Wed, 31 Dec 2014 06:09:35 +0100
Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.
1 // Copyright (c) 2008 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "chrome/common/ipc_channel_posix.h"
7 #include <errno.h>
8 #include <fcntl.h>
9 #include <stddef.h>
10 #include <unistd.h>
11 #include <sys/types.h>
12 #include <sys/socket.h>
13 #include <sys/stat.h>
14 #include <sys/un.h>
15 #include <sys/uio.h>
17 #include <string>
18 #include <map>
20 #include "base/command_line.h"
21 #include "base/eintr_wrapper.h"
22 #include "base/lock.h"
23 #include "base/logging.h"
24 #include "base/process_util.h"
25 #include "base/scoped_ptr.h"
26 #include "base/string_util.h"
27 #include "base/singleton.h"
28 #include "base/stats_counters.h"
29 #include "chrome/common/chrome_switches.h"
30 #include "chrome/common/file_descriptor_set_posix.h"
31 #include "chrome/common/ipc_logging.h"
32 #include "chrome/common/ipc_message_utils.h"
33 #include "mozilla/ipc/ProtocolUtils.h"
35 #ifdef MOZ_TASK_TRACER
36 #include "GeckoTaskTracerImpl.h"
37 using namespace mozilla::tasktracer;
38 #endif
40 namespace IPC {
42 // IPC channels on Windows use named pipes (CreateNamedPipe()) with
43 // channel ids as the pipe names. Channels on POSIX use anonymous
44 // Unix domain sockets created via socketpair() as pipes. These don't
45 // quite line up.
46 //
47 // When creating a child subprocess, the parent side of the fork
48 // arranges it such that the initial control channel ends up on the
49 // magic file descriptor kClientChannelFd in the child. Future
50 // connections (file descriptors) can then be passed via that
51 // connection via sendmsg().
53 //------------------------------------------------------------------------------
54 namespace {
56 // The PipeMap class works around this quirk related to unit tests:
57 //
58 // When running as a server, we install the client socket in a
59 // specific file descriptor number (@kClientChannelFd). However, we
60 // also have to support the case where we are running unittests in the
61 // same process. (We do not support forking without execing.)
62 //
63 // Case 1: normal running
64 // The IPC server object will install a mapping in PipeMap from the
65 // name which it was given to the client pipe. When forking the client, the
66 // GetClientFileDescriptorMapping will ensure that the socket is installed in
67 // the magic slot (@kClientChannelFd). The client will search for the
68 // mapping, but it won't find any since we are in a new process. Thus the
69 // magic fd number is returned. Once the client connects, the server will
70 // close its copy of the client socket and remove the mapping.
71 //
72 // Case 2: unittests - client and server in the same process
73 // The IPC server will install a mapping as before. The client will search
74 // for a mapping and find out. It duplicates the file descriptor and
75 // connects. Once the client connects, the server will close the original
76 // copy of the client socket and remove the mapping. Thus, when the client
77 // object closes, it will close the only remaining copy of the client socket
78 // in the fd table and the server will see EOF on its side.
79 //
80 // TODO(port): a client process cannot connect to multiple IPC channels with
81 // this scheme.
83 class PipeMap {
84 public:
85 // Lookup a given channel id. Return -1 if not found.
86 int Lookup(const std::string& channel_id) {
87 AutoLock locked(lock_);
89 ChannelToFDMap::const_iterator i = map_.find(channel_id);
90 if (i == map_.end())
91 return -1;
92 return i->second;
93 }
95 // Remove the mapping for the given channel id. No error is signaled if the
96 // channel_id doesn't exist
97 void Remove(const std::string& channel_id) {
98 AutoLock locked(lock_);
100 ChannelToFDMap::iterator i = map_.find(channel_id);
101 if (i != map_.end())
102 map_.erase(i);
103 }
105 // Insert a mapping from @channel_id to @fd. It's a fatal error to insert a
106 // mapping if one already exists for the given channel_id
107 void Insert(const std::string& channel_id, int fd) {
108 AutoLock locked(lock_);
109 DCHECK(fd != -1);
111 ChannelToFDMap::const_iterator i = map_.find(channel_id);
112 CHECK(i == map_.end()) << "Creating second IPC server for '"
113 << channel_id
114 << "' while first still exists";
115 map_[channel_id] = fd;
116 }
118 private:
119 Lock lock_;
120 typedef std::map<std::string, int> ChannelToFDMap;
121 ChannelToFDMap map_;
122 };
124 // This is the file descriptor number that a client process expects to find its
125 // IPC socket.
