ipc/chromium/src/base/histogram.cc

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

     1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
     2 // Use of this source code is governed by a BSD-style license that can be
     3 // found in the LICENSE file.
     5 // Histogram is an object that aggregates statistics, and can summarize them in
     6 // various forms, including ASCII graphical, HTML, and numerically (as a
     7 // vector of numbers corresponding to each of the aggregating buckets).
     8 // See header file for details and examples.
    10 #include "base/histogram.h"
    12 #include <math.h>
    14 #include <algorithm>
    15 #include <string>
    17 #include "base/logging.h"
    18 #include "base/pickle.h"
    19 #include "base/string_util.h"
    20 #include "base/logging.h"
    22 namespace base {
    24 #define DVLOG(x) CHROMIUM_LOG(ERROR)
    25 #define CHECK_GT DCHECK_GT
    26 #define CHECK_LT DCHECK_LT
    27 typedef ::Lock Lock;
    28 typedef ::AutoLock AutoLock;
    30 // Static table of checksums for all possible 8 bit bytes.
    31 const uint32_t Histogram::kCrcTable[256] = {0x0, 0x77073096L, 0xee0e612cL,
    32 0x990951baL, 0x76dc419L, 0x706af48fL, 0xe963a535L, 0x9e6495a3L, 0xedb8832L,
    33 0x79dcb8a4L, 0xe0d5e91eL, 0x97d2d988L, 0x9b64c2bL, 0x7eb17cbdL, 0xe7b82d07L,
    34 0x90bf1d91L, 0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL, 0x1adad47dL,
    35 0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L, 0x136c9856L, 0x646ba8c0L, 0xfd62f97aL,
    36 0x8a65c9ecL, 0x14015c4fL, 0x63066cd9L, 0xfa0f3d63L, 0x8d080df5L, 0x3b6e20c8L,
    37 0x4c69105eL, 0xd56041e4L, 0xa2677172L, 0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL,
    38 0xa50ab56bL, 0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L, 0x32d86ce3L,
    39 0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L, 0x26d930acL, 0x51de003aL, 0xc8d75180L,
    40 0xbfd06116L, 0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L, 0xb8bda50fL, 0x2802b89eL,
    41 0x5f058808L, 0xc60cd9b2L, 0xb10be924L, 0x2f6f7c87L, 0x58684c11L, 0xc1611dabL,
    42 0xb6662d3dL, 0x76dc4190L, 0x1db7106L, 0x98d220bcL, 0xefd5102aL, 0x71b18589L,
    43 0x6b6b51fL, 0x9fbfe4a5L, 0xe8b8d433L, 0x7807c9a2L, 0xf00f934L, 0x9609a88eL,
    44 0xe10e9818L, 0x7f6a0dbbL, 0x86d3d2dL, 0x91646c97L, 0xe6635c01L, 0x6b6b51f4L,
    45 0x1c6c6162L, 0x856530d8L, 0xf262004eL, 0x6c0695edL, 0x1b01a57bL, 0x8208f4c1L,
    46 0xf50fc457L, 0x65b0d9c6L, 0x12b7e950L, 0x8bbeb8eaL, 0xfcb9887cL, 0x62dd1ddfL,
    47 0x15da2d49L, 0x8cd37cf3L, 0xfbd44c65L, 0x4db26158L, 0x3ab551ceL, 0xa3bc0074L,
    48 0xd4bb30e2L, 0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL, 0x4369e96aL,
    49 0x346ed9fcL, 0xad678846L, 0xda60b8d0L, 0x44042d73L, 0x33031de5L, 0xaa0a4c5fL,
    50 0xdd0d7cc9L, 0x5005713cL, 0x270241aaL, 0xbe0b1010L, 0xc90c2086L, 0x5768b525L,
    51 0x206f85b3L, 0xb966d409L, 0xce61e49fL, 0x5edef90eL, 0x29d9c998L, 0xb0d09822L,
    52 0xc7d7a8b4L, 0x59b33d17L, 0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL, 0xedb88320L,
    53 0x9abfb3b6L, 0x3b6e20cL, 0x74b1d29aL, 0xead54739L, 0x9dd277afL, 0x4db2615L,
    54 0x73dc1683L, 0xe3630b12L, 0x94643b84L, 0xd6d6a3eL, 0x7a6a5aa8L, 0xe40ecf0bL,
    55 0x9309ff9dL, 0xa00ae27L, 0x7d079eb1L, 0xf00f9344L, 0x8708a3d2L, 0x1e01f268L,
    56 0x6906c2feL, 0xf762575dL, 0x806567cbL, 0x196c3671L, 0x6e6b06e7L, 0xfed41b76L,
    57 0x89d32be0L, 0x10da7a5aL, 0x67dd4accL, 0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L,
    58 0x60b08ed5L, 0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L, 0xd1bb67f1L,
    59 0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL, 0xd80d2bdaL, 0xaf0a1b4cL, 0x36034af6L,
    60 0x41047a60L, 0xdf60efc3L, 0xa867df55L, 0x316e8eefL, 0x4669be79L, 0xcb61b38cL,
    61 0xbc66831aL, 0x256fd2a0L, 0x5268e236L, 0xcc0c7795L, 0xbb0b4703L, 0x220216b9L,
    62 0x5505262fL, 0xc5ba3bbeL, 0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L, 0xc2d7ffa7L,
    63 0xb5d0cf31L, 0x2cd99e8bL, 0x5bdeae1dL, 0x9b64c2b0L, 0xec63f226L, 0x756aa39cL,
    64 0x26d930aL, 0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x5005713L, 0x95bf4a82L,
    65 0xe2b87a14L, 0x7bb12baeL, 0xcb61b38L, 0x92d28e9bL, 0xe5d5be0dL, 0x7cdcefb7L,
    66 0xbdbdf21L, 0x86d3d2d4L, 0xf1d4e242L, 0x68ddb3f8L, 0x1fda836eL, 0x81be16cdL,
    67 0xf6b9265bL, 0x6fb077e1L, 0x18b74777L, 0x88085ae6L, 0xff0f6a70L, 0x66063bcaL,
    68 0x11010b5cL, 0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L, 0xa00ae278L,
    69 0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L, 0x4969474dL,
    70 0x3e6e77dbL, 0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L, 0x37d83bf0L, 0xa9bcae53L,
    71 0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L, 0xbdbdf21cL, 0xcabac28aL, 0x53b39330L,
    72 0x24b4a3a6L, 0xbad03605L, 0xcdd70693L, 0x54de5729L, 0x23d967bfL, 0xb3667a2eL,
    73 0xc4614ab8L, 0x5d681b02L, 0x2a6f2b94L, 0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL,
    74 0x2d02ef8dL,
    75 };
    77 typedef Histogram::Count Count;
    79 // static
    80 const size_t Histogram::kBucketCount_MAX = 16384u;
    82 Histogram* Histogram::FactoryGet(const std::string& name,
    83                                  Sample minimum,
    84                                  Sample maximum,
    85                                  size_t bucket_count,
    86                                  Flags flags) {
    87   Histogram* histogram(NULL);
    89   // Defensive code.
