intl/icu/source/tools/makeconv/genmbcs.cpp

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

     1 /*
     2 *******************************************************************************
     3 *
     4 *   Copyright (C) 2000-2013, International Business Machines
     5 *   Corporation and others.  All Rights Reserved.
     6 *
     7 *******************************************************************************
     8 *   file name:  genmbcs.cpp
     9 *   encoding:   US-ASCII
    10 *   tab size:   8 (not used)
    11 *   indentation:4
    12 *
    13 *   created on: 2000jul06
    14 *   created by: Markus W. Scherer
    15 */
    17 #include <stdio.h>
    18 #include "unicode/utypes.h"
    19 #include "cstring.h"
    20 #include "cmemory.h"
    21 #include "unewdata.h"
    22 #include "ucnv_cnv.h"
    23 #include "ucnvmbcs.h"
    24 #include "ucm.h"
    25 #include "makeconv.h"
    26 #include "genmbcs.h"
    28 /*
    29  * TODO: Split this file into toUnicode, SBCSFromUnicode and MBCSFromUnicode files.
    30  * Reduce tests for maxCharLength.
    31  */
    33 struct MBCSData {
    34     NewConverter newConverter;
    36     UCMFile *ucm;
    38     /* toUnicode (state table in ucm->states) */
    39     _MBCSToUFallback toUFallbacks[MBCS_MAX_FALLBACK_COUNT];
    40     int32_t countToUFallbacks;
    41     uint16_t *unicodeCodeUnits;
    43     /* fromUnicode */
    44     uint16_t stage1[MBCS_STAGE_1_SIZE];
    45     uint16_t stage2Single[MBCS_STAGE_2_SIZE]; /* stage 2 for single-byte codepages */
    46     uint32_t stage2[MBCS_STAGE_2_SIZE]; /* stage 2 for MBCS */
    47     uint8_t *fromUBytes;
    48     uint32_t stage2Top, stage3Top;
    50     /* fromUTF8 */
    51     uint16_t stageUTF8[0x10000>>MBCS_UTF8_STAGE_SHIFT];  /* allow for utf8Max=0xffff */
    53     /*
    54      * Maximum UTF-8-friendly code point.
    55      * 0 if !utf8Friendly, otherwise 0x01ff..0xffff in steps of 0x100.
    56      * If utf8Friendly, utf8Max is normally either MBCS_UTF8_MAX or 0xffff.
    57      */
    58     uint16_t utf8Max;
    60     UBool utf8Friendly;
    61     UBool omitFromU;
    62 };
    64 /* prototypes */
    65 static void
    66 MBCSClose(NewConverter *cnvData);
    68 static UBool
    69 MBCSStartMappings(MBCSData *mbcsData);
    71 static UBool
    72 MBCSAddToUnicode(MBCSData *mbcsData,
    73                  const uint8_t *bytes, int32_t length,
    74                  UChar32 c,
    75                  int8_t flag);
    77 static UBool
    78 MBCSIsValid(NewConverter *cnvData,
    79             const uint8_t *bytes, int32_t length);
    81 static UBool
    82 MBCSSingleAddFromUnicode(MBCSData *mbcsData,
    83                          const uint8_t *bytes, int32_t length,
    84                          UChar32 c,
    85                          int8_t flag);
    87 static UBool
    88 MBCSAddFromUnicode(MBCSData *mbcsData,
    89                    const uint8_t *bytes, int32_t length,
    90                    UChar32 c,
    91                    int8_t flag);
    93 static void
    94 MBCSPostprocess(MBCSData *mbcsData, const UConverterStaticData *staticData);
    96 static UBool
    97 MBCSAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData);
    99 static uint32_t
   100 MBCSWrite(NewConverter *cnvData, const UConverterStaticData *staticData,
   101           UNewDataMemory *pData, int32_t tableType);
   103 /* helper ------------------------------------------------------------------- */
   105 static inline char
   106 hexDigit(uint8_t digit) {
   107     return digit<=9 ? (char)('0'+digit) : (char)('a'-10+digit);
   108 }
   110 static inline char *
   111 printBytes(char *buffer, const uint8_t *bytes, int32_t length) {
   112     char *s=buffer;
   113     while(length>0) {
   114         *s++=hexDigit((uint8_t)(*bytes>>4));
   115         *s++=hexDigit((uint8_t)(*bytes&0xf));
   116         ++bytes;
   117         --length;
   118     }
   120     *s=0;
   121     return buffer;
   122 }
   124 /* implementation ----------------------------------------------------------- */
   126 static MBCSData gDummy;
   128 U_CFUNC const MBCSData *
   129 MBCSGetDummy() {
   130     uprv_memset(&gDummy, 0, sizeof(MBCSData));
   132     /*
   133      * Set "pessimistic" values which may sometimes move too many
   134      * mappings to the extension table (but never too few).
   135      * These values cause MBCSOkForBaseFromUnicode() to return FALSE for the
   136      * largest set of mappings.
   137      * Assume maxCharLength>1.
   138      */
   139     gDummy.utf8Friendly=TRUE;
   140     if(SMALL) {
   141         gDummy.utf8Max=0xffff;
   142         gDummy.omitFromU=TRUE;
   143     } else {
   144         gDummy.utf8Max=MBCS_UTF8_MAX;
   145     }
   146     return &gDummy;
   147 }
   149 static void
   150 MBCSInit(MBCSData *mbcsData, UCMFile *ucm) {
   151     uprv_memset(mbcsData, 0, sizeof(MBCSData));
   153     mbcsData->ucm=ucm; /* aliased, not owned */
   155     mbcsData->newConverter.close=MBCSClose;
   156     mbcsData->newConverter.isValid=MBCSIsValid;
   157     mbcsData->newConverter.addTable=MBCSAddTable;
   158     mbcsData->newConverter.write=MBCSWrite;
   159 }
   161 NewConverter *
   162 MBCSOpen(UCMFile *ucm) {
   163     MBCSData *mbcsData=(MBCSData *)uprv_malloc(sizeof(MBCSData));
   164     if(mbcsData==NULL) {
   165         printf("out of memory\n");
   166         exit(U_MEMORY_ALLOCATION_ERROR);
   167     }
   169     MBCSInit(mbcsData, ucm);
   170     return &mbcsData->newConverter;
   171 }
   173 static void
   174 MBCSDestruct(MBCSData *mbcsData) {
   175     uprv_free(mbcsData->unicodeCodeUnits);
   176     uprv_free(mbcsData->fromUBytes);
   177 }
   179 static void
   180 MBCSClose(NewConverter *cnvData) {
   181     MBCSData *mbcsData=(MBCSData *)cnvData;
   182     if(mbcsData!=NULL) {
   183         MBCSDestruct(mbcsData);
   184         uprv_free(mbcsData);
   185     }
   186 }
   188 static UBool
   189 MBCSStartMappings(MBCSData *mbcsData) {
   190     int32_t i, sum, maxCharLength,
   191             stage2NullLength, stage2AllocLength,
   192             stage3NullLength, stage3AllocLength;
   194     /* toUnicode */
   196     /* allocate the code unit array and prefill it with "unassigned" values */
   197     sum=mbcsData->ucm->states.countToUCodeUnits;
   198     if(VERBOSE) {
   199         printf("the total number of offsets is 0x%lx=%ld\n", (long)sum, (long)sum);
   200     }
   202     if(sum>0) {
   203         mbcsData->unicodeCodeUnits=(uint16_t *)uprv_malloc(sum*sizeof(uint16_t));
   204         if(mbcsData->unicodeCodeUnits==NULL) {
   205             fprintf(stderr, "error: out of memory allocating %ld 16-bit code units\n",
   206                 (long)sum);
   207             return FALSE;
   208         }
   209         for(i=0; i<sum; ++i) {
   210             mbcsData->unicodeCodeUnits[i]=0xfffe;
   211         }
   212     }
   214     /* fromUnicode */
   215     maxCharLength=mbcsData->ucm->states.maxCharLength;
   217     /* allocate the codepage mappings and preset the first 16 characters to 0 */
   218     if(maxCharLength==1) {
   219         /* allocate 64k 16-bit results for single-byte codepages */
   220         sum=0x20000;
   221     } else {
   222         /* allocate 1M * maxCharLength bytes for at most 1M mappings */
   223         sum=0x100000*maxCharLength;
   224     }
   225     mbcsData->fromUBytes=(uint8_t *)uprv_malloc(sum);
   226     if(mbcsData->fromUBytes==NULL) {
   227         fprintf(stderr, "error: out of memory allocating %ld B for target mappings\n", (long)sum);
   228         return FALSE;
   229     }
   230     uprv_memset(mbcsData->fromUBytes, 0, sum);
   232     /*
   233      * UTF-8-friendly fromUnicode tries: allocate multiple blocks at a time.