126 static const int kClientChannelFd = 3;
128 // Used to map a channel name to the equivalent FD # in the client process.
129 int ChannelNameToClientFD(const std::string& channel_id) {
130 // See the large block comment above PipeMap for the reasoning here.
131 const int fd = Singleton<PipeMap>()->Lookup(channel_id);
132 if (fd != -1)
133 return dup(fd);
135 // If we don't find an entry, we assume that the correct value has been
136 // inserted in the magic slot.
137 return kClientChannelFd;
138 }
140 //------------------------------------------------------------------------------
141 const size_t kMaxPipeNameLength = sizeof(((sockaddr_un*)0)->sun_path);
143 // Creates a Fifo with the specified name ready to listen on.
144 bool CreateServerFifo(const std::string& pipe_name, int* server_listen_fd) {
145 DCHECK(server_listen_fd);
146 DCHECK_GT(pipe_name.length(), 0u);
147 DCHECK_LT(pipe_name.length(), kMaxPipeNameLength);
149 if (pipe_name.length() == 0 || pipe_name.length() >= kMaxPipeNameLength) {
150 return false;
151 }
153 // Create socket.
154 int fd = socket(AF_UNIX, SOCK_STREAM, 0);
155 if (fd < 0) {
156 return false;
157 }
159 // Make socket non-blocking
160 if (fcntl(fd, F_SETFL, O_NONBLOCK) == -1) {
161 HANDLE_EINTR(close(fd));
162 return false;
163 }
165 // Delete any old FS instances.
166 unlink(pipe_name.c_str());
168 // Create unix_addr structure
169 struct sockaddr_un unix_addr;
170 memset(&unix_addr, 0, sizeof(unix_addr));
171 unix_addr.sun_family = AF_UNIX;
172 snprintf(unix_addr.sun_path, kMaxPipeNameLength, "%s", pipe_name.c_str());
173 size_t unix_addr_len = offsetof(struct sockaddr_un, sun_path) +
174 strlen(unix_addr.sun_path) + 1;
176 // Bind the socket.
177 if (bind(fd, reinterpret_cast<const sockaddr*>(&unix_addr),
178 unix_addr_len) != 0) {
179 HANDLE_EINTR(close(fd));
180 return false;
181 }
183 // Start listening on the socket.
184 const int listen_queue_length = 1;
185 if (listen(fd, listen_queue_length) != 0) {
186 HANDLE_EINTR(close(fd));
187 return false;
188 }
190 *server_listen_fd = fd;
191 return true;
192 }
194 // Accept a connection on a fifo.
195 bool ServerAcceptFifoConnection(int server_listen_fd, int* server_socket) {
196 DCHECK(server_socket);
198 int accept_fd = HANDLE_EINTR(accept(server_listen_fd, NULL, 0));
199 if (accept_fd < 0)
200 return false;
201 if (fcntl(accept_fd, F_SETFL, O_NONBLOCK) == -1) {
202 HANDLE_EINTR(close(accept_fd));
203 return false;
204 }
206 *server_socket = accept_fd;
207 return true;
208 }
210 bool ClientConnectToFifo(const std::string &pipe_name, int* client_socket) {
211 DCHECK(client_socket);
212 DCHECK_LT(pipe_name.length(), kMaxPipeNameLength);
214 // Create socket.
215 int fd = socket(AF_UNIX, SOCK_STREAM, 0);
216 if (fd < 0) {
217 CHROMIUM_LOG(ERROR) << "fd is invalid";
218 return false;
219 }
221 // Make socket non-blocking
222 if (fcntl(fd, F_SETFL, O_NONBLOCK) == -1) {
223 CHROMIUM_LOG(ERROR) << "fcntl failed";
224 HANDLE_EINTR(close(fd));
225 return false;
226 }
228 // Create server side of socket.