    90   if (minimum < 1)
    91     minimum = 1;
    92   if (maximum > kSampleType_MAX - 1)
    93     maximum = kSampleType_MAX - 1;
    95   if (!StatisticsRecorder::FindHistogram(name, &histogram)) {
    96     // Extra variable is not needed... but this keeps this section basically
    97     // identical to other derived classes in this file (and compiler will
    98     // optimize away the extra variable.
    99     Histogram* tentative_histogram =
   100         new Histogram(name, minimum, maximum, bucket_count);
   101     tentative_histogram->InitializeBucketRange();
   102     tentative_histogram->SetFlags(flags);
   103     histogram =
   104         StatisticsRecorder::RegisterOrDeleteDuplicate(tentative_histogram);
   105   }
   107   DCHECK_EQ(HISTOGRAM, histogram->histogram_type());
   108   DCHECK(histogram->HasConstructorArguments(minimum, maximum, bucket_count));
   109   return histogram;
   110 }
   112 Histogram* Histogram::FactoryTimeGet(const std::string& name,
   113                                      TimeDelta minimum,
   114                                      TimeDelta maximum,
   115                                      size_t bucket_count,
   116                                      Flags flags) {
   117   return FactoryGet(name, minimum.InMilliseconds(), maximum.InMilliseconds(),
   118                     bucket_count, flags);
   119 }
   121 void Histogram::Add(int value) {
   122   if (value > kSampleType_MAX - 1)
   123     value = kSampleType_MAX - 1;
   124   if (value < 0)
   125     value = 0;
   126   size_t index = BucketIndex(value);
   127   DCHECK_GE(value, ranges(index));
   128   DCHECK_LT(value, ranges(index + 1));
   129   Accumulate(value, 1, index);
   130 }
   132 void Histogram::Subtract(int value) {
   133   if (value > kSampleType_MAX - 1)
   134     value = kSampleType_MAX - 1;
   135   if (value < 0)
   136     value = 0;
   137   size_t index = BucketIndex(value);
   138   DCHECK_GE(value, ranges(index));
   139   DCHECK_LT(value, ranges(index + 1));
   140   Accumulate(value, -1, index);
   141 }
   143 void Histogram::AddBoolean(bool value) {
   144   DCHECK(false);
   145 }
   147 void Histogram::AddSampleSet(const SampleSet& sample) {
   148   sample_.Add(sample);
   149 }
   151 void Histogram::Clear() {
   152   SampleSet ss;
   153   ss.Resize(*this);
   154   sample_ = ss;
   155 }
   157 void Histogram::SetRangeDescriptions(const DescriptionPair descriptions[]) {
   158   DCHECK(false);
   159 }
   161 // The following methods provide a graphical histogram display.
   162 void Histogram::WriteHTMLGraph(std::string* output) const {
   163   // TBD(jar) Write a nice HTML bar chart, with divs an mouse-overs etc.
   164   output->append("<PRE>");
   165   WriteAscii(true, "<br>", output);
   166   output->append("</PRE>");
   167 }
   169 void Histogram::WriteAscii(bool graph_it, const std::string& newline,
   170                            std::string* output) const {
   171   // Get local (stack) copies of all effectively volatile class data so that we
   172   // are consistent across our output activities.
   173   SampleSet snapshot;
   174   SnapshotSample(&snapshot);
   175   Count sample_count = snapshot.TotalCount();
   177   WriteAsciiHeader(snapshot, sample_count, output);
   178   output->append(newline);
   180   // Prepare to normalize graphical rendering of bucket contents.
   181   double max_size = 0;
   182   if (graph_it)
   183     max_size = GetPeakBucketSize(snapshot);
   185   // Calculate space needed to print bucket range numbers.  Leave room to print
   186   // nearly the largest bucket range without sliding over the histogram.
   187   size_t largest_non_empty_bucket = bucket_count() - 1;
   188   while (0 == snapshot.counts(largest_non_empty_bucket)) {
   189     if (0 == largest_non_empty_bucket)
   190       break;  // All buckets are empty.
   191     --largest_non_empty_bucket;
   192   }
   194   // Calculate largest print width needed for any of our bucket range displays.
   195   size_t print_width = 1;
   196   for (size_t i = 0; i < bucket_count(); ++i) {
   197     if (snapshot.counts(i)) {
   198       size_t width = GetAsciiBucketRange(i).size() + 1;
   199       if (width > print_width)
   200         print_width = width;
   201     }
   202   }
   204   int64_t remaining = sample_count;
   205   int64_t past = 0;
   206   // Output the actual histogram graph.
   207   for (size_t i = 0; i < bucket_count(); ++i) {
   208     Count current = snapshot.counts(i);
   209     if (!current && !PrintEmptyBucket(i))
   210       continue;
   211     remaining -= current;
   212     std::string range = GetAsciiBucketRange(i);
   213     output->append(range);
   214     for (size_t j = 0; range.size() + j < print_width + 1; ++j)
   215       output->push_back(' ');
   216     if (0 == current && i < bucket_count() - 1 && 0 == snapshot.counts(i + 1)) {
   217       while (i < bucket_count() - 1 && 0 == snapshot.counts(i + 1))
   218         ++i;
   219       output->append("... ");
   220       output->append(newline);
   221       continue;  // No reason to plot emptiness.