   234      * See ucnvmbcs.h for details.
   235      *
   236      * There is code, for example in ucnv_MBCSGetUnicodeSetForUnicode(), which
   237      * assumes that the initial stage 2/3 blocks are the all-unassigned ones.
   238      * Therefore, we refine the data structure while maintaining this placement
   239      * even though it would be convenient to allocate the ASCII block at the
   240      * beginning of stage 3, for example.
   241      *
   242      * UTF-8-friendly fromUnicode tries work from sorted tables and are built
   243      * pre-compacted, overlapping adjacent stage 2/3 blocks.
   244      * This is necessary because the block allocation and compaction changes
   245      * at SBCS_UTF8_MAX or MBCS_UTF8_MAX, and for MBCS tables the additional
   246      * stage table uses direct indexes into stage 3, without a multiplier and
   247      * thus with a smaller reach.
   248      *
   249      * Non-UTF-8-friendly fromUnicode tries work from unsorted tables
   250      * (because implicit precision is used), and are compacted
   251      * in post-processing.
   252      *
   253      * Preallocation for UTF-8-friendly fromUnicode tries:
   254      *
   255      * Stage 3:
   256      * 64-entry all-unassigned first block followed by ASCII (128 entries).
   257      *
   258      * Stage 2:
   259      * 64-entry all-unassigned first block followed by preallocated
   260      * 64-block for ASCII.
   261      */
   263     /* Preallocate ASCII as a linear 128-entry stage 3 block. */
   264     stage2NullLength=MBCS_STAGE_2_BLOCK_SIZE;
   265     stage2AllocLength=MBCS_STAGE_2_BLOCK_SIZE;
   267     stage3NullLength=MBCS_UTF8_STAGE_3_BLOCK_SIZE;
   268     stage3AllocLength=128; /* ASCII U+0000..U+007f */
   270     /* Initialize stage 1 for the preallocated blocks. */
   271     sum=stage2NullLength;
   272     for(i=0; i<(stage2AllocLength>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT); ++i) {
   273         mbcsData->stage1[i]=sum;
   274         sum+=MBCS_STAGE_2_BLOCK_SIZE;
   275     }
   276     mbcsData->stage2Top=stage2NullLength+stage2AllocLength; /* ==sum */
   278     /*
   279      * Stage 2 indexes count 16-blocks in stage 3 as follows:
   280      * SBCS: directly, indexes increment by 16
   281      * MBCS: indexes need to be multiplied by 16*maxCharLength, indexes increment by 1
   282      * MBCS UTF-8: directly, indexes increment by 16
   283      */
   284     if(maxCharLength==1) {
   285         sum=stage3NullLength;
   286         for(i=0; i<(stage3AllocLength/MBCS_STAGE_3_BLOCK_SIZE); ++i) {
   287             mbcsData->stage2Single[mbcsData->stage1[0]+i]=sum;
   288             sum+=MBCS_STAGE_3_BLOCK_SIZE;
   289         }
   290     } else {
   291         sum=stage3NullLength/MBCS_STAGE_3_GRANULARITY;
   292         for(i=0; i<(stage3AllocLength/MBCS_STAGE_3_BLOCK_SIZE); ++i) {
   293             mbcsData->stage2[mbcsData->stage1[0]+i]=sum;
   294             sum+=MBCS_STAGE_3_BLOCK_SIZE/MBCS_STAGE_3_GRANULARITY;
   295         }
   296     }
   298     sum=stage3NullLength;
   299     for(i=0; i<(stage3AllocLength/MBCS_UTF8_STAGE_3_BLOCK_SIZE); ++i) {
   300         mbcsData->stageUTF8[i]=sum;
   301         sum+=MBCS_UTF8_STAGE_3_BLOCK_SIZE;
   302     }
   304     /*
   305      * Allocate a 64-entry all-unassigned first stage 3 block,
   306      * for UTF-8-friendly lookup with a trail byte,
   307      * plus 128 entries for ASCII.
   308      */
   309     mbcsData->stage3Top=(stage3NullLength+stage3AllocLength)*maxCharLength; /* ==sum*maxCharLength */
   311     return TRUE;
   312 }
   314 /* return TRUE for success */
   315 static UBool
   316 setFallback(MBCSData *mbcsData, uint32_t offset, UChar32 c) {
   317     int32_t i=ucm_findFallback(mbcsData->toUFallbacks, mbcsData->countToUFallbacks, offset);
   318     if(i>=0) {
   319         /* if there is already a fallback for this offset, then overwrite it */
   320         mbcsData->toUFallbacks[i].codePoint=c;
   321         return TRUE;
   322     } else {
   323         /* if there is no fallback for this offset, then add one */
   324         i=mbcsData->countToUFallbacks;
   325         if(i>=MBCS_MAX_FALLBACK_COUNT) {
   326             fprintf(stderr, "error: too many toUnicode fallbacks, currently at: U+%x\n", (int)c);
   327             return FALSE;
   328         } else {
   329             mbcsData->toUFallbacks[i].offset=offset;
   330             mbcsData->toUFallbacks[i].codePoint=c;
   331             mbcsData->countToUFallbacks=i+1;
   332             return TRUE;
   333         }
   334     }
   335 }
   337 /* remove fallback if there is one with this offset; return the code point if there was such a fallback, otherwise -1 */
   338 static int32_t
   339 removeFallback(MBCSData *mbcsData, uint32_t offset) {
   340     int32_t i=ucm_findFallback(mbcsData->toUFallbacks, mbcsData->countToUFallbacks, offset);
   341     if(i>=0) {
   342         _MBCSToUFallback *toUFallbacks;
   343         int32_t limit, old;
   345         toUFallbacks=mbcsData->toUFallbacks;
   346         limit=mbcsData->countToUFallbacks;
   347         old=(int32_t)toUFallbacks[i].codePoint;
   349         /* copy the last fallback entry here to keep the list contiguous */
   350         toUFallbacks[i].offset=toUFallbacks[limit-1].offset;
   351         toUFallbacks[i].codePoint=toUFallbacks[limit-1].codePoint;
   352         mbcsData->countToUFallbacks=limit-1;
   353         return old;
   354     } else {
   355         return -1;
   356     }
   357 }
   359 /*
   360  * isFallback is almost a boolean:
   361  * 1 (TRUE)  this is a fallback mapping
   362  * 0 (FALSE) this is a precise mapping
   363  * -1        the precision of this mapping is not specified
   364  */
   365 static UBool
   366 MBCSAddToUnicode(MBCSData *mbcsData,
   367                  const uint8_t *bytes, int32_t length,
   368                  UChar32 c,
   369                  int8_t flag) {
   370     char buffer[10];
   371     uint32_t offset=0;
   372     int32_t i=0, entry, old;
   373     uint8_t state=0;
   375     if(mbcsData->ucm->states.countStates==0) {
   376         fprintf(stderr, "error: there is no state information!\n");
   377         return FALSE;
   378     }
   380     /* for SI/SO (like EBCDIC-stateful), double-byte sequences start in state 1 */
   381     if(length==2 && mbcsData->ucm->states.outputType==MBCS_OUTPUT_2_SISO) {
   382         state=1;
   383     }
   385     /*
   386      * Walk down the state table like in conversion,
   387      * much like getNextUChar().
   388      * We assume that c<=0x10ffff.