229 struct sockaddr_un server_unix_addr;
230 memset(&server_unix_addr, 0, sizeof(server_unix_addr));
231 server_unix_addr.sun_family = AF_UNIX;
232 snprintf(server_unix_addr.sun_path, kMaxPipeNameLength, "%s",
233 pipe_name.c_str());
234 size_t server_unix_addr_len = offsetof(struct sockaddr_un, sun_path) +
235 strlen(server_unix_addr.sun_path) + 1;
237 if (HANDLE_EINTR(connect(fd, reinterpret_cast<sockaddr*>(&server_unix_addr),
238 server_unix_addr_len)) != 0) {
239 HANDLE_EINTR(close(fd));
240 return false;
241 }
243 *client_socket = fd;
244 return true;
245 }
247 bool SetCloseOnExec(int fd) {
248 int flags = fcntl(fd, F_GETFD);
249 if (flags == -1)
250 return false;
252 flags |= FD_CLOEXEC;
253 if (fcntl(fd, F_SETFD, flags) == -1)
254 return false;
256 return true;
257 }
259 } // namespace
260 //------------------------------------------------------------------------------
262 Channel::ChannelImpl::ChannelImpl(const std::wstring& channel_id, Mode mode,
263 Listener* listener)
264 : factory_(this) {
265 Init(mode, listener);
266 uses_fifo_ = CommandLine::ForCurrentProcess()->HasSwitch(switches::kIPCUseFIFO);
268 if (!CreatePipe(channel_id, mode)) {
269 // The pipe may have been closed already.
270 CHROMIUM_LOG(WARNING) << "Unable to create pipe named \"" << channel_id <<
271 "\" in " << (mode == MODE_SERVER ? "server" : "client") <<
272 " mode error(" << strerror(errno) << ").";
273 }
274 }
276 Channel::ChannelImpl::ChannelImpl(int fd, Mode mode, Listener* listener)
277 : factory_(this) {
278 Init(mode, listener);
279 pipe_ = fd;
280 waiting_connect_ = (MODE_SERVER == mode);
282 EnqueueHelloMessage();
283 }
285 void Channel::ChannelImpl::Init(Mode mode, Listener* listener) {
286 mode_ = mode;
287 is_blocked_on_write_ = false;
288 message_send_bytes_written_ = 0;
289 uses_fifo_ = false;
290 server_listen_pipe_ = -1;
291 pipe_ = -1;
292 client_pipe_ = -1;
293 listener_ = listener;
294 waiting_connect_ = true;
295 processing_incoming_ = false;
296 closed_ = false;
297 #if defined(OS_MACOSX)
298 last_pending_fd_id_ = 0;
299 #endif
300 output_queue_length_ = 0;
301 }
303 bool Channel::ChannelImpl::CreatePipe(const std::wstring& channel_id,
304 Mode mode) {
305 DCHECK(server_listen_pipe_ == -1 && pipe_ == -1);
307 if (uses_fifo_) {
308 // This only happens in unit tests; see the comment above PipeMap.
309 // TODO(playmobil): We shouldn't need to create fifos on disk.
310 // TODO(playmobil): If we do, they should be in the user data directory.
311 // TODO(playmobil): Cleanup any stale fifos.
312 pipe_name_ = "/var/tmp/chrome_" + WideToASCII(channel_id);
313 if (mode == MODE_SERVER) {
314 if (!CreateServerFifo(pipe_name_, &server_listen_pipe_)) {
315 return false;
316 }
317 } else {
318 if (!ClientConnectToFifo(pipe_name_, &pipe_)) {
319 return false;
320 }
321 waiting_connect_ = false;
322 }
323 } else {
324 // socketpair()
325 pipe_name_ = WideToASCII(channel_id);
326 if (mode == MODE_SERVER) {
327 int pipe_fds[2];
328 if (socketpair(AF_UNIX, SOCK_STREAM, 0, pipe_fds) != 0) {
329 return false;
330 }
331 // Set both ends to be non-blocking.
332 if (fcntl(pipe_fds[0], F_SETFL, O_NONBLOCK) == -1 ||
333 fcntl(pipe_fds[1], F_SETFL, O_NONBLOCK) == -1) {
334 HANDLE_EINTR(close(pipe_fds[0]));
335 HANDLE_EINTR(close(pipe_fds[1]));
336 return false;
337 }
339 if (!SetCloseOnExec(pipe_fds[0]) ||
340 !SetCloseOnExec(pipe_fds[1])) {
341 HANDLE_EINTR(close(pipe_fds[0]));
342 HANDLE_EINTR(close(pipe_fds[1]));
343 return false;
344 }
346 pipe_ = pipe_fds[0];
347 client_pipe_ = pipe_fds[1];
349 if (pipe_name_.length()) {
350 Singleton<PipeMap>()->Insert(pipe_name_, client_pipe_);
351 }
352 } else {
353 pipe_ = ChannelNameToClientFD(pipe_name_);
354 DCHECK(pipe_ > 0);
355 waiting_connect_ = false;
356 }
357 }
359 // Create the Hello message to be sent when Connect is called
360 return EnqueueHelloMessage();
361 }
363 /**
364 * Reset the file descriptor for communication with the peer.