   222     }
   223     double current_size = GetBucketSize(current, i);
   224     if (graph_it)
   225       WriteAsciiBucketGraph(current_size, max_size, output);
   226     WriteAsciiBucketContext(past, current, remaining, i, output);
   227     output->append(newline);
   228     past += current;
   229   }
   230   DCHECK_EQ(sample_count, past);
   231 }
   233 // static
   234 std::string Histogram::SerializeHistogramInfo(const Histogram& histogram,
   235                                               const SampleSet& snapshot) {
   236   DCHECK_NE(NOT_VALID_IN_RENDERER, histogram.histogram_type());
   238   Pickle pickle;
   239   pickle.WriteString(histogram.histogram_name());
   240   pickle.WriteInt(histogram.declared_min());
   241   pickle.WriteInt(histogram.declared_max());
   242   pickle.WriteSize(histogram.bucket_count());
   243   pickle.WriteUInt32(histogram.range_checksum());
   244   pickle.WriteInt(histogram.histogram_type());
   245   pickle.WriteInt(histogram.flags());
   247   snapshot.Serialize(&pickle);
   248   return std::string(static_cast<const char*>(pickle.data()), pickle.size());
   249 }
   251 // static
   252 bool Histogram::DeserializeHistogramInfo(const std::string& histogram_info) {
   253   if (histogram_info.empty()) {
   254       return false;
   255   }
   257   Pickle pickle(histogram_info.data(),
   258                 static_cast<int>(histogram_info.size()));
   259   std::string histogram_name;
   260   int declared_min;
   261   int declared_max;
   262   size_t bucket_count;
   263   uint32_t range_checksum;
   264   int histogram_type;
   265   int pickle_flags;
   266   SampleSet sample;
   268   void* iter = NULL;
   269   if (!pickle.ReadString(&iter, &histogram_name) ||
   270       !pickle.ReadInt(&iter, &declared_min) ||
   271       !pickle.ReadInt(&iter, &declared_max) ||
   272       !pickle.ReadSize(&iter, &bucket_count) ||
   273       !pickle.ReadUInt32(&iter, &range_checksum) ||
   274       !pickle.ReadInt(&iter, &histogram_type) ||
   275       !pickle.ReadInt(&iter, &pickle_flags) ||
   276       !sample.Histogram::SampleSet::Deserialize(&iter, pickle)) {
   277     CHROMIUM_LOG(ERROR) << "Pickle error decoding Histogram: " << histogram_name;
   278     return false;
   279   }
   280   DCHECK(pickle_flags & kIPCSerializationSourceFlag);
   281   // Since these fields may have come from an untrusted renderer, do additional
   282   // checks above and beyond those in Histogram::Initialize()
   283   if (declared_max <= 0 || declared_min <= 0 || declared_max < declared_min ||
   284       INT_MAX / sizeof(Count) <= bucket_count || bucket_count < 2) {
   285     CHROMIUM_LOG(ERROR) << "Values error decoding Histogram: " << histogram_name;
   286     return false;
   287   }
   289   Flags flags = static_cast<Flags>(pickle_flags & ~kIPCSerializationSourceFlag);
   291   DCHECK_NE(NOT_VALID_IN_RENDERER, histogram_type);
   293   Histogram* render_histogram(NULL);
   295   if (histogram_type == HISTOGRAM) {
   296     render_histogram = Histogram::FactoryGet(
   297         histogram_name, declared_min, declared_max, bucket_count, flags);
   298   } else if (histogram_type == LINEAR_HISTOGRAM) {
   299     render_histogram = LinearHistogram::FactoryGet(
   300         histogram_name, declared_min, declared_max, bucket_count, flags);
   301   } else if (histogram_type == BOOLEAN_HISTOGRAM) {
   302     render_histogram = BooleanHistogram::FactoryGet(histogram_name, flags);
   303   } else {
   304     CHROMIUM_LOG(ERROR) << "Error Deserializing Histogram Unknown histogram_type: "
   305                         << histogram_type;
   306     return false;
   307   }
   309   DCHECK_EQ(render_histogram->declared_min(), declared_min);
   310   DCHECK_EQ(render_histogram->declared_max(), declared_max);
   311   DCHECK_EQ(render_histogram->bucket_count(), bucket_count);
   312   DCHECK_EQ(render_histogram->range_checksum(), range_checksum);
   313   DCHECK_EQ(render_histogram->histogram_type(), histogram_type);
   315   if (render_histogram->flags() & kIPCSerializationSourceFlag) {
   316     DVLOG(1) << "Single process mode, histogram observed and not copied: "
   317              << histogram_name;
   318   } else {
   319     DCHECK_EQ(flags & render_histogram->flags(), flags);
   320     render_histogram->AddSampleSet(sample);
   321   }
   323   return true;
   324 }
   326 //------------------------------------------------------------------------------
   327 // Methods for the validating a sample and a related histogram.
   328 //------------------------------------------------------------------------------
   330 Histogram::Inconsistencies Histogram::FindCorruption(
   331     const SampleSet& snapshot) const {
   332   int inconsistencies = NO_INCONSISTENCIES;
   333   Sample previous_range = -1;  // Bottom range is always 0.
   334   int64_t count = 0;
   335   for (size_t index = 0; index < bucket_count(); ++index) {
   336     count += snapshot.counts(index);
   337     int new_range = ranges(index);
   338     if (previous_range >= new_range)
   339       inconsistencies |= BUCKET_ORDER_ERROR;
   340     previous_range = new_range;
   341   }
   343   if (!HasValidRangeChecksum())
   344     inconsistencies |= RANGE_CHECKSUM_ERROR;
   346   int64_t delta64 = snapshot.redundant_count() - count;
   347   if (delta64 != 0) {
   348     int delta = static_cast<int>(delta64);
   349     if (delta != delta64)
   350       delta = INT_MAX;  // Flag all giant errors as INT_MAX.
   351     // Since snapshots of histograms are taken asynchronously relative to
   352     // sampling (and snapped from different threads), it is pretty likely that
   353     // we'll catch a redundant count that doesn't match the sample count.  We
   354     // allow for a certain amount of slop before flagging this as an
   355     // inconsistency.  Even with an inconsistency, we'll snapshot it again (for
   356     // UMA in about a half hour, so we'll eventually get the data, if it was
   357     // not the result of a corruption.  If histograms show that 1 is "too tight"
   358     // then we may try to use 2 or 3 for this slop value.
   359     const int kCommonRaceBasedCountMismatch = 1;
   360     if (delta > 0) {
   361       UMA_HISTOGRAM_COUNTS("Histogram.InconsistentCountHigh", delta);
   362       if (delta > kCommonRaceBasedCountMismatch)
   363         inconsistencies |= COUNT_HIGH_ERROR;
   364     } else {
   365       DCHECK_GT(0, delta);
   366       UMA_HISTOGRAM_COUNTS("Histogram.InconsistentCountLow", -delta);
   367       if (-delta > kCommonRaceBasedCountMismatch)
   368         inconsistencies |= COUNT_LOW_ERROR;
   369     }
   370   }
   371   return static_cast<Inconsistencies>(inconsistencies);
   372 }
   374 Histogram::ClassType Histogram::histogram_type() const {
   375   return HISTOGRAM;
   376 }
   378 Histogram::Sample Histogram::ranges(size_t i) const {
   379   return ranges_[i];
   380 }
   382 size_t Histogram::bucket_count() const {
   383   return bucket_count_;
   384 }
   386 // Do a safe atomic snapshot of sample data.
   387 // This implementation assumes we are on a safe single thread.
   388 void Histogram::SnapshotSample(SampleSet* sample) const {
   389   // Note locking not done in this version!!!
   390   *sample = sample_;
   391 }
   393 bool Histogram::HasConstructorArguments(Sample minimum,
   394                                         Sample maximum,
   395                                         size_t bucket_count) {
   396   return ((minimum == declared_min_) && (maximum == declared_max_) &&
   397           (bucket_count == bucket_count_));
   398 }
   400 bool Histogram::HasConstructorTimeDeltaArguments(TimeDelta minimum,
   401                                                  TimeDelta maximum,
   402                                                  size_t bucket_count) {
   403   return ((minimum.InMilliseconds() == declared_min_) &&
   404           (maximum.InMilliseconds() == declared_max_) &&
   405           (bucket_count == bucket_count_));
   406 }
   408 bool Histogram::HasValidRangeChecksum() const {
   409   return CalculateRangeChecksum() == range_checksum_;
   410 }
   412 size_t Histogram::SizeOfIncludingThis(mozilla::MallocSizeOf aMallocSizeOf)
   413 {
   414   size_t n = 0;
   415   n += aMallocSizeOf(this);
   416   // We're not allowed to do deep dives into STL data structures.  This
   417   // is as close as we can get to measuring this array.