   389      */
   390     for(i=0;;) {
   391         entry=mbcsData->ucm->states.stateTable[state][bytes[i++]];
   392         if(MBCS_ENTRY_IS_TRANSITION(entry)) {
   393             if(i==length) {
   394                 fprintf(stderr, "error: byte sequence too short, ends in non-final state %hu: 0x%s (U+%x)\n",
   395                     (short)state, printBytes(buffer, bytes, length), (int)c);
   396                 return FALSE;
   397             }
   398             state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
   399             offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry);
   400         } else {
   401             if(i<length) {
   402                 fprintf(stderr, "error: byte sequence too long by %d bytes, final state %u: 0x%s (U+%x)\n",
   403                     (int)(length-i), state, printBytes(buffer, bytes, length), (int)c);
   404                 return FALSE;
   405             }
   406             switch(MBCS_ENTRY_FINAL_ACTION(entry)) {
   407             case MBCS_STATE_ILLEGAL:
   408                 fprintf(stderr, "error: byte sequence ends in illegal state at U+%04x<->0x%s\n",
   409                     (int)c, printBytes(buffer, bytes, length));
   410                 return FALSE;
   411             case MBCS_STATE_CHANGE_ONLY:
   412                 fprintf(stderr, "error: byte sequence ends in state-change-only at U+%04x<->0x%s\n",
   413                     (int)c, printBytes(buffer, bytes, length));
   414                 return FALSE;
   415             case MBCS_STATE_UNASSIGNED:
   416                 fprintf(stderr, "error: byte sequence ends in unassigned state at U+%04x<->0x%s\n",
   417                     (int)c, printBytes(buffer, bytes, length));
   418                 return FALSE;
   419             case MBCS_STATE_FALLBACK_DIRECT_16:
   420             case MBCS_STATE_VALID_DIRECT_16:
   421             case MBCS_STATE_FALLBACK_DIRECT_20:
   422             case MBCS_STATE_VALID_DIRECT_20:
   423                 if(MBCS_ENTRY_SET_STATE(entry, 0)!=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, 0xfffe)) {
   424                     /* the "direct" action's value is not "valid-direct-16-unassigned" any more */
   425                     if(MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_DIRECT_16 || MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_FALLBACK_DIRECT_16) {
   426                         old=MBCS_ENTRY_FINAL_VALUE(entry);
   427                     } else {
   428                         old=0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
   429                     }
   430                     if(flag>=0) {
   431                         fprintf(stderr, "error: duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n",
   432                             (int)c, printBytes(buffer, bytes, length), (int)old);
   433                         return FALSE;
   434                     } else if(VERBOSE) {
   435                         fprintf(stderr, "duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n",
   436                             (int)c, printBytes(buffer, bytes, length), (int)old);
   437                     }
   438                     /*
   439                      * Continue after the above warning
   440                      * if the precision of the mapping is unspecified.
   441                      */
   442                 }
   443                 /* reassign the correct action code */
   444                 entry=MBCS_ENTRY_FINAL_SET_ACTION(entry, (MBCS_STATE_VALID_DIRECT_16+(flag==3 ? 2 : 0)+(c>=0x10000 ? 1 : 0)));
   446                 /* put the code point into bits 22..7 for BMP, c-0x10000 into 26..7 for others */
   447                 if(c<=0xffff) {
   448                     entry=MBCS_ENTRY_FINAL_SET_VALUE(entry, c);
   449                 } else {
   450                     entry=MBCS_ENTRY_FINAL_SET_VALUE(entry, c-0x10000);
   451                 }
   452                 mbcsData->ucm->states.stateTable[state][bytes[i-1]]=entry;
   453                 break;
   454             case MBCS_STATE_VALID_16:
   455                 /* bits 26..16 are not used, 0 */
   456                 /* bits 15..7 contain the final offset delta to one 16-bit code unit */
   457                 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
   458                 /* check that this byte sequence is still unassigned */
   459                 if((old=mbcsData->unicodeCodeUnits[offset])!=0xfffe || (old=removeFallback(mbcsData, offset))!=-1) {
   460                     if(flag>=0) {
   461                         fprintf(stderr, "error: duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n",
   462                             (int)c, printBytes(buffer, bytes, length), (int)old);
   463                         return FALSE;
   464                     } else if(VERBOSE) {
   465                         fprintf(stderr, "duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n",
   466                             (int)c, printBytes(buffer, bytes, length), (int)old);
   467                     }
   468                 }
   469                 if(c>=0x10000) {
   470                     fprintf(stderr, "error: code point does not fit into valid-16-bit state at U+%04x<->0x%s\n",
   471                         (int)c, printBytes(buffer, bytes, length));
   472                     return FALSE;
   473                 }
   474                 if(flag>0) {
   475                     /* assign only if there is no precise mapping */
   476                     if(mbcsData->unicodeCodeUnits[offset]==0xfffe) {
   477                         return setFallback(mbcsData, offset, c);
   478                     }
   479                 } else {
   480                     mbcsData->unicodeCodeUnits[offset]=(uint16_t)c;
   481                 }
   482                 break;
   483             case MBCS_STATE_VALID_16_PAIR:
   484                 /* bits 26..16 are not used, 0 */
   485                 /* bits 15..7 contain the final offset delta to two 16-bit code units */
   486                 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
   487                 /* check that this byte sequence is still unassigned */
   488                 old=mbcsData->unicodeCodeUnits[offset];
   489                 if(old<0xfffe) {
   490                     int32_t real;
   491                     if(old<0xd800) {
   492                         real=old;
   493                     } else if(old<=0xdfff) {
   494                         real=0x10000+((old&0x3ff)<<10)+((mbcsData->unicodeCodeUnits[offset+1])&0x3ff);
   495                     } else /* old<=0xe001 */ {
   496                         real=mbcsData->unicodeCodeUnits[offset+1];
   497                     }
   498                     if(flag>=0) {
   499                         fprintf(stderr, "error: duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n",
   500                             (int)c, printBytes(buffer, bytes, length), (int)real);
   501                         return FALSE;
   502                     } else if(VERBOSE) {
   503                         fprintf(stderr, "duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n",
   504                             (int)c, printBytes(buffer, bytes, length), (int)real);
   505                     }
   506                 }
   507                 if(flag>0) {
   508                     /* assign only if there is no precise mapping */
   509                     if(old<=0xdbff || old==0xe000) {
   510                         /* do nothing */
   511                     } else if(c<=0xffff) {
   512                         /* set a BMP fallback code point as a pair with 0xe001 */
   513                         mbcsData->unicodeCodeUnits[offset++]=0xe001;
   514                         mbcsData->unicodeCodeUnits[offset]=(uint16_t)c;
   515                     } else {
   516                         /* set a fallback surrogate pair with two second surrogates */
   517                         mbcsData->unicodeCodeUnits[offset++]=(uint16_t)(0xdbc0+(c>>10));
   518                         mbcsData->unicodeCodeUnits[offset]=(uint16_t)(0xdc00+(c&0x3ff));
   519                     }
   520                 } else {
   521                     if(c<0xd800) {
   522                         /* set a BMP code point */
   523                         mbcsData->unicodeCodeUnits[offset]=(uint16_t)c;
   524                     } else if(c<=0xffff) {
   525                         /* set a BMP code point above 0xd800 as a pair with 0xe000 */
   526                         mbcsData->unicodeCodeUnits[offset++]=0xe000;
   527                         mbcsData->unicodeCodeUnits[offset]=(uint16_t)c;
   528                     } else {
   529                         /* set a surrogate pair */
   530                         mbcsData->unicodeCodeUnits[offset++]=(uint16_t)(0xd7c0+(c>>10));
   531                         mbcsData->unicodeCodeUnits[offset]=(uint16_t)(0xdc00+(c&0x3ff));
   532                     }
   533                 }
   534                 break;
   535             default:
   536                 /* reserved, must never occur */
   537                 fprintf(stderr, "internal error: byte sequence reached reserved action code, entry 0x%02x: 0x%s (U+%x)\n",
   538                     (int)entry, printBytes(buffer, bytes, length), (int)c);
   539                 return FALSE;
   540             }
   542             return TRUE;
   543         }
   544     }
   545 }
   547 /* is this byte sequence valid? (this is almost the same as MBCSAddToUnicode()) */
   548 static UBool
   549 MBCSIsValid(NewConverter *cnvData,
   550             const uint8_t *bytes, int32_t length) {
   551     MBCSData *mbcsData=(MBCSData *)cnvData;
   553     return (UBool)(1==ucm_countChars(&mbcsData->ucm->states, bytes, length));
   554 }
   556 static UBool
   557 MBCSSingleAddFromUnicode(MBCSData *mbcsData,
   558                          const uint8_t *bytes, int32_t /*length*/,
   559                          UChar32 c,
   560                          int8_t flag) {
   561     uint16_t *stage3, *p;
   562     uint32_t idx;
   563     uint16_t old;
   564     uint8_t b;
   566     uint32_t blockSize, newTop, i, nextOffset, newBlock, min;
   568     /* ignore |2 SUB mappings */
   569     if(flag==2) {
   570         return TRUE;
   571     }
   573     /*
   574      * Walk down the triple-stage compact array ("trie") and
   575      * allocate parts as necessary.
   576      * Note that the first stage 2 and 3 blocks are reserved for all-unassigned mappings.
   577      * We assume that length<=maxCharLength and that c<=0x10ffff.
