
912 uprv_itou(digitString,16, rangeLo, 10, 0);
913 result += UnicodeString(digitString);
914 result += UNICODE_STRING_SIMPLE("..");
915 uprv_itou(digitString,16, rangeHi, 10,0);
916 result += UnicodeString(digitString);
917 if (r+2 < andRule->rangeList->size()) {
918 result += UNICODE_STRING_SIMPLE(", ");
919 }
920 }
921 }
922 }
923 if ( (andRule=andRule->next) != NULL) {
924 result += UNICODE_STRING_SIMPLE(" and ");
925 }
926 }
927 if ( (orRule = orRule->next) != NULL ) {
928 result += UNICODE_STRING_SIMPLE(" or ");
929 }
930 }
931 }
932 if ( fNext != NULL ) {
933 result += UNICODE_STRING_SIMPLE("; ");
934 fNext->dumpRules(result);
935 }
936 }
939 UErrorCode
940 RuleChain::getKeywords(int32_t capacityOfKeywords, UnicodeString* keywords, int32_t& arraySize) const {
941 if ( arraySize < capacityOfKeywords-1 ) {
942 keywords[arraySize++]=fKeyword;
943 }
944 else {
945 return U_BUFFER_OVERFLOW_ERROR;
946 }
948 if ( fNext != NULL ) {
949 return fNext->getKeywords(capacityOfKeywords, keywords, arraySize);
950 }
951 else {
952 return U_ZERO_ERROR;
953 }
954 }
956 UBool
957 RuleChain::isKeyword(const UnicodeString& keywordParam) const {
958 if ( fKeyword == keywordParam ) {
959 return TRUE;
960 }
962 if ( fNext != NULL ) {
963 return fNext->isKeyword(keywordParam);
964 }
965 else {
966 return FALSE;
967 }
968 }
971 PluralRuleParser::PluralRuleParser() :
972 ruleIndex(0), token(), type(none), prevType(none),
973 curAndConstraint(NULL), currentChain(NULL), rangeLowIdx(-1), rangeHiIdx(-1)
974 {
975 }
977 PluralRuleParser::~PluralRuleParser() {
978 }
981 int32_t
982 PluralRuleParser::getNumberValue(const UnicodeString& token) {
983 int32_t i;
984 char digits[128];
986 i = token.extract(0, token.length(), digits, ARRAY_SIZE(digits), US_INV);
987 digits[i]='\0';
989 return((int32_t)atoi(digits));
990 }
993 void
994 PluralRuleParser::checkSyntax(UErrorCode &status)
995 {
996 if (U_FAILURE(status)) {
997 return;
998 }
999 if (!(prevType==none || prevType==tSemiColon)) {
1000 type = getKeyType(token, type); // Switch token type from tKeyword if we scanned a reserved word,
1001 // and we are not at the start of a rule, where a
1002 // keyword is expected.