   418   n += aMallocSizeOf(&ranges_[0]);
   419   n += sample_.SizeOfExcludingThis(aMallocSizeOf);
   420   return n;
   421 }
   423 size_t Histogram::SampleSet::SizeOfExcludingThis(mozilla::MallocSizeOf aMallocSizeOf)
   424 {
   425   // We're not allowed to do deep dives into STL data structures.  This
   426   // is as close as we can get to measuring this array.
   427   return aMallocSizeOf(&counts_[0]);
   428 }
   430 Histogram::Histogram(const std::string& name, Sample minimum,
   431                      Sample maximum, size_t bucket_count)
   432   : sample_(),
   433     histogram_name_(name),
   434     declared_min_(minimum),
   435     declared_max_(maximum),
   436     bucket_count_(bucket_count),
   437     flags_(kNoFlags),
   438     ranges_(bucket_count + 1, 0),
   439     range_checksum_(0) {
   440   Initialize();
   441 }
   443 Histogram::Histogram(const std::string& name, TimeDelta minimum,
   444                      TimeDelta maximum, size_t bucket_count)
   445   : sample_(),
   446     histogram_name_(name),
   447     declared_min_(static_cast<int> (minimum.InMilliseconds())),
   448     declared_max_(static_cast<int> (maximum.InMilliseconds())),
   449     bucket_count_(bucket_count),
   450     flags_(kNoFlags),
   451     ranges_(bucket_count + 1, 0),
   452     range_checksum_(0) {
   453   Initialize();
   454 }
   456 Histogram::~Histogram() {
   457   if (StatisticsRecorder::dump_on_exit()) {
   458     std::string output;
   459     WriteAscii(true, "\n", &output);
   460     CHROMIUM_LOG(INFO) << output;
   461   }
   463   // Just to make sure most derived class did this properly...
   464   DCHECK(ValidateBucketRanges());
   465 }
   467 // Calculate what range of values are held in each bucket.
   468 // We have to be careful that we don't pick a ratio between starting points in
   469 // consecutive buckets that is sooo small, that the integer bounds are the same
   470 // (effectively making one bucket get no values).  We need to avoid:
   471 //   ranges_[i] == ranges_[i + 1]
   472 // To avoid that, we just do a fine-grained bucket width as far as we need to
   473 // until we get a ratio that moves us along at least 2 units at a time.  From
   474 // that bucket onward we do use the exponential growth of buckets.
   475 void Histogram::InitializeBucketRange() {
   476   double log_max = log(static_cast<double>(declared_max()));
   477   double log_ratio;
   478   double log_next;
   479   size_t bucket_index = 1;
   480   Sample current = declared_min();
   481   SetBucketRange(bucket_index, current);
   482   while (bucket_count() > ++bucket_index) {
   483     double log_current;
   484     log_current = log(static_cast<double>(current));
   485     // Calculate the count'th root of the range.
   486     log_ratio = (log_max - log_current) / (bucket_count() - bucket_index);
   487     // See where the next bucket would start.
   488     log_next = log_current + log_ratio;
   489     int next;
   490     next = static_cast<int>(floor(exp(log_next) + 0.5));
   491     if (next > current)
   492       current = next;
   493     else
   494       ++current;  // Just do a narrow bucket, and keep trying.
   495     SetBucketRange(bucket_index, current);
   496   }
   497   ResetRangeChecksum();
   499   DCHECK_EQ(bucket_count(), bucket_index);
   500 }
   502 bool Histogram::PrintEmptyBucket(size_t index) const {
   503   return true;
   504 }
   506 size_t Histogram::BucketIndex(Sample value) const {
   507   // Use simple binary search.  This is very general, but there are better
   508   // approaches if we knew that the buckets were linearly distributed.
   509   DCHECK_LE(ranges(0), value);
   510   DCHECK_GT(ranges(bucket_count()), value);
   511   size_t under = 0;
   512   size_t over = bucket_count();
   513   size_t mid;
   515   do {
   516     DCHECK_GE(over, under);
   517     mid = under + (over - under)/2;
   518     if (mid == under)
   519       break;
   520     if (ranges(mid) <= value)
   521       under = mid;
   522     else
   523       over = mid;
   524   } while (true);
   526   DCHECK_LE(ranges(mid), value);
   527   CHECK_GT(ranges(mid+1), value);
   528   return mid;
   529 }
   531 // Use the actual bucket widths (like a linear histogram) until the widths get
   532 // over some transition value, and then use that transition width.  Exponentials
   533 // get so big so fast (and we don't expect to see a lot of entries in the large
   534 // buckets), so we need this to make it possible to see what is going on and
   535 // not have 0-graphical-height buckets.
   536 double Histogram::GetBucketSize(Count current, size_t i) const {
   537   DCHECK_GT(ranges(i + 1), ranges(i));
   538   static const double kTransitionWidth = 5;
   539   double denominator = ranges(i + 1) - ranges(i);
   540   if (denominator > kTransitionWidth)
   541     denominator = kTransitionWidth;  // Stop trying to normalize.
   542   return current/denominator;
   543 }
   545 void Histogram::ResetRangeChecksum() {
   546   range_checksum_ = CalculateRangeChecksum();
   547 }
   549 const std::string Histogram::GetAsciiBucketRange(size_t i) const {
   550   std::string result;
   551   if (kHexRangePrintingFlag & flags_)
   552     StringAppendF(&result, "%#x", ranges(i));
   553   else
   554     StringAppendF(&result, "%d", ranges(i));
   555   return result;
   556 }
   558 // Update histogram data with new sample.
   559 void Histogram::Accumulate(Sample value, Count count, size_t index) {
   560   // Note locking not done in this version!!!
   561   sample_.AccumulateWithExponentialStats(value, count, index,
   562 					 flags_ & kExtendedStatisticsFlag);
   563 }
   565 void Histogram::SetBucketRange(size_t i, Sample value) {
   566   DCHECK_GT(bucket_count_, i);
   567   ranges_[i] = value;
   568 }
   570 bool Histogram::ValidateBucketRanges() const {
   571   // Standard assertions that all bucket ranges should satisfy.
   572   DCHECK_EQ(bucket_count_ + 1, ranges_.size());
   573   DCHECK_EQ(0, ranges_[0]);
   574   DCHECK_EQ(declared_min(), ranges_[1]);
   575   DCHECK_EQ(declared_max(), ranges_[bucket_count_ - 1]);
   576   DCHECK_EQ(kSampleType_MAX, ranges_[bucket_count_]);
   577   return true;
   578 }
   580 uint32_t Histogram::CalculateRangeChecksum() const {
   581   DCHECK_EQ(ranges_.size(), bucket_count() + 1);
   582   uint32_t checksum = static_cast<uint32_t>(ranges_.size());  // Seed checksum.