365 */
366 void Channel::ChannelImpl::ResetFileDescriptor(int fd) {
367 NS_ASSERTION(fd > 0 && fd == pipe_, "Invalid file descriptor");
369 EnqueueHelloMessage();
370 }
372 bool Channel::ChannelImpl::EnqueueHelloMessage() {
373 scoped_ptr<Message> msg(new Message(MSG_ROUTING_NONE,
374 HELLO_MESSAGE_TYPE,
375 IPC::Message::PRIORITY_NORMAL));
376 if (!msg->WriteInt(base::GetCurrentProcId())) {
377 Close();
378 return false;
379 }
381 OutputQueuePush(msg.release());
382 return true;
383 }
385 static void
386 ClearAndShrink(std::string& s, size_t capacity)
387 {
388 // This swap trick is the closest thing C++ has to a guaranteed way to
389 // shrink the capacity of a string.
390 std::string tmp;
391 tmp.reserve(capacity);
392 s.swap(tmp);
393 }
395 bool Channel::ChannelImpl::Connect() {
396 if (mode_ == MODE_SERVER && uses_fifo_) {
397 if (server_listen_pipe_ == -1) {
398 return false;
399 }
400 MessageLoopForIO::current()->WatchFileDescriptor(
401 server_listen_pipe_,
402 true,
403 MessageLoopForIO::WATCH_READ,
404 &server_listen_connection_watcher_,
405 this);
406 } else {
407 if (pipe_ == -1) {
408 return false;
409 }
410 MessageLoopForIO::current()->WatchFileDescriptor(
411 pipe_,
412 true,
413 MessageLoopForIO::WATCH_READ,
414 &read_watcher_,
415 this);
416 waiting_connect_ = false;
417 }
419 if (!waiting_connect_)
420 return ProcessOutgoingMessages();
421 return true;
422 }
424 bool Channel::ChannelImpl::ProcessIncomingMessages() {
425 ssize_t bytes_read = 0;
427 struct msghdr msg = {0};
428 struct iovec iov = {input_buf_, Channel::kReadBufferSize};
430 msg.msg_iov = &iov;
431 msg.msg_iovlen = 1;
432 msg.msg_control = input_cmsg_buf_;
434 for (;;) {
435 msg.msg_controllen = sizeof(input_cmsg_buf_);
437 if (bytes_read == 0) {
438 if (pipe_ == -1)
439 return false;
441 // Read from pipe.
442 // recvmsg() returns 0 if the connection has closed or EAGAIN if no data
443 // is waiting on the pipe.
444 bytes_read = HANDLE_EINTR(recvmsg(pipe_, &msg, MSG_DONTWAIT));
446 if (bytes_read < 0) {
447 if (errno == EAGAIN) {
448 return true;
449 } else {
450 CHROMIUM_LOG(ERROR) << "pipe error (" << pipe_ << "): " << strerror(errno);
451 return false;
452 }
453 } else if (bytes_read == 0) {
454 // The pipe has closed...
455 Close();
456 return false;
457 }
458 }
459 DCHECK(bytes_read);
461 if (client_pipe_ != -1) {
462 Singleton<PipeMap>()->Remove(pipe_name_);
463 HANDLE_EINTR(close(client_pipe_));
464 client_pipe_ = -1;
465 }
467 // a pointer to an array of |num_wire_fds| file descriptors from the read
468 const int* wire_fds = NULL;
469 unsigned num_wire_fds = 0;
471 // walk the list of control messages and, if we find an array of file
472 // descriptors, save a pointer to the array
474 // This next if statement is to work around an OSX issue where
475 // CMSG_FIRSTHDR will return non-NULL in the case that controllen == 0.
476 // Here's a test case:
477 //
478 // int main() {
479 // struct msghdr msg;
480 // msg.msg_control = &msg;
481 // msg.msg_controllen = 0;
482 // if (CMSG_FIRSTHDR(&msg))
483 // printf("Bug found!\n");
484 // }
485 if (msg.msg_controllen > 0) {
486 // On OSX, CMSG_FIRSTHDR doesn't handle the case where controllen is 0
487 // and will return a pointer into nowhere.