1003 }
1005 switch(prevType) {
1006 case none:
1007 case tSemiColon:
1008 if (type!=tKeyword && type != tEOF) {
1009 status = U_UNEXPECTED_TOKEN;
1010 }
1011 break;
1012 case tVariableN:
1013 case tVariableI:
1014 case tVariableF:
1015 case tVariableT:
1016 case tVariableV:
1017 if (type != tIs && type != tMod && type != tIn &&
1018 type != tNot && type != tWithin && type != tEqual && type != tNotEqual) {
1019 status = U_UNEXPECTED_TOKEN;
1020 }
1021 break;
1022 case tKeyword:
1023 if (type != tColon) {
1024 status = U_UNEXPECTED_TOKEN;
1025 }
1026 break;
1027 case tColon:
1028 if (!(type == tVariableN ||
1029 type == tVariableI ||
1030 type == tVariableF ||
1031 type == tVariableT ||
1032 type == tVariableV ||
1033 type == tAt)) {
1034 status = U_UNEXPECTED_TOKEN;
1035 }
1036 break;
1037 case tIs:
1038 if ( type != tNumber && type != tNot) {
1039 status = U_UNEXPECTED_TOKEN;
1040 }
1041 break;
1042 case tNot:
1043 if (type != tNumber && type != tIn && type != tWithin) {
1044 status = U_UNEXPECTED_TOKEN;
1045 }
1046 break;
1047 case tMod:
1048 case tDot2:
1049 case tIn:
1050 case tWithin:
1051 case tEqual:
1052 case tNotEqual:
1053 if (type != tNumber) {
1054 status = U_UNEXPECTED_TOKEN;
1055 }
1056 break;
1057 case tAnd:
1058 case tOr:
1059 if ( type != tVariableN &&
1060 type != tVariableI &&
1061 type != tVariableF &&
1062 type != tVariableT &&
1063 type != tVariableV) {
1064 status = U_UNEXPECTED_TOKEN;
1065 }
1066 break;
1067 case tComma:
1068 if (type != tNumber) {
1069 status = U_UNEXPECTED_TOKEN;
1070 }
1071 break;
1072 case tNumber:
1073 if (type != tDot2 && type != tSemiColon && type != tIs && type != tNot &&
1074 type != tIn && type != tEqual && type != tNotEqual && type != tWithin &&
1075 type != tAnd && type != tOr && type != tComma && type != tAt &&
1076 type != tEOF)
1077 {
1078 status = U_UNEXPECTED_TOKEN;
1079 }
1080 // TODO: a comma following a number that is not part of a range will be allowed.
1081 // It's not the only case of this sort of thing. Parser needs a re-write.
1082 break;
1083 case tAt:
1084 if (type != tDecimal && type != tInteger) {
1085 status = U_UNEXPECTED_TOKEN;
1086 }
1087 break;
1088 default:
1089 status = U_UNEXPECTED_TOKEN;
1090 break;
1091 }
1092 }
1095 /*
1096 * Scan the next token from the input rules.
1097 * rules and returned token type are in the parser state variables.
1098 */
1099 void
1100 PluralRuleParser::getNextToken(UErrorCode &status)
1101 {
1102 if (U_FAILURE(status)) {
1103 return;
1104 }
1106 UChar ch;
1107 while (ruleIndex < ruleSrc->length()) {
1108 ch = ruleSrc->charAt(ruleIndex);
1109 type = charType(ch);
1110 if (type != tSpace) {
1111 break;
1112 }
1113 ++(ruleIndex);
1114 }
1115 if (ruleIndex >= ruleSrc->length()) {
1116 type = tEOF;
1117 return;
1118 }
1119 int32_t curIndex= ruleIndex;
1121 switch (type) {
1122 case tColon:
1123 case tSemiColon:
1124 case tComma:
1125 case tEllipsis:
1126 case tTilde: // scanned '~'
1127 case tAt: // scanned '@'
1128 case tEqual: // scanned '='
1129 case tMod: // scanned '%'
1130 // Single character tokens.
1131 ++curIndex;
1132 break;
1134 case tNotEqual: // scanned '!'
1135 if (ruleSrc->charAt(curIndex+1) == EQUALS) {
1136 curIndex += 2;
1137 } else {
1138 type = none;
1139 curIndex += 1;
1140 }
1141 break;
1143 case tKeyword:
1144 while (type == tKeyword && ++curIndex < ruleSrc->length()) {
1145 ch = ruleSrc->charAt(curIndex);
1146 type = charType(ch);
1147 }
1148 type = tKeyword;
1149 break;
1151 case tNumber:
1152 while (type == tNumber && ++curIndex < ruleSrc->length()) {
1153 ch = ruleSrc->charAt(curIndex);
1154 type = charType(ch);
1155 }
1156 type = tNumber;
1157 break;
1159 case tDot:
1160 // We could be looking at either ".." in a range, or "..." at the end of a sample.