   578      */
   579     stage3=(uint16_t *)mbcsData->fromUBytes;
   580     b=*bytes;
   582     /* inspect stage 1 */
   583     idx=c>>MBCS_STAGE_1_SHIFT;
   584     if(mbcsData->utf8Friendly && c<=SBCS_UTF8_MAX) {
   585         nextOffset=(c>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK&~(MBCS_UTF8_STAGE_3_BLOCKS-1);
   586     } else {
   587         nextOffset=(c>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK;
   588     }
   589     if(mbcsData->stage1[idx]==MBCS_STAGE_2_ALL_UNASSIGNED_INDEX) {
   590         /* allocate another block in stage 2 */
   591         newBlock=mbcsData->stage2Top;
   592         if(mbcsData->utf8Friendly) {
   593             min=newBlock-nextOffset; /* minimum block start with overlap */
   594             while(min<newBlock && mbcsData->stage2Single[newBlock-1]==0) {
   595                 --newBlock;
   596             }
   597         }
   598         newTop=newBlock+MBCS_STAGE_2_BLOCK_SIZE;
   600         if(newTop>MBCS_MAX_STAGE_2_TOP) {
   601             fprintf(stderr, "error: too many stage 2 entries at U+%04x<->0x%02x\n", (int)c, b);
   602             return FALSE;
   603         }
   605         /*
   606          * each stage 2 block contains 64 16-bit words:
   607          * 6 code point bits 9..4 with 1 stage 3 index
   608          */
   609         mbcsData->stage1[idx]=(uint16_t)newBlock;
   610         mbcsData->stage2Top=newTop;
   611     }
   613     /* inspect stage 2 */
   614     idx=mbcsData->stage1[idx]+nextOffset;
   615     if(mbcsData->utf8Friendly && c<=SBCS_UTF8_MAX) {
   616         /* allocate 64-entry blocks for UTF-8-friendly lookup */
   617         blockSize=MBCS_UTF8_STAGE_3_BLOCK_SIZE;
   618         nextOffset=c&MBCS_UTF8_STAGE_3_BLOCK_MASK;
   619     } else {
   620         blockSize=MBCS_STAGE_3_BLOCK_SIZE;
   621         nextOffset=c&MBCS_STAGE_3_BLOCK_MASK;
   622     }
   623     if(mbcsData->stage2Single[idx]==0) {
   624         /* allocate another block in stage 3 */
   625         newBlock=mbcsData->stage3Top;
   626         if(mbcsData->utf8Friendly) {
   627             min=newBlock-nextOffset; /* minimum block start with overlap */
   628             while(min<newBlock && stage3[newBlock-1]==0) {
   629                 --newBlock;
   630             }
   631         }
   632         newTop=newBlock+blockSize;
   634         if(newTop>MBCS_STAGE_3_SBCS_SIZE) {
   635             fprintf(stderr, "error: too many code points at U+%04x<->0x%02x\n", (int)c, b);
   636             return FALSE;
   637         }
   638         /* each block has 16 uint16_t entries */
   639         i=idx;
   640         while(newBlock<newTop) {
   641             mbcsData->stage2Single[i++]=(uint16_t)newBlock;
   642             newBlock+=MBCS_STAGE_3_BLOCK_SIZE;
   643         }
   644         mbcsData->stage3Top=newTop; /* ==newBlock */
   645     }
   647     /* write the codepage entry into stage 3 and get the previous entry */
   648     p=stage3+mbcsData->stage2Single[idx]+nextOffset;
   649     old=*p;
   650     if(flag<=0) {
   651         *p=(uint16_t)(0xf00|b);
   652     } else if(IS_PRIVATE_USE(c)) {
   653         *p=(uint16_t)(0xc00|b);
   654     } else {
   655         *p=(uint16_t)(0x800|b);
   656     }
   658     /* check that this Unicode code point was still unassigned */
   659     if(old>=0x100) {
   660         if(flag>=0) {
   661             fprintf(stderr, "error: duplicate Unicode code point at U+%04x<->0x%02x see 0x%02x\n",
   662                 (int)c, b, old&0xff);
   663             return FALSE;
   664         } else if(VERBOSE) {
   665             fprintf(stderr, "duplicate Unicode code point at U+%04x<->0x%02x see 0x%02x\n",
   666                 (int)c, b, old&0xff);
   667         }
   668         /* continue after the above warning if the precision of the mapping is unspecified */
   669     }
   671     return TRUE;
   672 }
   674 static UBool
   675 MBCSAddFromUnicode(MBCSData *mbcsData,
   676                    const uint8_t *bytes, int32_t length,
   677                    UChar32 c,
   678                    int8_t flag) {
   679     char buffer[10];
   680     const uint8_t *pb;
   681     uint8_t *stage3, *p;
   682     uint32_t idx, b, old, stage3Index;
   683     int32_t maxCharLength;
   685     uint32_t blockSize, newTop, i, nextOffset, newBlock, min, overlap, maxOverlap;
   687     maxCharLength=mbcsData->ucm->states.maxCharLength;
   689     if( mbcsData->ucm->states.outputType==MBCS_OUTPUT_2_SISO &&
   690         (!IGNORE_SISO_CHECK && (*bytes==0xe || *bytes==0xf))
   691     ) {
   692         fprintf(stderr, "error: illegal mapping to SI or SO for SI/SO codepage: U+%04x<->0x%s\n",
   693             (int)c, printBytes(buffer, bytes, length));
   694         return FALSE;
   695     }
   697     if(flag==1 && length==1 && *bytes==0) {
   698         fprintf(stderr, "error: unable to encode a |1 fallback from U+%04x to 0x%02x\n",
   699             (int)c, *bytes);
   700         return FALSE;
   701     }
   703     /*
   704      * Walk down the triple-stage compact array ("trie") and
   705      * allocate parts as necessary.
   706      * Note that the first stage 2 and 3 blocks are reserved for
   707      * all-unassigned mappings.
   708      * We assume that length<=maxCharLength and that c<=0x10ffff.
   709      */
   710     stage3=mbcsData->fromUBytes;
   712     /* inspect stage 1 */
   713     idx=c>>MBCS_STAGE_1_SHIFT;
   714     if(mbcsData->utf8Friendly && c<=mbcsData->utf8Max) {
   715         nextOffset=(c>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK&~(MBCS_UTF8_STAGE_3_BLOCKS-1);
   716     } else {
   717         nextOffset=(c>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK;
   718     }
   719     if(mbcsData->stage1[idx]==MBCS_STAGE_2_ALL_UNASSIGNED_INDEX) {
   720         /* allocate another block in stage 2 */
   721         newBlock=mbcsData->stage2Top;
   722         if(mbcsData->utf8Friendly) {
   723             min=newBlock-nextOffset; /* minimum block start with overlap */
   724             while(min<newBlock && mbcsData->stage2[newBlock-1]==0) {
   725                 --newBlock;
   726             }
   727         }
   728         newTop=newBlock+MBCS_STAGE_2_BLOCK_SIZE;
   730         if(newTop>MBCS_MAX_STAGE_2_TOP) {
   731             fprintf(stderr, "error: too many stage 2 entries at U+%04x<->0x%s\n",
   732                 (int)c, printBytes(buffer, bytes, length));
   733             return FALSE;
   734         }
   736         /*
   737          * each stage 2 block contains 64 32-bit words:
   738          * 6 code point bits 9..4 with value with bits 31..16 "assigned" flags and bits 15..0 stage 3 index
   739          */
   740         i=idx;
   741         while(newBlock<newTop) {
   742             mbcsData->stage1[i++]=(uint16_t)newBlock;
   743             newBlock+=MBCS_STAGE_2_BLOCK_SIZE;
   744         }
   745         mbcsData->stage2Top=newTop; /* ==newBlock */
   746     }
   748     /* inspect stage 2 */
   749     idx=mbcsData->stage1[idx]+nextOffset;
   750     if(mbcsData->utf8Friendly && c<=mbcsData->utf8Max) {
   751         /* allocate 64-entry blocks for UTF-8-friendly lookup */
   752         blockSize=MBCS_UTF8_STAGE_3_BLOCK_SIZE*maxCharLength;
   753         nextOffset=c&MBCS_UTF8_STAGE_3_BLOCK_MASK;
   754     } else {
   755         blockSize=MBCS_STAGE_3_BLOCK_SIZE*maxCharLength;
   756         nextOffset=c&MBCS_STAGE_3_BLOCK_MASK;
   757     }
   758     if(mbcsData->stage2[idx]==0) {
   759         /* allocate another block in stage 3 */
   760         newBlock=mbcsData->stage3Top;
   761         if(mbcsData->utf8Friendly && nextOffset>=MBCS_STAGE_3_GRANULARITY) {
   762             /*
   763              * Overlap stage 3 blocks only in multiples of 16-entry blocks
   764              * because of the indexing granularity in stage 2.