488 for (struct cmsghdr* cmsg = CMSG_FIRSTHDR(&msg); cmsg;
489 cmsg = CMSG_NXTHDR(&msg, cmsg)) {
490 if (cmsg->cmsg_level == SOL_SOCKET &&
491 cmsg->cmsg_type == SCM_RIGHTS) {
492 const unsigned payload_len = cmsg->cmsg_len - CMSG_LEN(0);
493 DCHECK(payload_len % sizeof(int) == 0);
494 wire_fds = reinterpret_cast<int*>(CMSG_DATA(cmsg));
495 num_wire_fds = payload_len / 4;
497 if (msg.msg_flags & MSG_CTRUNC) {
498 CHROMIUM_LOG(ERROR) << "SCM_RIGHTS message was truncated"
499 << " cmsg_len:" << cmsg->cmsg_len
500 << " fd:" << pipe_;
501 for (unsigned i = 0; i < num_wire_fds; ++i)
502 HANDLE_EINTR(close(wire_fds[i]));
503 return false;
504 }
505 break;
506 }
507 }
508 }
510 // Process messages from input buffer.
511 const char *p;
512 const char *overflowp;
513 const char *end;
514 if (input_overflow_buf_.empty()) {
515 overflowp = NULL;
516 p = input_buf_;
517 end = p + bytes_read;
518 } else {
519 if (input_overflow_buf_.size() >
520 static_cast<size_t>(kMaximumMessageSize - bytes_read)) {
521 ClearAndShrink(input_overflow_buf_, Channel::kReadBufferSize);
522 CHROMIUM_LOG(ERROR) << "IPC message is too big";
523 return false;
524 }
525 input_overflow_buf_.append(input_buf_, bytes_read);
526 overflowp = p = input_overflow_buf_.data();
527 end = p + input_overflow_buf_.size();
528 }
530 // A pointer to an array of |num_fds| file descriptors which includes any
531 // fds that have spilled over from a previous read.
532 const int* fds;
533 unsigned num_fds;
534 unsigned fds_i = 0; // the index of the first unused descriptor
536 if (input_overflow_fds_.empty()) {
537 fds = wire_fds;
538 num_fds = num_wire_fds;
539 } else {
540 const size_t prev_size = input_overflow_fds_.size();
541 input_overflow_fds_.resize(prev_size + num_wire_fds);
542 memcpy(&input_overflow_fds_[prev_size], wire_fds,
543 num_wire_fds * sizeof(int));
544 fds = &input_overflow_fds_[0];
545 num_fds = input_overflow_fds_.size();
546 }
548 while (p < end) {
549 const char* message_tail = Message::FindNext(p, end);
550 if (message_tail) {
551 int len = static_cast<int>(message_tail - p);
552 Message m(p, len);
553 if (m.header()->num_fds) {
554 // the message has file descriptors
555 const char* error = NULL;
556 if (m.header()->num_fds > num_fds - fds_i) {
557 // the message has been completely received, but we didn't get
558 // enough file descriptors.
559 error = "Message needs unreceived descriptors";
560 }
562 if (m.header()->num_fds >
563 FileDescriptorSet::MAX_DESCRIPTORS_PER_MESSAGE) {
564 // There are too many descriptors in this message
565 error = "Message requires an excessive number of descriptors";
566 }
568 if (error) {
569 CHROMIUM_LOG(WARNING) << error
570 << " channel:" << this
571 << " message-type:" << m.type()
572 << " header()->num_fds:" << m.header()->num_fds
573 << " num_fds:" << num_fds
574 << " fds_i:" << fds_i;
575 // close the existing file descriptors so that we don't leak them
576 for (unsigned i = fds_i; i < num_fds; ++i)
577 HANDLE_EINTR(close(fds[i]));
578 input_overflow_fds_.clear();
579 // abort the connection
580 return false;
581 }
583 #if defined(OS_MACOSX)
584 // Send a message to the other side, indicating that we are now
585 // responsible for closing the descriptor.