1161 if (curIndex+1 >= ruleSrc->length() || ruleSrc->charAt(curIndex+1) != DOT) {
1162 ++curIndex;
1163 break; // Single dot
1164 }
1165 if (curIndex+2 >= ruleSrc->length() || ruleSrc->charAt(curIndex+2) != DOT) {
1166 curIndex += 2;
1167 type = tDot2;
1168 break; // double dot
1169 }
1170 type = tEllipsis;
1171 curIndex += 3;
1172 break; // triple dot
1174 default:
1175 status = U_UNEXPECTED_TOKEN;
1176 ++curIndex;
1177 break;
1178 }
1180 U_ASSERT(ruleIndex <= ruleSrc->length());
1181 U_ASSERT(curIndex <= ruleSrc->length());
1182 token=UnicodeString(*ruleSrc, ruleIndex, curIndex-ruleIndex);
1183 ruleIndex = curIndex;
1184 }
1186 tokenType
1187 PluralRuleParser::charType(UChar ch) {
1188 if ((ch>=U_ZERO) && (ch<=U_NINE)) {
1189 return tNumber;
1190 }
1191 if (ch>=LOW_A && ch<=LOW_Z) {
1192 return tKeyword;
1193 }
1194 switch (ch) {
1195 case COLON:
1196 return tColon;
1197 case SPACE:
1198 return tSpace;
1199 case SEMI_COLON:
1200 return tSemiColon;
1201 case DOT:
1202 return tDot;
1203 case COMMA:
1204 return tComma;
1205 case EXCLAMATION:
1206 return tNotEqual;
1207 case EQUALS:
1208 return tEqual;
1209 case PERCENT_SIGN:
1210 return tMod;
1211 case AT:
1212 return tAt;
1213 case ELLIPSIS:
1214 return tEllipsis;
1215 case TILDE:
1216 return tTilde;
1217 default :
1218 return none;
1219 }
1220 }
1223 // Set token type for reserved words in the Plural Rule syntax.
1225 tokenType
1226 PluralRuleParser::getKeyType(const UnicodeString &token, tokenType keyType)
1227 {
1228 if (keyType != tKeyword) {
1229 return keyType;
1230 }
1232 if (0 == token.compare(PK_VAR_N, 1)) {
1233 keyType = tVariableN;
1234 } else if (0 == token.compare(PK_VAR_I, 1)) {
1235 keyType = tVariableI;
1236 } else if (0 == token.compare(PK_VAR_F, 1)) {
1237 keyType = tVariableF;
1238 } else if (0 == token.compare(PK_VAR_T, 1)) {
1239 keyType = tVariableT;
1240 } else if (0 == token.compare(PK_VAR_V, 1)) {
1241 keyType = tVariableV;
1242 } else if (0 == token.compare(PK_IS, 2)) {
1243 keyType = tIs;
1244 } else if (0 == token.compare(PK_AND, 3)) {
1245 keyType = tAnd;
1246 } else if (0 == token.compare(PK_IN, 2)) {
1247 keyType = tIn;
1248 } else if (0 == token.compare(PK_WITHIN, 6)) {
1249 keyType = tWithin;
1250 } else if (0 == token.compare(PK_NOT, 3)) {
1251 keyType = tNot;
1252 } else if (0 == token.compare(PK_MOD, 3)) {
1253 keyType = tMod;
1254 } else if (0 == token.compare(PK_OR, 2)) {
1255 keyType = tOr;
1256 } else if (0 == token.compare(PK_DECIMAL, 7)) {
1257 keyType = tDecimal;
1258 } else if (0 == token.compare(PK_INTEGER, 7)) {
1259 keyType = tInteger;
1260 }
1261 return keyType;
1262 }
1265 PluralKeywordEnumeration::PluralKeywordEnumeration(RuleChain *header, UErrorCode& status)
1266 : pos(0), fKeywordNames(status) {
1267 if (U_FAILURE(status)) {
1268 return;
1269 }
1270 fKeywordNames.setDeleter(uprv_deleteUObject);
1271 UBool addKeywordOther=TRUE;
1272 RuleChain *node=header;
1273 while(node!=NULL) {
1274 fKeywordNames.addElement(new UnicodeString(node->fKeyword), status);
1275 if (U_FAILURE(status)) {
1276 return;
1277 }
1278 if (0 == node->fKeyword.compare(PLURAL_KEYWORD_OTHER, 5)) {
1279 addKeywordOther= FALSE;
1280 }
1281 node=node->fNext;
1282 }
1284 if (addKeywordOther) {
1285 fKeywordNames.addElement(new UnicodeString(PLURAL_KEYWORD_OTHER), status);
1286 }
1287 }
1289 const UnicodeString*
1290 PluralKeywordEnumeration::snext(UErrorCode& status) {