   765              */
   766             maxOverlap=(nextOffset&~(MBCS_STAGE_3_GRANULARITY-1))*maxCharLength;
   767             for(overlap=0;
   768                 overlap<maxOverlap && stage3[newBlock-overlap-1]==0;
   769                 ++overlap) {}
   771             overlap=(overlap/MBCS_STAGE_3_GRANULARITY)/maxCharLength;
   772             overlap=(overlap*MBCS_STAGE_3_GRANULARITY)*maxCharLength;
   774             newBlock-=overlap;
   775         }
   776         newTop=newBlock+blockSize;
   778         if(newTop>MBCS_STAGE_3_MBCS_SIZE*(uint32_t)maxCharLength) {
   779             fprintf(stderr, "error: too many code points at U+%04x<->0x%s\n",
   780                 (int)c, printBytes(buffer, bytes, length));
   781             return FALSE;
   782         }
   783         /* each block has 16*maxCharLength bytes */
   784         i=idx;
   785         while(newBlock<newTop) {
   786             mbcsData->stage2[i++]=(newBlock/MBCS_STAGE_3_GRANULARITY)/maxCharLength;
   787             newBlock+=MBCS_STAGE_3_BLOCK_SIZE*maxCharLength;
   788         }
   789         mbcsData->stage3Top=newTop; /* ==newBlock */
   790     }
   792     stage3Index=MBCS_STAGE_3_GRANULARITY*(uint32_t)(uint16_t)mbcsData->stage2[idx];
   794     /* Build an alternate, UTF-8-friendly stage table as well. */
   795     if(mbcsData->utf8Friendly && c<=mbcsData->utf8Max) {
   796         /* Overflow for uint16_t entries in stageUTF8? */
   797         if(stage3Index>0xffff) {
   798             /*
   799              * This can occur only if the mapping table is nearly perfectly filled and if
   800              * utf8Max==0xffff.
   801              * (There is no known charset like this. GB 18030 does not map
   802              * surrogate code points and LMBCS does not map 256 PUA code points.)
   803              *
   804              * Otherwise, stage3Index<=MBCS_UTF8_LIMIT<0xffff
   805              * (stage3Index can at most reach exactly MBCS_UTF8_LIMIT)
   806              * because we have a sorted table and there are at most MBCS_UTF8_LIMIT
   807              * mappings with 0<=c<MBCS_UTF8_LIMIT, and there is only also
   808              * the initial all-unassigned block in stage3.
   809              *
   810              * Solution for the overflow: Reduce utf8Max to the next lower value, 0xfeff.
   811              *
   812              * (See svn revision 20866 of the markus/ucnvutf8 feature branch for
   813              * code that causes MBCSAddTable() to rebuild the table not utf8Friendly
   814              * in case of overflow. That code was not tested.)
   815              */
   816             mbcsData->utf8Max=0xfeff;
   817         } else {
   818             /*
   819              * The stage 3 block has been assigned for the regular trie.
   820              * Just copy its index into stageUTF8[], without the granularity.
   821              */
   822             mbcsData->stageUTF8[c>>MBCS_UTF8_STAGE_SHIFT]=(uint16_t)stage3Index;
   823         }
   824     }
   826     /* write the codepage bytes into stage 3 and get the previous bytes */
   828     /* assemble the bytes into a single integer */
   829     pb=bytes;
   830     b=0;
   831     switch(length) {
   832     case 4:
   833         b=*pb++;
   834     case 3:
   835         b=(b<<8)|*pb++;
   836     case 2:
   837         b=(b<<8)|*pb++;
   838     case 1:
   839     default:
   840         b=(b<<8)|*pb++;
   841         break;
   842     }
   844     old=0;
   845     p=stage3+(stage3Index+nextOffset)*maxCharLength;
   846     switch(maxCharLength) {
   847     case 2:
   848         old=*(uint16_t *)p;
   849         *(uint16_t *)p=(uint16_t)b;
   850         break;
   851     case 3:
   852         old=(uint32_t)*p<<16;
   853         *p++=(uint8_t)(b>>16);
   854         old|=(uint32_t)*p<<8;
   855         *p++=(uint8_t)(b>>8);
   856         old|=*p;
   857         *p=(uint8_t)b;
   858         break;
   859     case 4:
   860         old=*(uint32_t *)p;
   861         *(uint32_t *)p=b;
   862         break;
   863     default:
   864         /* will never occur */
   865         break;
   866     }
   868     /* check that this Unicode code point was still unassigned */
   869     if((mbcsData->stage2[idx+(nextOffset>>MBCS_STAGE_2_SHIFT)]&(1UL<<(16+(c&0xf))))!=0 || old!=0) {
   870         if(flag>=0) {
   871             fprintf(stderr, "error: duplicate Unicode code point at U+%04x<->0x%s see 0x%02x\n",
   872                 (int)c, printBytes(buffer, bytes, length), (int)old);
   873             return FALSE;
   874         } else if(VERBOSE) {
   875             fprintf(stderr, "duplicate Unicode code point at U+%04x<->0x%s see 0x%02x\n",
   876                 (int)c, printBytes(buffer, bytes, length), (int)old);
   877         }
   878         /* continue after the above warning if the precision of the mapping is
   879            unspecified */
   880     }
   881     if(flag<=0) {
   882         /* set the roundtrip flag */
   883         mbcsData->stage2[idx+(nextOffset>>4)]|=(1UL<<(16+(c&0xf)));
   884     }
   886     return TRUE;
   887 }
   889 U_CFUNC UBool
   890 MBCSOkForBaseFromUnicode(const MBCSData *mbcsData,
   891                          const uint8_t *bytes, int32_t length,
   892                          UChar32 c, int8_t flag) {
   893     /*
   894      * A 1:1 mapping does not fit into the MBCS base table's fromUnicode table under
   895      * the following conditions:
   896      *
   897      * - a |2 SUB mapping for <subchar1> (no base table data structure for them)
   898      * - a |1 fallback to 0x00 (result value 0, indistinguishable from unmappable entry)
   899      * - a multi-byte mapping with leading 0x00 bytes (no explicit length field)
   900      *
   901      * Some of these tests are redundant with ucm_mappingType().
   902      */
   903     if( (flag==2 && length==1) ||
   904         (flag==1 && bytes[0]==0) || /* testing length==1 would be redundant with the next test */
   905         (flag<=1 && length>1 && bytes[0]==0)
   906     ) {
   907         return FALSE;
   908     }
   910     /*
   911      * Additional restrictions for UTF-8-friendly fromUnicode tables,
   912      * for code points up to the maximum optimized one:
   913      *
   914      * - any mapping to 0x00 (result value 0, indistinguishable from unmappable entry)
   915      * - any |1 fallback (no roundtrip flags in the optimized table)
   916      */
   917     if(mbcsData->utf8Friendly && flag<=1 && c<=mbcsData->utf8Max && (bytes[0]==0 || flag==1)) {
   918         return FALSE;
   919     }
   921     /*
   922      * If we omit the fromUnicode data, we can only store roundtrips there
   923      * because only they are recoverable from the toUnicode data.
   924      * Fallbacks must go into the extension table.
   925      */
   926     if(mbcsData->omitFromU && flag!=0) {
   927         return FALSE;
   928     }
   930     /* All other mappings do fit into the base table. */
   931     return TRUE;
   932 }
   934 /* we can assume that the table only contains 1:1 mappings with <=4 bytes each */
   935 static UBool
   936 MBCSAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData) {
   937     MBCSData *mbcsData;
   938     UCMapping *m;
   939     UChar32 c;
   940     int32_t i, maxCharLength;
   941     int8_t f;
   942     UBool isOK, utf8Friendly;
   944     staticData->unicodeMask=table->unicodeMask;
   945     if(staticData->unicodeMask==3) {
   946         fprintf(stderr, "error: contains mappings for both supplementary and surrogate code points\n");
   947         return FALSE;
   948     }
   950     staticData->conversionType=UCNV_MBCS;
   952     mbcsData=(MBCSData *)cnvData;
   953     maxCharLength=mbcsData->ucm->states.maxCharLength;
   955     /*
   956      * Generation of UTF-8-friendly data requires
   957      * a sorted table, which makeconv generates when explicit precision
   958      * indicators are used.
   959      */
   960     mbcsData->utf8Friendly=utf8Friendly=(UBool)((table->flagsType&UCM_FLAGS_EXPLICIT)!=0);
   961     if(utf8Friendly) {
   962         mbcsData->utf8Max=MBCS_UTF8_MAX;
   963         if(SMALL && maxCharLength>1) {
   964             mbcsData->omitFromU=TRUE;
   965         }
   966     } else {
   967         mbcsData->utf8Max=0;
   968         if(SMALL && maxCharLength>1) {
   969             fprintf(stderr,
   970                 "makeconv warning: --small not available for .ucm files without |0 etc.\n");
   971         }
   972     }
   974     if(!MBCSStartMappings(mbcsData)) {
   975         return FALSE;
   976     }
   978     staticData->hasFromUnicodeFallback=FALSE;
   979     staticData->hasToUnicodeFallback=FALSE;
   981     isOK=TRUE;
   983     m=table->mappings;
   984     for(i=0; i<table->mappingsLength; ++m, ++i) {
   985         c=m->u;
   986         f=m->f;
   988         /*
   989          * Small optimization for --small .cnv files:
   990          *
   991          * If there are fromUnicode mappings above MBCS_UTF8_MAX,
   992          * then the file size will be smaller if we make utf8Max larger
   993          * because the size increase in stageUTF8 will be more than balanced by
   994          * how much less of stage2 needs to be stored.