   583   for (size_t index = 0; index < bucket_count(); ++index)
   584     checksum = Crc32(checksum, ranges(index));
   585   return checksum;
   586 }
   588 void Histogram::Initialize() {
   589   sample_.Resize(*this);
   590   if (declared_min_ < 1)
   591     declared_min_ = 1;
   592   if (declared_max_ > kSampleType_MAX - 1)
   593     declared_max_ = kSampleType_MAX - 1;
   594   DCHECK_LE(declared_min_, declared_max_);
   595   DCHECK_GT(bucket_count_, 1u);
   596   CHECK_LT(bucket_count_, kBucketCount_MAX);
   597   size_t maximal_bucket_count = declared_max_ - declared_min_ + 2;
   598   DCHECK_LE(bucket_count_, maximal_bucket_count);
   599   DCHECK_EQ(0, ranges_[0]);
   600   ranges_[bucket_count_] = kSampleType_MAX;
   601 }
   603 // We generate the CRC-32 using the low order bits to select whether to XOR in
   604 // the reversed polynomial 0xedb88320L.  This is nice and simple, and allows us
   605 // to keep the quotient in a uint32_t.  Since we're not concerned about the nature
   606 // of corruptions (i.e., we don't care about bit sequencing, since we are
   607 // handling memory changes, which are more grotesque) so we don't bother to
   608 // get the CRC correct for big-endian vs little-ending calculations.  All we
   609 // need is a nice hash, that tends to depend on all the bits of the sample, with
   610 // very little chance of changes in one place impacting changes in another
   611 // place.
   612 uint32_t Histogram::Crc32(uint32_t sum, Histogram::Sample range) {
   613   const bool kUseRealCrc = true;  // TODO(jar): Switch to false and watch stats.
   614   if (kUseRealCrc) {
   615     union {
   616       Histogram::Sample range;
   617       unsigned char bytes[sizeof(Histogram::Sample)];
   618     } converter;
   619     converter.range = range;
   620     for (size_t i = 0; i < sizeof(converter); ++i)
   621       sum = kCrcTable[(sum & 0xff) ^ converter.bytes[i]] ^ (sum >> 8);
   622   } else {
   623     // Use hash techniques provided in ReallyFastHash, except we don't care
   624     // about "avalanching" (which would worsten the hash, and add collisions),
   625     // and we don't care about edge cases since we have an even number of bytes.
   626     union {
   627       Histogram::Sample range;
   628       uint16_t ints[sizeof(Histogram::Sample) / 2];
   629     } converter;
   630     DCHECK_EQ(sizeof(Histogram::Sample), sizeof(converter));
   631     converter.range = range;
   632     sum += converter.ints[0];
   633     sum = (sum << 16) ^ sum ^ (static_cast<uint32_t>(converter.ints[1]) << 11);
   634     sum += sum >> 11;
   635   }
   636   return sum;
   637 }
   639 //------------------------------------------------------------------------------
   640 // Private methods
   642 double Histogram::GetPeakBucketSize(const SampleSet& snapshot) const {
   643   double max = 0;
   644   for (size_t i = 0; i < bucket_count() ; ++i) {
   645     double current_size = GetBucketSize(snapshot.counts(i), i);
   646     if (current_size > max)
   647       max = current_size;
   648   }
   649   return max;
   650 }
   652 void Histogram::WriteAsciiHeader(const SampleSet& snapshot,
   653                                  Count sample_count,
   654                                  std::string* output) const {
   655   StringAppendF(output,
   656                 "Histogram: %s recorded %d samples",
   657                 histogram_name().c_str(),
   658                 sample_count);
   659   if (0 == sample_count) {
   660     DCHECK_EQ(snapshot.sum(), 0);
   661   } else {
   662     double average = static_cast<float>(snapshot.sum()) / sample_count;
   664     StringAppendF(output, ", average = %.1f", average);
   665   }
   666   if (flags_ & ~kHexRangePrintingFlag)
   667     StringAppendF(output, " (flags = 0x%x)", flags_ & ~kHexRangePrintingFlag);
   668 }
   670 void Histogram::WriteAsciiBucketContext(const int64_t past,
   671                                         const Count current,
   672                                         const int64_t remaining,
   673                                         const size_t i,
   674                                         std::string* output) const {
   675   double scaled_sum = (past + current + remaining) / 100.0;
   676   WriteAsciiBucketValue(current, scaled_sum, output);
   677   if (0 < i) {
   678     double percentage = past / scaled_sum;
   679     StringAppendF(output, " {%3.1f%%}", percentage);
   680   }
   681 }
   683 void Histogram::WriteAsciiBucketValue(Count current, double scaled_sum,
   684                                       std::string* output) const {
   685   StringAppendF(output, " (%d = %3.1f%%)", current, current/scaled_sum);
   686 }
   688 void Histogram::WriteAsciiBucketGraph(double current_size, double max_size,
   689                                       std::string* output) const {
   690   const int k_line_length = 72;  // Maximal horizontal width of graph.
   691   int x_count = static_cast<int>(k_line_length * (current_size / max_size)
   692                                  + 0.5);
   693   int x_remainder = k_line_length - x_count;
   695   while (0 < x_count--)
   696     output->append("-");
   697   output->append("O");
   698   while (0 < x_remainder--)
   699     output->append(" ");
   700 }
   702 //------------------------------------------------------------------------------
   703 // Methods for the Histogram::SampleSet class
   704 //------------------------------------------------------------------------------
   706 Histogram::SampleSet::SampleSet()
   707     : counts_(),
   708       sum_(0),
   709       sum_squares_(0),
   710       log_sum_(0),
   711       log_sum_squares_(0),
   712       redundant_count_(0) {
   713 }
   715 Histogram::SampleSet::~SampleSet() {
   716 }
   718 void Histogram::SampleSet::Resize(const Histogram& histogram) {
   719   counts_.resize(histogram.bucket_count(), 0);
   720 }
   722 void Histogram::SampleSet::CheckSize(const Histogram& histogram) const {
   723   DCHECK_EQ(histogram.bucket_count(), counts_.size());
   724 }
   726 void Histogram::SampleSet::Accumulate(Sample value, Count count,
   727 				      size_t index) {
   728   DCHECK(count == 1 || count == -1);
   729   counts_[index] += count;
   730   redundant_count_ += count;
   731   sum_ += static_cast<int64_t>(count) * value;
   732   DCHECK_GE(counts_[index], 0);
   733   DCHECK_GE(sum_, 0);
   734   DCHECK_GE(redundant_count_, 0);
   735 }
   737 void Histogram::SampleSet::AccumulateWithLinearStats(Sample value,
   738                                                      Count count,
   739                                                      size_t index) {
   740   Accumulate(value, count, index);
   741   sum_squares_ += static_cast<int64_t>(count) * value * value;
   742 }
   744 void Histogram::SampleSet::AccumulateWithExponentialStats(Sample value,
   745                                                           Count count,
   746                                                           size_t index,
   747 							  bool computeExtendedStatistics) {
   748   Accumulate(value, count, index);
   749   if (computeExtendedStatistics) {
   750     DCHECK_GE(value, 0);
   751     float value_log = logf(static_cast<float>(value) + 1.0f);
   752     log_sum_ += count * value_log;
   753     log_sum_squares_ += count * value_log * value_log;
   754   }
   755 }
   757 Count Histogram::SampleSet::TotalCount() const {
   758   Count total = 0;
   759   for (Counts::const_iterator it = counts_.begin();
   760        it != counts_.end();
   761        ++it) {
   762     total += *it;
   763   }
   764   return total;
   765 }
   767 void Histogram::SampleSet::Add(const SampleSet& other) {
   768   DCHECK_EQ(counts_.size(), other.counts_.size());
   769   sum_ += other.sum_;
   770   sum_squares_ += other.sum_squares_;
   771   log_sum_ += other.log_sum_;
   772   log_sum_squares_ += other.log_sum_squares_;
   773   redundant_count_ += other.redundant_count_;
   774   for (size_t index = 0; index < counts_.size(); ++index)
   775     counts_[index] += other.counts_[index];
   776 }
   778 void Histogram::SampleSet::Subtract(const SampleSet& other) {
   779   DCHECK_EQ(counts_.size(), other.counts_.size());
   780   // Note: Race conditions in snapshotting a sum may lead to (temporary)
   781   // negative values when snapshots are later combined (and deltas calculated).