1291 if (U_SUCCESS(status) && pos < fKeywordNames.size()) {
1292 return (const UnicodeString*)fKeywordNames.elementAt(pos++);
1293 }
1294 return NULL;
1295 }
1297 void
1298 PluralKeywordEnumeration::reset(UErrorCode& /*status*/) {
1299 pos=0;
1300 }
1302 int32_t
1303 PluralKeywordEnumeration::count(UErrorCode& /*status*/) const {
1304 return fKeywordNames.size();
1305 }
1307 PluralKeywordEnumeration::~PluralKeywordEnumeration() {
1308 }
1312 FixedDecimal::FixedDecimal(double n, int32_t v, int64_t f) {
1313 init(n, v, f);
1314 // check values. TODO make into unit test.
1315 //
1316 // long visiblePower = (int) Math.pow(10, v);
1317 // if (decimalDigits > visiblePower) {
1318 // throw new IllegalArgumentException();
1319 // }
1320 // double fraction = intValue + (decimalDigits / (double) visiblePower);
1321 // if (fraction != source) {
1322 // double diff = Math.abs(fraction - source)/(Math.abs(fraction) + Math.abs(source));
1323 // if (diff > 0.00000001d) {
1324 // throw new IllegalArgumentException();
1325 // }
1326 // }
1327 }
1329 FixedDecimal::FixedDecimal(double n, int32_t v) {
1330 // Ugly, but for samples we don't care.
1331 init(n, v, getFractionalDigits(n, v));
1332 }
1334 FixedDecimal::FixedDecimal(double n) {
1335 init(n);
1336 }
1338 FixedDecimal::FixedDecimal() {
1339 init(0, 0, 0);
1340 }
1343 // Create a FixedDecimal from a UnicodeString containing a number.
1344 // Inefficient, but only used for samples, so simplicity trumps efficiency.
1346 FixedDecimal::FixedDecimal(const UnicodeString &num, UErrorCode &status) {
1347 CharString cs;
1348 cs.appendInvariantChars(num, status);
1349 DigitList dl;
1350 dl.set(cs.toStringPiece(), status);
1351 if (U_FAILURE(status)) {
1352 init(0, 0, 0);
1353 return;
1354 }
1355 int32_t decimalPoint = num.indexOf(DOT);
1356 double n = dl.getDouble();
1357 if (decimalPoint == -1) {
1358 init(n, 0, 0);
1359 } else {
1360 int32_t v = num.length() - decimalPoint - 1;
1361 init(n, v, getFractionalDigits(n, v));
1362 }
1363 }
1366 FixedDecimal::FixedDecimal(const FixedDecimal &other) {
1367 source = other.source;
1368 visibleDecimalDigitCount = other.visibleDecimalDigitCount;
1369 decimalDigits = other.decimalDigits;
1370 decimalDigitsWithoutTrailingZeros = other.decimalDigitsWithoutTrailingZeros;
1371 intValue = other.intValue;
1372 hasIntegerValue = other.hasIntegerValue;
1373 isNegative = other.isNegative;
1374 isNanOrInfinity = other.isNanOrInfinity;
1375 }
1378 void FixedDecimal::init(double n) {
1379 int32_t numFractionDigits = decimals(n);
1380 init(n, numFractionDigits, getFractionalDigits(n, numFractionDigits));
1381 }
1384 void FixedDecimal::init(double n, int32_t v, int64_t f) {
1385 isNegative = n < 0.0;
1386 source = fabs(n);
1387 isNanOrInfinity = uprv_isNaN(source) || uprv_isPositiveInfinity(source);
1388 if (isNanOrInfinity) {
1389 v = 0;
1390 f = 0;
1391 intValue = 0;
1392 hasIntegerValue = FALSE;
1393 } else {
1394 intValue = (int64_t)source;
1395 hasIntegerValue = (source == intValue);
1396 }
1398 visibleDecimalDigitCount = v;
1399 decimalDigits = f;
1400 if (f == 0) {
1401 decimalDigitsWithoutTrailingZeros = 0;
1402 } else {
1403 int64_t fdwtz = f;
1404 while ((fdwtz%10) == 0) {
1405 fdwtz /= 10;
1406 }
1407 decimalDigitsWithoutTrailingZeros = fdwtz;
1408 }
1409 }
1412 // Fast path only exact initialization. Return true if successful.