   995          *
   996          * There is no point in doing this incrementally because stageUTF8
   997          * uses so much less space per block than stage2,
   998          * so we immediately increase utf8Max to 0xffff.
   999          *
  1000          * Do not increase utf8Max if it is already at 0xfeff because MBCSAddFromUnicode()
  1001          * sets it to that value when stageUTF8 overflows.
  1002          */
  1003         if( mbcsData->omitFromU && f<=1 &&
  1004             mbcsData->utf8Max<c && c<=0xffff &&
  1005             mbcsData->utf8Max<0xfeff
  1006         ) {
  1007             mbcsData->utf8Max=0xffff;
  1010         switch(f) {
  1011         case -1:
  1012             /* there was no precision/fallback indicator */
  1013             /* fall through to set the mappings */
  1014         case 0:
  1015             /* set roundtrip mappings */
  1016             isOK&=MBCSAddToUnicode(mbcsData, m->b.bytes, m->bLen, c, f);
  1018             if(maxCharLength==1) {
  1019                 isOK&=MBCSSingleAddFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f);
  1020             } else if(MBCSOkForBaseFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f)) {
  1021                 isOK&=MBCSAddFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f);
  1022             } else {
  1023                 m->f|=MBCS_FROM_U_EXT_FLAG;
  1024                 m->moveFlag=UCM_MOVE_TO_EXT;
  1026             break;
  1027         case 1:
  1028             /* set only a fallback mapping from Unicode to codepage */
  1029             if(maxCharLength==1) {
  1030                 staticData->hasFromUnicodeFallback=TRUE;
  1031                 isOK&=MBCSSingleAddFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f);
  1032             } else if(MBCSOkForBaseFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f)) {
  1033                 staticData->hasFromUnicodeFallback=TRUE;
  1034                 isOK&=MBCSAddFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f);
  1035             } else {
  1036                 m->f|=MBCS_FROM_U_EXT_FLAG;
  1037                 m->moveFlag=UCM_MOVE_TO_EXT;
  1039             break;
  1040         case 2:
  1041             /* ignore |2 SUB mappings, except to move <subchar1> mappings to the extension table */
  1042             if(maxCharLength>1 && m->bLen==1) {
  1043                 m->f|=MBCS_FROM_U_EXT_FLAG;
  1044                 m->moveFlag=UCM_MOVE_TO_EXT;
  1046             break;
  1047         case 3:
  1048             /* set only a fallback mapping from codepage to Unicode */
  1049             staticData->hasToUnicodeFallback=TRUE;
  1050             isOK&=MBCSAddToUnicode(mbcsData, m->b.bytes, m->bLen, c, f);
  1051             break;
  1052         case 4:
  1053             /* move "good one-way" mappings to the extension table */
  1054             m->f|=MBCS_FROM_U_EXT_FLAG;
  1055             m->moveFlag=UCM_MOVE_TO_EXT;
  1056             break;
  1057         default:
  1058             /* will not occur because the parser checked it already */
  1059             fprintf(stderr, "error: illegal fallback indicator %d\n", f);
  1060             return FALSE;
  1064     MBCSPostprocess(mbcsData, staticData);
  1066     return isOK;
  1069 static UBool
  1070 transformEUC(MBCSData *mbcsData) {
  1071     uint8_t *p8;
  1072     uint32_t i, value, oldLength, old3Top;
  1073     uint8_t b;
  1075     oldLength=mbcsData->ucm->states.maxCharLength;
  1076     if(oldLength<3) {
  1077         return FALSE;
  1080     old3Top=mbcsData->stage3Top;
  1082     /* careful: 2-byte and 4-byte codes are stored in platform endianness! */
  1084     /* test if all first bytes are in {0, 0x8e, 0x8f} */
  1085     p8=mbcsData->fromUBytes;
  1087 #if !U_IS_BIG_ENDIAN
  1088     if(oldLength==4) {
  1089         p8+=3;
  1091 #endif
  1093     for(i=0; i<old3Top; i+=oldLength) {
  1094         b=p8[i];
  1095         if(b!=0 && b!=0x8e && b!=0x8f) {
  1096             /* some first byte does not fit the EUC pattern, nothing to be done */
  1097             return FALSE;
  1100     /* restore p if it was modified above */
  1101     p8=mbcsData->fromUBytes;
  1103     /* modify outputType and adjust stage3Top */
  1104     mbcsData->ucm->states.outputType=(int8_t)(MBCS_OUTPUT_3_EUC+oldLength-3);
  1105     mbcsData->stage3Top=(old3Top*(oldLength-1))/oldLength;
  1107     /*
  1108      * EUC-encode all byte sequences;
  1109      * see "CJKV Information Processing" (1st ed. 1999) from Ken Lunde, O'Reilly,
  1110      * p. 161 in chapter 4 "Encoding Methods"
  1112      * This also must reverse the byte order if the platform is little-endian!
  1113      */
  1114     if(oldLength==3) {
  1115         uint16_t *q=(uint16_t *)p8;
  1116         for(i=0; i<old3Top; i+=oldLength) {
  1117             b=*p8;
  1118             if(b==0) {
  1119                 /* short sequences are stored directly */
  1120                 /* code set 0 or 1 */
  1121                 (*q++)=(uint16_t)((p8[1]<<8)|p8[2]);
  1122             } else if(b==0x8e) {
  1123                 /* code set 2 */
  1124                 (*q++)=(uint16_t)(((p8[1]&0x7f)<<8)|p8[2]);
  1125             } else /* b==0x8f */ {
  1126                 /* code set 3 */
  1127                 (*q++)=(uint16_t)((p8[1]<<8)|(p8[2]&0x7f));
  1129             p8+=3;
  1131     } else /* oldLength==4 */ {
  1132         uint8_t *q=p8;
  1133         uint32_t *p32=(uint32_t *)p8;
  1134         for(i=0; i<old3Top; i+=4) {
  1135             value=(*p32++);
  1136             if(value<=0xffffff) {
  1137                 /* short sequences are stored directly */
  1138                 /* code set 0 or 1 */
  1139                 (*q++)=(uint8_t)(value>>16);
  1140                 (*q++)=(uint8_t)(value>>8);
  1141                 (*q++)=(uint8_t)value;
  1142             } else if(value<=0x8effffff) {
  1143                 /* code set 2 */
  1144                 (*q++)=(uint8_t)((value>>16)&0x7f);
  1145                 (*q++)=(uint8_t)(value>>8);
  1146                 (*q++)=(uint8_t)value;
  1147             } else /* first byte is 0x8f */ {
  1148                 /* code set 3 */
  1149                 (*q++)=(uint8_t)(value>>16);
  1150                 (*q++)=(uint8_t)((value>>8)&0x7f);
  1151                 (*q++)=(uint8_t)value;
  1156     return TRUE;
  1159 /*
  1160  * Compact stage 2 for SBCS by overlapping adjacent stage 2 blocks as far
  1161  * as possible. Overlapping is done on unassigned head and tail
  1162  * parts of blocks in steps of MBCS_STAGE_2_MULTIPLIER.
  1163  * Stage 1 indexes need to be adjusted accordingly.
  1164  * This function is very similar to genprops/store.c/compactStage().