   782   // As a result, we don't currently CHCEK() for positive values.
   783   sum_ -= other.sum_;
   784   sum_squares_ -= other.sum_squares_;
   785   log_sum_ -= other.log_sum_;
   786   log_sum_squares_ -= other.log_sum_squares_;
   787   redundant_count_ -= other.redundant_count_;
   788   for (size_t index = 0; index < counts_.size(); ++index) {
   789     counts_[index] -= other.counts_[index];
   790     DCHECK_GE(counts_[index], 0);
   791   }
   792 }
   794 bool Histogram::SampleSet::Serialize(Pickle* pickle) const {
   795   pickle->WriteInt64(sum_);
   796   pickle->WriteInt64(redundant_count_);
   797   pickle->WriteSize(counts_.size());
   799   for (size_t index = 0; index < counts_.size(); ++index) {
   800     pickle->WriteInt(counts_[index]);
   801   }
   803   return true;
   804 }
   806 bool Histogram::SampleSet::Deserialize(void** iter, const Pickle& pickle) {
   807   DCHECK_EQ(counts_.size(), 0u);
   808   DCHECK_EQ(sum_, 0);
   809   DCHECK_EQ(redundant_count_, 0);
   811   size_t counts_size;
   813   if (!pickle.ReadInt64(iter, &sum_) ||
   814       !pickle.ReadInt64(iter, &redundant_count_) ||
   815       !pickle.ReadSize(iter, &counts_size)) {
   816     return false;
   817   }
   819   if (counts_size == 0)
   820     return false;
   822   int count = 0;
   823   for (size_t index = 0; index < counts_size; ++index) {
   824     int i;
   825     if (!pickle.ReadInt(iter, &i))
   826       return false;
   827     counts_.push_back(i);
   828     count += i;
   829   }
   831   return true;
   832 }
   834 //------------------------------------------------------------------------------
   835 // LinearHistogram: This histogram uses a traditional set of evenly spaced
   836 // buckets.
   837 //------------------------------------------------------------------------------
   839 LinearHistogram::~LinearHistogram() {
   840 }
   842 Histogram* LinearHistogram::FactoryGet(const std::string& name,
   843                                        Sample minimum,
   844                                        Sample maximum,
   845                                        size_t bucket_count,
   846                                        Flags flags) {
   847   Histogram* histogram(NULL);
   849   if (minimum < 1)
   850     minimum = 1;
   851   if (maximum > kSampleType_MAX - 1)
   852     maximum = kSampleType_MAX - 1;
   854   if (!StatisticsRecorder::FindHistogram(name, &histogram)) {
   855     LinearHistogram* tentative_histogram =
   856         new LinearHistogram(name, minimum, maximum, bucket_count);
   857     tentative_histogram->InitializeBucketRange();
   858     tentative_histogram->SetFlags(flags);
   859     histogram =
   860         StatisticsRecorder::RegisterOrDeleteDuplicate(tentative_histogram);
   861   }
   863   DCHECK_EQ(LINEAR_HISTOGRAM, histogram->histogram_type());
   864   DCHECK(histogram->HasConstructorArguments(minimum, maximum, bucket_count));
   865   return histogram;
   866 }
   868 Histogram* LinearHistogram::FactoryTimeGet(const std::string& name,
   869                                            TimeDelta minimum,
   870                                            TimeDelta maximum,
   871                                            size_t bucket_count,
   872                                            Flags flags) {
   873   return FactoryGet(name, minimum.InMilliseconds(), maximum.InMilliseconds(),
   874                     bucket_count, flags);
   875 }
   877 Histogram::ClassType LinearHistogram::histogram_type() const {
   878   return LINEAR_HISTOGRAM;
   879 }
   881 void LinearHistogram::Accumulate(Sample value, Count count, size_t index) {
   882   sample_.AccumulateWithLinearStats(value, count, index);
   883 }
   885 void LinearHistogram::SetRangeDescriptions(
   886     const DescriptionPair descriptions[]) {
   887   for (int i =0; descriptions[i].description; ++i) {
   888     bucket_description_[descriptions[i].sample] = descriptions[i].description;
   889   }
   890 }
   892 LinearHistogram::LinearHistogram(const std::string& name,
   893                                  Sample minimum,
   894                                  Sample maximum,
   895                                  size_t bucket_count)
   896     : Histogram(name, minimum >= 1 ? minimum : 1, maximum, bucket_count) {
   897 }
   899 LinearHistogram::LinearHistogram(const std::string& name,
   900                                  TimeDelta minimum,
   901                                  TimeDelta maximum,
   902                                  size_t bucket_count)
   903     : Histogram(name, minimum >= TimeDelta::FromMilliseconds(1) ?
   904                                  minimum : TimeDelta::FromMilliseconds(1),
   905                 maximum, bucket_count) {
   906 }
   908 void LinearHistogram::InitializeBucketRange() {
   909   DCHECK_GT(declared_min(), 0);  // 0 is the underflow bucket here.
   910   double min = declared_min();
   911   double max = declared_max();
   912   size_t i;
   913   for (i = 1; i < bucket_count(); ++i) {
   914     double linear_range = (min * (bucket_count() -1 - i) + max * (i - 1)) /
   915                           (bucket_count() - 2);
   916     SetBucketRange(i, static_cast<int> (linear_range + 0.5));
   917   }
   918   ResetRangeChecksum();
   919 }
   921 double LinearHistogram::GetBucketSize(Count current, size_t i) const {
   922   DCHECK_GT(ranges(i + 1), ranges(i));
   923   // Adjacent buckets with different widths would have "surprisingly" many (few)
   924   // samples in a histogram if we didn't normalize this way.