1413 // Note: Do not multiply by 10 each time through loop, rounding cruft can build
1414 // up that makes the check for an integer result fail.
1415 // A single multiply of the original number works more reliably.
1416 static int32_t p10[] = {1, 10, 100, 1000, 10000};
1417 UBool FixedDecimal::quickInit(double n) {
1418 UBool success = FALSE;
1419 n = fabs(n);
1420 int32_t numFractionDigits;
1421 for (numFractionDigits = 0; numFractionDigits <= 3; numFractionDigits++) {
1422 double scaledN = n * p10[numFractionDigits];
1423 if (scaledN == floor(scaledN)) {
1424 success = TRUE;
1425 break;
1426 }
1427 }
1428 if (success) {
1429 init(n, numFractionDigits, getFractionalDigits(n, numFractionDigits));
1430 }
1431 return success;
1432 }
1436 int32_t FixedDecimal::decimals(double n) {
1437 // Count the number of decimal digits in the fraction part of the number, excluding trailing zeros.
1438 // fastpath the common cases, integers or fractions with 3 or fewer digits
1439 n = fabs(n);
1440 for (int ndigits=0; ndigits<=3; ndigits++) {
1441 double scaledN = n * p10[ndigits];
1442 if (scaledN == floor(scaledN)) {
1443 return ndigits;
1444 }
1445 }
1447 // Slow path, convert with sprintf, parse converted output.
1448 char buf[30] = {0};
1449 sprintf(buf, "%1.15e", n);
1450 // formatted number looks like this: 1.234567890123457e-01
1451 int exponent = atoi(buf+18);
1452 int numFractionDigits = 15;
1453 for (int i=16; ; --i) {
1454 if (buf[i] != '0') {
1455 break;
1456 }
1457 --numFractionDigits;
1458 }
1459 numFractionDigits -= exponent; // Fraction part of fixed point representation.
1460 return numFractionDigits;
1461 }
1464 // Get the fraction digits of a double, represented as an integer.
1465 // v is the number of visible fraction digits in the displayed form of the number.
1466 // Example: n = 1001.234, v = 6, result = 234000
1467 // TODO: need to think through how this is used in the plural rule context.
1468 // This function can easily encounter integer overflow,
1469 // and can easily return noise digits when the precision of a double is exceeded.
1471 int64_t FixedDecimal::getFractionalDigits(double n, int32_t v) {
1472 if (v == 0 || n == floor(n) || uprv_isNaN(n) || uprv_isPositiveInfinity(n)) {
1473 return 0;
1474 }
1475 n = fabs(n);
1476 double fract = n - floor(n);
1477 switch (v) {
1478 case 1: return (int64_t)(fract*10.0 + 0.5);
1479 case 2: return (int64_t)(fract*100.0 + 0.5);
1480 case 3: return (int64_t)(fract*1000.0 + 0.5);
1481 default:
1482 double scaled = floor(fract * pow(10.0, (double)v) + 0.5);
1483 if (scaled > U_INT64_MAX) {
1484 return U_INT64_MAX;
1485 } else {
1486 return (int64_t)scaled;
1487 }
1488 }
1489 }
1492 void FixedDecimal::adjustForMinFractionDigits(int32_t minFractionDigits) {
1493 int32_t numTrailingFractionZeros = minFractionDigits - visibleDecimalDigitCount;
1494 if (numTrailingFractionZeros > 0) {
1495 for (int32_t i=0; i<numTrailingFractionZeros; i++) {
1496 // Do not let the decimalDigits value overflow if there are many trailing zeros.