  1165  */
  1166 static void
  1167 singleCompactStage2(MBCSData *mbcsData) {
  1168     /* this array maps the ordinal number of a stage 2 block to its new stage 1 index */
  1169     uint16_t map[MBCS_STAGE_2_MAX_BLOCKS];
  1170     uint16_t i, start, prevEnd, newStart;
  1172     /* enter the all-unassigned first stage 2 block into the map */
  1173     map[0]=MBCS_STAGE_2_ALL_UNASSIGNED_INDEX;
  1175     /* begin with the first block after the all-unassigned one */
  1176     start=newStart=MBCS_STAGE_2_FIRST_ASSIGNED;
  1177     while(start<mbcsData->stage2Top) {
  1178         prevEnd=(uint16_t)(newStart-1);
  1180         /* find the size of the overlap */
  1181         for(i=0; i<MBCS_STAGE_2_BLOCK_SIZE && mbcsData->stage2Single[start+i]==0 && mbcsData->stage2Single[prevEnd-i]==0; ++i) {}
  1183         if(i>0) {
  1184             map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=(uint16_t)(newStart-i);
  1186             /* move the non-overlapping indexes to their new positions */
  1187             start+=i;
  1188             for(i=(uint16_t)(MBCS_STAGE_2_BLOCK_SIZE-i); i>0; --i) {
  1189                 mbcsData->stage2Single[newStart++]=mbcsData->stage2Single[start++];
  1191         } else if(newStart<start) {
  1192             /* move the indexes to their new positions */
  1193             map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=newStart;
  1194             for(i=MBCS_STAGE_2_BLOCK_SIZE; i>0; --i) {
  1195                 mbcsData->stage2Single[newStart++]=mbcsData->stage2Single[start++];
  1197         } else /* no overlap && newStart==start */ {
  1198             map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=start;
  1199             start=newStart+=MBCS_STAGE_2_BLOCK_SIZE;
  1203     /* adjust stage2Top */
  1204     if(VERBOSE && newStart<mbcsData->stage2Top) {
  1205         printf("compacting stage 2 from stage2Top=0x%lx to 0x%lx, saving %ld bytes\n",
  1206                 (unsigned long)mbcsData->stage2Top, (unsigned long)newStart,
  1207                 (long)(mbcsData->stage2Top-newStart)*2);
  1209     mbcsData->stage2Top=newStart;
  1211     /* now adjust stage 1 */
  1212     for(i=0; i<MBCS_STAGE_1_SIZE; ++i) {
  1213         mbcsData->stage1[i]=map[mbcsData->stage1[i]>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT];
  1217 /* Compact stage 3 for SBCS - same algorithm as above. */
  1218 static void
  1219 singleCompactStage3(MBCSData *mbcsData) {
  1220     uint16_t *stage3=(uint16_t *)mbcsData->fromUBytes;
  1222     /* this array maps the ordinal number of a stage 3 block to its new stage 2 index */
  1223     uint16_t map[0x1000];
  1224     uint16_t i, start, prevEnd, newStart;
  1226     /* enter the all-unassigned first stage 3 block into the map */
  1227     map[0]=0;
  1229     /* begin with the first block after the all-unassigned one */
  1230     start=newStart=16;
  1231     while(start<mbcsData->stage3Top) {
  1232         prevEnd=(uint16_t)(newStart-1);
  1234         /* find the size of the overlap */
  1235         for(i=0; i<16 && stage3[start+i]==0 && stage3[prevEnd-i]==0; ++i) {}
  1237         if(i>0) {
  1238             map[start>>4]=(uint16_t)(newStart-i);
  1240             /* move the non-overlapping indexes to their new positions */
  1241             start+=i;
  1242             for(i=(uint16_t)(16-i); i>0; --i) {
  1243                 stage3[newStart++]=stage3[start++];
  1245         } else if(newStart<start) {
  1246             /* move the indexes to their new positions */
  1247             map[start>>4]=newStart;
  1248             for(i=16; i>0; --i) {
  1249                 stage3[newStart++]=stage3[start++];
  1251         } else /* no overlap && newStart==start */ {
  1252             map[start>>4]=start;
  1253             start=newStart+=16;
  1257     /* adjust stage3Top */
  1258     if(VERBOSE && newStart<mbcsData->stage3Top) {
  1259         printf("compacting stage 3 from stage3Top=0x%lx to 0x%lx, saving %ld bytes\n",
  1260                 (unsigned long)mbcsData->stage3Top, (unsigned long)newStart,
  1261                 (long)(mbcsData->stage3Top-newStart)*2);
  1263     mbcsData->stage3Top=newStart;
  1265     /* now adjust stage 2 */
  1266     for(i=0; i<mbcsData->stage2Top; ++i) {
  1267         mbcsData->stage2Single[i]=map[mbcsData->stage2Single[i]>>4];
  1271 /*
  1272  * Compact stage 2 by overlapping adjacent stage 2 blocks as far
  1273  * as possible. Overlapping is done on unassigned head and tail
  1274  * parts of blocks in steps of MBCS_STAGE_2_MULTIPLIER.
  1275  * Stage 1 indexes need to be adjusted accordingly.
  1276  * This function is very similar to genprops/store.c/compactStage().
  1277  */
  1278 static void
  1279 compactStage2(MBCSData *mbcsData) {
  1280     /* this array maps the ordinal number of a stage 2 block to its new stage 1 index */
  1281     uint16_t map[MBCS_STAGE_2_MAX_BLOCKS];
  1282     uint16_t i, start, prevEnd, newStart;
  1284     /* enter the all-unassigned first stage 2 block into the map */
  1285     map[0]=MBCS_STAGE_2_ALL_UNASSIGNED_INDEX;
  1287     /* begin with the first block after the all-unassigned one */
  1288     start=newStart=MBCS_STAGE_2_FIRST_ASSIGNED;
  1289     while(start<mbcsData->stage2Top) {
  1290         prevEnd=(uint16_t)(newStart-1);
  1292         /* find the size of the overlap */
  1293         for(i=0; i<MBCS_STAGE_2_BLOCK_SIZE && mbcsData->stage2[start+i]==0 && mbcsData->stage2[prevEnd-i]==0; ++i) {}
  1295         if(i>0) {
  1296             map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=(uint16_t)(newStart-i);
  1298             /* move the non-overlapping indexes to their new positions */
  1299             start+=i;
  1300             for(i=(uint16_t)(MBCS_STAGE_2_BLOCK_SIZE-i); i>0; --i) {
  1301                 mbcsData->stage2[newStart++]=mbcsData->stage2[start++];
  1303         } else if(newStart<start) {
  1304             /* move the indexes to their new positions */
  1305             map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=newStart;
  1306             for(i=MBCS_STAGE_2_BLOCK_SIZE; i>0; --i) {
  1307                 mbcsData->stage2[newStart++]=mbcsData->stage2[start++];
  1309         } else /* no overlap && newStart==start */ {
  1310             map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=start;
  1311             start=newStart+=MBCS_STAGE_2_BLOCK_SIZE;
  1315     /* adjust stage2Top */
  1316     if(VERBOSE && newStart<mbcsData->stage2Top) {
  1317         printf("compacting stage 2 from stage2Top=0x%lx to 0x%lx, saving %ld bytes\n",
  1318                 (unsigned long)mbcsData->stage2Top, (unsigned long)newStart,
  1319                 (long)(mbcsData->stage2Top-newStart)*4);
  1321     mbcsData->stage2Top=newStart;
  1323     /* now adjust stage 1 */
  1324     for(i=0; i<MBCS_STAGE_1_SIZE; ++i) {
  1325         mbcsData->stage1[i]=map[mbcsData->stage1[i]>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT];
  1329 static void
  1330 MBCSPostprocess(MBCSData *mbcsData, const UConverterStaticData * /*staticData*/) {
  1331     UCMStates *states;
  1332     int32_t maxCharLength, stage3Width;
  1334     states=&mbcsData->ucm->states;
  1335     stage3Width=maxCharLength=states->maxCharLength;
  1337     ucm_optimizeStates(states,
  1338                        &mbcsData->unicodeCodeUnits,
  1339                        mbcsData->toUFallbacks, mbcsData->countToUFallbacks,
  1340                        VERBOSE);
  1342     /* try to compact the fromUnicode tables */
  1343     if(transformEUC(mbcsData)) {
  1344         --stage3Width;
  1347     /*
  1348      * UTF-8-friendly tries are built precompacted, to cope with variable
  1349      * stage 3 allocation block sizes.
  1351      * Tables without precision indicators cannot be built that way,
  1352      * because if a block was overlapped with a previous one, then a smaller
  1353      * code point for the same block would not fit.
  1354      * Therefore, such tables are not marked UTF-8-friendly and must be
  1355      * compacted after all mappings are entered.