   925   double denominator = ranges(i + 1) - ranges(i);
   926   return current/denominator;
   927 }
   929 const std::string LinearHistogram::GetAsciiBucketRange(size_t i) const {
   930   int range = ranges(i);
   931   BucketDescriptionMap::const_iterator it = bucket_description_.find(range);
   932   if (it == bucket_description_.end())
   933     return Histogram::GetAsciiBucketRange(i);
   934   return it->second;
   935 }
   937 bool LinearHistogram::PrintEmptyBucket(size_t index) const {
   938   return bucket_description_.find(ranges(index)) == bucket_description_.end();
   939 }
   942 //------------------------------------------------------------------------------
   943 // This section provides implementation for BooleanHistogram.
   944 //------------------------------------------------------------------------------
   946 Histogram* BooleanHistogram::FactoryGet(const std::string& name, Flags flags) {
   947   Histogram* histogram(NULL);
   949   if (!StatisticsRecorder::FindHistogram(name, &histogram)) {
   950     BooleanHistogram* tentative_histogram = new BooleanHistogram(name);
   951     tentative_histogram->InitializeBucketRange();
   952     tentative_histogram->SetFlags(flags);
   953     histogram =
   954         StatisticsRecorder::RegisterOrDeleteDuplicate(tentative_histogram);
   955   }
   957   DCHECK_EQ(BOOLEAN_HISTOGRAM, histogram->histogram_type());
   958   return histogram;
   959 }
   961 Histogram::ClassType BooleanHistogram::histogram_type() const {
   962   return BOOLEAN_HISTOGRAM;
   963 }
   965 void BooleanHistogram::AddBoolean(bool value) {
   966   Add(value ? 1 : 0);
   967 }
   969 BooleanHistogram::BooleanHistogram(const std::string& name)
   970     : LinearHistogram(name, 1, 2, 3) {
   971 }
   973 void
   974 BooleanHistogram::Accumulate(Sample value, Count count, size_t index)
   975 {
   976   // Callers will have computed index based on the non-booleanified value.
   977   // So we need to adjust the index manually.
   978   LinearHistogram::Accumulate(!!value, count, value ? 1 : 0);
   979 }
   981 //------------------------------------------------------------------------------
   982 // FlagHistogram:
   983 //------------------------------------------------------------------------------
   985 Histogram *
   986 FlagHistogram::FactoryGet(const std::string &name, Flags flags)
   987 {
   988   Histogram *h(nullptr);
   990   if (!StatisticsRecorder::FindHistogram(name, &h)) {
   991     FlagHistogram *fh = new FlagHistogram(name);
   992     fh->InitializeBucketRange();
   993     fh->SetFlags(flags);
   994     size_t zero_index = fh->BucketIndex(0);
   995     fh->LinearHistogram::Accumulate(0, 1, zero_index);
   996     h = StatisticsRecorder::RegisterOrDeleteDuplicate(fh);
   997   }
   999   return h;
  1002 FlagHistogram::FlagHistogram(const std::string &name)
  1003   : BooleanHistogram(name), mSwitched(false) {
  1006 Histogram::ClassType
  1007 FlagHistogram::histogram_type() const
  1009   return FLAG_HISTOGRAM;
  1012 void
  1013 FlagHistogram::Accumulate(Sample value, Count count, size_t index)
  1015   if (mSwitched) {
  1016     return;
  1019   mSwitched = true;
  1020   DCHECK_EQ(value, 1);
  1021   LinearHistogram::Accumulate(value, 1, index);
  1022   size_t zero_index = BucketIndex(0);
  1023   LinearHistogram::Accumulate(0, -1, zero_index);
  1026 void
  1027 FlagHistogram::AddSampleSet(const SampleSet& sample) {
  1028   DCHECK_EQ(bucket_count(), sample.size());
  1029   // We can't be sure the SampleSet provided came from another FlagHistogram,
  1030   // so we take the following steps:
  1031   //  - If our flag has already been set do nothing.
  1032   //  - Set our flag if the following hold:
  1033   //      - The sum of the counts in the provided SampleSet is 1.
  1034   //      - The bucket index for that single value is the same as the index where we
  1035   //        would place our set flag.
  1036   //  - Otherwise, take no action.
  1038   if (mSwitched) {
  1039     return;
  1042   if (sample.sum() != 1) {
  1043     return;
  1046   size_t one_index = BucketIndex(1);
  1047   if (sample.counts(one_index) == 1) {
  1048     Accumulate(1, 1, one_index);
  1051 //------------------------------------------------------------------------------
  1052 // CustomHistogram:
  1053 //------------------------------------------------------------------------------
  1055 Histogram* CustomHistogram::FactoryGet(const std::string& name,
  1056                                        const std::vector<Sample>& custom_ranges,
  1057                                        Flags flags) {
  1058   Histogram* histogram(NULL);
  1060   // Remove the duplicates in the custom ranges array.
  1061   std::vector<int> ranges = custom_ranges;
  1062   ranges.push_back(0);  // Ensure we have a zero value.
  1063   std::sort(ranges.begin(), ranges.end());
  1064   ranges.erase(std::unique(ranges.begin(), ranges.end()), ranges.end());
  1065   if (ranges.size() <= 1) {
  1066     DCHECK(false);
  1067     // Note that we pushed a 0 in above, so for defensive code....
  1068     ranges.push_back(1);  // Put in some data so we can index to [1].
  1071   DCHECK_LT(ranges.back(), kSampleType_MAX);
  1073   if (!StatisticsRecorder::FindHistogram(name, &histogram)) {
  1074     CustomHistogram* tentative_histogram = new CustomHistogram(name, ranges);
  1075     tentative_histogram->InitializedCustomBucketRange(ranges);
  1076     tentative_histogram->SetFlags(flags);
  1077     histogram =
  1078         StatisticsRecorder::RegisterOrDeleteDuplicate(tentative_histogram);
  1081   DCHECK_EQ(histogram->histogram_type(), CUSTOM_HISTOGRAM);
  1082   DCHECK(histogram->HasConstructorArguments(ranges[1], ranges.back(),
  1083                                             ranges.size()));
  1084   return histogram;
  1087 Histogram::ClassType CustomHistogram::histogram_type() const {
  1088   return CUSTOM_HISTOGRAM;
  1091 CustomHistogram::CustomHistogram(const std::string& name,
  1092                                  const std::vector<Sample>& custom_ranges)
  1093     : Histogram(name, custom_ranges[1], custom_ranges.back(),
  1094                 custom_ranges.size()) {
  1095   DCHECK_GT(custom_ranges.size(), 1u);
  1096   DCHECK_EQ(custom_ranges[0], 0);
  1099 void CustomHistogram::InitializedCustomBucketRange(
  1100     const std::vector<Sample>& custom_ranges) {
  1101   DCHECK_GT(custom_ranges.size(), 1u);
  1102   DCHECK_EQ(custom_ranges[0], 0);
  1103   DCHECK_LE(custom_ranges.size(), bucket_count());
  1104   for (size_t index = 0; index < custom_ranges.size(); ++index)
  1105     SetBucketRange(index, custom_ranges[index]);
  1106   ResetRangeChecksum();
  1109 double CustomHistogram::GetBucketSize(Count current, size_t i) const {
  1110   return 1;
  1113 //------------------------------------------------------------------------------
  1114 // The next section handles global (central) support for all histograms, as well
  1115 // as startup/teardown of this service.