1497 // Limit the value to 18 digits, the most that a 64 bit int can fully represent.
1498 if (decimalDigits >= 100000000000000000LL) {
1499 break;
1500 }
1501 decimalDigits *= 10;
1502 }
1503 visibleDecimalDigitCount += numTrailingFractionZeros;
1504 }
1505 }
1508 double FixedDecimal::get(tokenType operand) const {
1509 switch(operand) {
1510 case tVariableN: return source;
1511 case tVariableI: return (double)intValue;
1512 case tVariableF: return (double)decimalDigits;
1513 case tVariableT: return (double)decimalDigitsWithoutTrailingZeros;
1514 case tVariableV: return visibleDecimalDigitCount;
1515 default:
1516 U_ASSERT(FALSE); // unexpected.
1517 return source;
1518 }
1519 }
1521 int32_t FixedDecimal::getVisibleFractionDigitCount() const {
1522 return visibleDecimalDigitCount;
1523 }
1527 PluralAvailableLocalesEnumeration::PluralAvailableLocalesEnumeration(UErrorCode &status) {
1528 fLocales = NULL;
1529 fRes = NULL;
1530 fOpenStatus = status;
1531 if (U_FAILURE(status)) {
1532 return;
1533 }
1534 fOpenStatus = U_ZERO_ERROR;
1535 LocalUResourceBundlePointer rb(ures_openDirect(NULL, "plurals", &fOpenStatus));
1536 fLocales = ures_getByKey(rb.getAlias(), "locales", NULL, &fOpenStatus);
1537 }
1539 PluralAvailableLocalesEnumeration::~PluralAvailableLocalesEnumeration() {
1540 ures_close(fLocales);
1541 ures_close(fRes);
1542 fLocales = NULL;
1543 fRes = NULL;
1544 }
1546 const char *PluralAvailableLocalesEnumeration::next(int32_t *resultLength, UErrorCode &status) {
1547 if (U_FAILURE(status)) {
1548 return NULL;
1549 }
1550 if (U_FAILURE(fOpenStatus)) {
1551 status = fOpenStatus;
1552 return NULL;
1553 }
1554 fRes = ures_getNextResource(fLocales, fRes, &status);
1555 if (fRes == NULL || U_FAILURE(status)) {
1556 if (status == U_INDEX_OUTOFBOUNDS_ERROR) {
1557 status = U_ZERO_ERROR;
1558 }
1559 return NULL;
1560 }
1561 const char *result = ures_getKey(fRes);
1562 if (resultLength != NULL) {
1563 *resultLength = uprv_strlen(result);
1564 }
1565 return result;
1566 }
1569 void PluralAvailableLocalesEnumeration::reset(UErrorCode &status) {
1570 if (U_FAILURE(status)) {
1571 return;
1572 }
1573 if (U_FAILURE(fOpenStatus)) {
1574 status = fOpenStatus;
1575 return;
1576 }
1577 ures_resetIterator(fLocales);
1578 }
1580 int32_t PluralAvailableLocalesEnumeration::count(UErrorCode &status) const {
1581 if (U_FAILURE(status)) {
1582 return 0;
1583 }
1584 if (U_FAILURE(fOpenStatus)) {
1585 status = fOpenStatus;
1586 return 0;
1587 }
1588 return ures_getSize(fLocales);
1589 }
1591 U_NAMESPACE_END
1594 #endif /* #if !UCONFIG_NO_FORMATTING */
1596 //eof