  1356      */
  1357     if(!mbcsData->utf8Friendly) {
  1358         if(maxCharLength==1) {
  1359             singleCompactStage3(mbcsData);
  1360             singleCompactStage2(mbcsData);
  1361         } else {
  1362             compactStage2(mbcsData);
  1366     if(VERBOSE) {
  1367         /*uint32_t c, i1, i2, i2Limit, i3;*/
  1369         printf("fromUnicode number of uint%s_t in stage 2: 0x%lx=%lu\n",
  1370                maxCharLength==1 ? "16" : "32",
  1371                (unsigned long)mbcsData->stage2Top,
  1372                (unsigned long)mbcsData->stage2Top);
  1373         printf("fromUnicode number of %d-byte stage 3 mapping entries: 0x%lx=%lu\n",
  1374                (int)stage3Width,
  1375                (unsigned long)mbcsData->stage3Top/stage3Width,
  1376                (unsigned long)mbcsData->stage3Top/stage3Width);
  1377 #if 0
  1378         c=0;
  1379         for(i1=0; i1<MBCS_STAGE_1_SIZE; ++i1) {
  1380             i2=mbcsData->stage1[i1];
  1381             if(i2==0) {
  1382                 c+=MBCS_STAGE_2_BLOCK_SIZE*MBCS_STAGE_3_BLOCK_SIZE;
  1383                 continue;
  1385             for(i2Limit=i2+MBCS_STAGE_2_BLOCK_SIZE; i2<i2Limit; ++i2) {
  1386                 if(maxCharLength==1) {
  1387                     i3=mbcsData->stage2Single[i2];
  1388                 } else {
  1389                     i3=(uint16_t)mbcsData->stage2[i2];
  1391                 if(i3==0) {
  1392                     c+=MBCS_STAGE_3_BLOCK_SIZE;
  1393                     continue;
  1395                 printf("U+%04lx i1=0x%02lx i2=0x%04lx i3=0x%04lx\n",
  1396                        (unsigned long)c,
  1397                        (unsigned long)i1,
  1398                        (unsigned long)i2,
  1399                        (unsigned long)i3);
  1400                 c+=MBCS_STAGE_3_BLOCK_SIZE;
  1403 #endif
  1407 static uint32_t
  1408 MBCSWrite(NewConverter *cnvData, const UConverterStaticData *staticData,
  1409           UNewDataMemory *pData, int32_t tableType) {
  1410     MBCSData *mbcsData=(MBCSData *)cnvData;
  1411     uint32_t stage2Start, stage2Length;
  1412     uint32_t top, stageUTF8Length=0;
  1413     int32_t i, stage1Top;
  1414     uint32_t headerLength;
  1416     _MBCSHeader header=UCNV_MBCS_HEADER_INITIALIZER;
  1418     stage2Length=mbcsData->stage2Top;
  1419     if(mbcsData->omitFromU) {
  1420         /* find how much of stage2 can be omitted */
  1421         int32_t utf8Limit=(int32_t)mbcsData->utf8Max+1;
  1422         uint32_t st2=0; /*initialized it to avoid compiler warnings */
  1424         i=utf8Limit>>MBCS_STAGE_1_SHIFT;
  1425         if((utf8Limit&((1<<MBCS_STAGE_1_SHIFT)-1))!=0 && (st2=mbcsData->stage1[i])!=0) {
  1426             /* utf8Limit is in the middle of an existing stage 2 block */
  1427             stage2Start=st2+((utf8Limit>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK);
  1428         } else {
  1429             /* find the last stage2 block with mappings before utf8Limit */
  1430             while(i>0 && (st2=mbcsData->stage1[--i])==0) {}
  1431             /* stage2 up to the end of this block corresponds to stageUTF8 */
  1432             stage2Start=st2+MBCS_STAGE_2_BLOCK_SIZE;
  1434         header.options|=MBCS_OPT_NO_FROM_U;
  1435         header.fullStage2Length=stage2Length;
  1436         stage2Length-=stage2Start;
  1437         if(VERBOSE) {
  1438             printf("+ omitting %lu out of %lu stage2 entries and %lu fromUBytes\n",
  1439                     (unsigned long)stage2Start,
  1440                     (unsigned long)mbcsData->stage2Top,
  1441                     (unsigned long)mbcsData->stage3Top);
  1442             printf("+ total size savings: %lu bytes\n", (unsigned long)stage2Start*4+mbcsData->stage3Top);
  1444     } else {
  1445         stage2Start=0;
  1448     if(staticData->unicodeMask&UCNV_HAS_SUPPLEMENTARY) {
  1449         stage1Top=MBCS_STAGE_1_SIZE; /* 0x440==1088 */
  1450     } else {
  1451         stage1Top=0x40; /* 0x40==64 */
  1454     /* adjust stage 1 entries to include the size of stage 1 in the offsets to stage 2 */
  1455     if(mbcsData->ucm->states.maxCharLength==1) {
  1456         for(i=0; i<stage1Top; ++i) {
  1457             mbcsData->stage1[i]+=(uint16_t)stage1Top;
  1460         /* stage2Top/Length have counted 16-bit results, now we need to count bytes */
  1461         /* also round up to a multiple of 4 bytes */
  1462         stage2Length=(stage2Length*2+1)&~1;
  1464         /* stage3Top has counted 16-bit results, now we need to count bytes */
  1465         mbcsData->stage3Top*=2;
  1467         if(mbcsData->utf8Friendly) {
  1468             header.version[2]=(uint8_t)(SBCS_UTF8_MAX>>8); /* store 0x1f for max==0x1fff */
  1470     } else {
  1471         for(i=0; i<stage1Top; ++i) {
  1472             mbcsData->stage1[i]+=(uint16_t)stage1Top/2; /* stage 2 contains 32-bit entries, stage 1 16-bit entries */
  1475         /* stage2Top/Length have counted 32-bit results, now we need to count bytes */
  1476         stage2Length*=4;
  1477         /* leave stage2Start counting 32-bit units */
  1479         if(mbcsData->utf8Friendly) {
  1480             stageUTF8Length=(mbcsData->utf8Max+1)>>MBCS_UTF8_STAGE_SHIFT;
  1481             header.version[2]=(uint8_t)(mbcsData->utf8Max>>8); /* store 0xd7 for max==0xd7ff */
  1484         /* stage3Top has already counted bytes */
  1487     /* round up stage3Top so that the sizes of all data blocks are multiples of 4 */
  1488     mbcsData->stage3Top=(mbcsData->stage3Top+3)&~3;
  1490     /* fill the header */
  1491     if(header.options&MBCS_OPT_INCOMPATIBLE_MASK) {
  1492         header.version[0]=5;
  1493         if(header.options&MBCS_OPT_NO_FROM_U) {
  1494             headerLength=10;  /* include fullStage2Length */
  1495         } else {
  1496             headerLength=MBCS_HEADER_V5_MIN_LENGTH;  /* 9 */
  1498     } else {
  1499         header.version[0]=4;
  1500         headerLength=MBCS_HEADER_V4_LENGTH;  /* 8 */
  1502     header.version[1]=4;
  1503     /* header.version[2] set above for utf8Friendly data */
  1505     header.options|=(uint32_t)headerLength;
  1507     header.countStates=mbcsData->ucm->states.countStates;
  1508     header.countToUFallbacks=mbcsData->countToUFallbacks;
  1510     header.offsetToUCodeUnits=
  1511         headerLength*4+
  1512         mbcsData->ucm->states.countStates*1024+
  1513         mbcsData->countToUFallbacks*sizeof(_MBCSToUFallback);
  1514     header.offsetFromUTable=
  1515         header.offsetToUCodeUnits+
  1516         mbcsData->ucm->states.countToUCodeUnits*2;
  1517     header.offsetFromUBytes=
  1518         header.offsetFromUTable+
  1519         stage1Top*2+
  1520         stage2Length;
  1521     header.fromUBytesLength=mbcsData->stage3Top;
  1523     top=header.offsetFromUBytes+stageUTF8Length*2;
  1524     if(!(header.options&MBCS_OPT_NO_FROM_U)) {
  1525         top+=header.fromUBytesLength;
  1528     header.flags=(uint8_t)(mbcsData->ucm->states.outputType);
  1530     if(tableType&TABLE_EXT) {
  1531         if(top>0xffffff) {
  1532             fprintf(stderr, "error: offset 0x%lx to extension table exceeds 0xffffff\n", (long)top);
  1533             return 0;
  1536         header.flags|=top<<8;
  1539     /* write the MBCS data */
  1540     udata_writeBlock(pData, &header, headerLength*4);
  1541     udata_writeBlock(pData, mbcsData->ucm->states.stateTable, header.countStates*1024);
  1542     udata_writeBlock(pData, mbcsData->toUFallbacks, mbcsData->countToUFallbacks*sizeof(_MBCSToUFallback));
  1543     udata_writeBlock(pData, mbcsData->unicodeCodeUnits, mbcsData->ucm->states.countToUCodeUnits*2);
  1544     udata_writeBlock(pData, mbcsData->stage1, stage1Top*2);
  1545     if(mbcsData->ucm->states.maxCharLength==1) {
  1546         udata_writeBlock(pData, mbcsData->stage2Single+stage2Start, stage2Length);
  1547     } else {
  1548         udata_writeBlock(pData, mbcsData->stage2+stage2Start, stage2Length);
  1550     if(!(header.options&MBCS_OPT_NO_FROM_U)) {
  1551         udata_writeBlock(pData, mbcsData->fromUBytes, mbcsData->stage3Top);
  1554     if(stageUTF8Length>0) {
  1555         udata_writeBlock(pData, mbcsData->stageUTF8, stageUTF8Length*2);
  1558     /* return the number of bytes that should have been written */
  1559     return top;

mercurial