  1116 //------------------------------------------------------------------------------
  1118 // This singleton instance should be started during the single threaded portion
  1119 // of main(), and hence it is not thread safe.  It initializes globals to
  1120 // provide support for all future calls.
  1121 StatisticsRecorder::StatisticsRecorder() {
  1122   DCHECK(!histograms_);
  1123   if (lock_ == NULL) {
  1124     // This will leak on purpose. It's the only way to make sure we won't race
  1125     // against the static uninitialization of the module while one of our
  1126     // static methods relying on the lock get called at an inappropriate time
  1127     // during the termination phase. Since it's a static data member, we will
  1128     // leak one per process, which would be similar to the instance allocated
  1129     // during static initialization and released only on  process termination.
  1130     lock_ = new base::Lock;
  1132   base::AutoLock auto_lock(*lock_);
  1133   histograms_ = new HistogramMap;
  1136 StatisticsRecorder::~StatisticsRecorder() {
  1137   DCHECK(histograms_ && lock_);
  1139   if (dump_on_exit_) {
  1140     std::string output;
  1141     WriteGraph("", &output);
  1142     CHROMIUM_LOG(INFO) << output;
  1144   // Clean up.
  1145   HistogramMap* histograms = NULL;
  1147     base::AutoLock auto_lock(*lock_);
  1148     histograms = histograms_;
  1149     histograms_ = NULL;
  1150     for (HistogramMap::iterator it = histograms->begin();
  1151          histograms->end() != it;
  1152          ++it) {
  1153       // No other clients permanently hold Histogram references, so we
  1154       // have the only one and it is safe to delete it.
  1155       delete it->second;
  1158   delete histograms;
  1159   // We don't delete lock_ on purpose to avoid having to properly protect
  1160   // against it going away after we checked for NULL in the static methods.
  1163 // static
  1164 bool StatisticsRecorder::IsActive() {
  1165   if (lock_ == NULL)
  1166     return false;
  1167   base::AutoLock auto_lock(*lock_);
  1168   return NULL != histograms_;
  1171 Histogram* StatisticsRecorder::RegisterOrDeleteDuplicate(Histogram* histogram) {
  1172   DCHECK(histogram->HasValidRangeChecksum());
  1173   if (lock_ == NULL)
  1174     return histogram;
  1175   base::AutoLock auto_lock(*lock_);
  1176   if (!histograms_)
  1177     return histogram;
  1178   const std::string name = histogram->histogram_name();
  1179   HistogramMap::iterator it = histograms_->find(name);
  1180   // Avoid overwriting a previous registration.
  1181   if (histograms_->end() == it) {
  1182     (*histograms_)[name] = histogram;
  1183   } else {
  1184     delete histogram;  // We already have one by this name.
  1185     histogram = it->second;
  1187   return histogram;
  1190 // static
  1191 void StatisticsRecorder::WriteHTMLGraph(const std::string& query,
  1192                                         std::string* output) {
  1193   if (!IsActive())
  1194     return;
  1195   output->append("<html><head><title>About Histograms");
  1196   if (!query.empty())
  1197     output->append(" - " + query);
  1198   output->append("</title>"
  1199                  // We'd like the following no-cache... but it doesn't work.
  1200                  // "<META HTTP-EQUIV=\"Pragma\" CONTENT=\"no-cache\">"
  1201                  "</head><body>");
  1203   Histograms snapshot;
  1204   GetSnapshot(query, &snapshot);
  1205   for (Histograms::iterator it = snapshot.begin();
  1206        it != snapshot.end();
  1207        ++it) {
  1208     (*it)->WriteHTMLGraph(output);
  1209     output->append("<br><hr><br>");
  1211   output->append("</body></html>");
  1214 // static
  1215 void StatisticsRecorder::WriteGraph(const std::string& query,
  1216                                     std::string* output) {
  1217   if (!IsActive())
  1218     return;
  1219   if (query.length())
  1220     StringAppendF(output, "Collections of histograms for %s\n", query.c_str());
  1221   else
  1222     output->append("Collections of all histograms\n");
  1224   Histograms snapshot;
  1225   GetSnapshot(query, &snapshot);
  1226   for (Histograms::iterator it = snapshot.begin();
  1227        it != snapshot.end();
  1228        ++it) {
  1229     (*it)->WriteAscii(true, "\n", output);
  1230     output->append("\n");
  1234 // static
  1235 void StatisticsRecorder::GetHistograms(Histograms* output) {
  1236   if (lock_ == NULL)
  1237     return;
  1238   base::AutoLock auto_lock(*lock_);
  1239   if (!histograms_)
  1240     return;
  1241   for (HistogramMap::iterator it = histograms_->begin();
  1242        histograms_->end() != it;
  1243        ++it) {
  1244     DCHECK_EQ(it->first, it->second->histogram_name());
  1245     output->push_back(it->second);
  1249 bool StatisticsRecorder::FindHistogram(const std::string& name,
  1250                                        Histogram** histogram) {
  1251   if (lock_ == NULL)
  1252     return false;
  1253   base::AutoLock auto_lock(*lock_);
  1254   if (!histograms_)
  1255     return false;
  1256   HistogramMap::iterator it = histograms_->find(name);
  1257   if (histograms_->end() == it)
  1258     return false;
  1259   *histogram = it->second;
  1260   return true;
  1263 // private static
  1264 void StatisticsRecorder::GetSnapshot(const std::string& query,
  1265                                      Histograms* snapshot) {
  1266   if (lock_ == NULL)
  1267     return;
  1268   base::AutoLock auto_lock(*lock_);
  1269   if (!histograms_)
  1270     return;
  1271   for (HistogramMap::iterator it = histograms_->begin();
  1272        histograms_->end() != it;
  1273        ++it) {
  1274     if (it->first.find(query) != std::string::npos)
  1275       snapshot->push_back(it->second);
  1279 // static
  1280 StatisticsRecorder::HistogramMap* StatisticsRecorder::histograms_ = NULL;
  1281 // static
  1282 base::Lock* StatisticsRecorder::lock_ = NULL;
  1283 // static
  1284 bool StatisticsRecorder::dump_on_exit_ = false;
  1286 }  // namespace base

mercurial