586 Message *fdAck = new Message(MSG_ROUTING_NONE,
587 RECEIVED_FDS_MESSAGE_TYPE,
588 IPC::Message::PRIORITY_NORMAL);
589 DCHECK(m.fd_cookie() != 0);
590 fdAck->set_fd_cookie(m.fd_cookie());
591 OutputQueuePush(fdAck);
592 #endif
594 m.file_descriptor_set()->SetDescriptors(
595 &fds[fds_i], m.header()->num_fds);
596 fds_i += m.header()->num_fds;
597 }
598 #ifdef IPC_MESSAGE_DEBUG_EXTRA
599 DLOG(INFO) << "received message on channel @" << this <<
600 " with type " << m.type();
601 #endif
603 #ifdef MOZ_TASK_TRACER
604 AutoSaveCurTraceInfo saveCurTraceInfo;
605 SetCurTraceInfo(m.header()->source_event_id,
606 m.header()->parent_task_id,
607 m.header()->source_event_type);
608 #endif
610 if (m.routing_id() == MSG_ROUTING_NONE &&
611 m.type() == HELLO_MESSAGE_TYPE) {
612 // The Hello message contains only the process id.
613 listener_->OnChannelConnected(MessageIterator(m).NextInt());
614 #if defined(OS_MACOSX)
615 } else if (m.routing_id() == MSG_ROUTING_NONE &&
616 m.type() == RECEIVED_FDS_MESSAGE_TYPE) {
617 DCHECK(m.fd_cookie() != 0);
618 CloseDescriptors(m.fd_cookie());
619 #endif
620 } else {
621 listener_->OnMessageReceived(m);
622 }
623 p = message_tail;
624 } else {
625 // Last message is partial.
626 break;
627 }
628 }
629 if (end == p) {
630 ClearAndShrink(input_overflow_buf_, Channel::kReadBufferSize);
631 } else if (!overflowp) {
632 // p is from input_buf_
633 input_overflow_buf_.assign(p, end - p);
634 } else if (p > overflowp) {
635 // p is from input_overflow_buf_
636 input_overflow_buf_.erase(0, p - overflowp);
637 }
638 input_overflow_fds_ = std::vector<int>(&fds[fds_i], &fds[num_fds]);
640 // When the input data buffer is empty, the overflow fds should be too. If
641 // this is not the case, we probably have a rogue renderer which is trying
642 // to fill our descriptor table.
643 if (input_overflow_buf_.empty() && !input_overflow_fds_.empty()) {
644 // We close these descriptors in Close()
645 return false;
646 }
648 bytes_read = 0; // Get more data.
649 }
651 return true;
652 }
654 bool Channel::ChannelImpl::ProcessOutgoingMessages() {
655 DCHECK(!waiting_connect_); // Why are we trying to send messages if there's
656 // no connection?
657 is_blocked_on_write_ = false;
659 if (output_queue_.empty())
660 return true;
662 if (pipe_ == -1)
663 return false;
665 // Write out all the messages we can till the write blocks or there are no
666 // more outgoing messages.
667 while (!output_queue_.empty()) {
668 Message* msg = output_queue_.front();
670 struct msghdr msgh = {0};
672 static const int tmp = CMSG_SPACE(sizeof(
673 int[FileDescriptorSet::MAX_DESCRIPTORS_PER_MESSAGE]));
674 char buf[tmp];
676 if (message_send_bytes_written_ == 0 &&
677 !msg->file_descriptor_set()->empty()) {
678 // This is the first chunk of a message which has descriptors to send
679 struct cmsghdr *cmsg;
680 const unsigned num_fds = msg->file_descriptor_set()->size();
682 if (num_fds > FileDescriptorSet::MAX_DESCRIPTORS_PER_MESSAGE) {
683 CHROMIUM_LOG(FATAL) << "Too many file descriptors!";
684 // This should not be reached.
685 return false;
686 }
688 msgh.msg_control = buf;
689 msgh.msg_controllen = CMSG_SPACE(sizeof(int) * num_fds);
690 cmsg = CMSG_FIRSTHDR(&msgh);
691 cmsg->cmsg_level = SOL_SOCKET;
692 cmsg->cmsg_type = SCM_RIGHTS;
693 cmsg->cmsg_len = CMSG_LEN(sizeof(int) * num_fds);
694 msg->file_descriptor_set()->GetDescriptors(
695 reinterpret_cast<int*>(CMSG_DATA(cmsg)));
696 msgh.msg_controllen = cmsg->cmsg_len;
698 msg->header()->num_fds = num_fds;
699 #if defined(OS_MACOSX)
700 msg->set_fd_cookie(++last_pending_fd_id_);
701 #endif
702 }
703 #ifdef MOZ_TASK_TRACER
704 GetCurTraceInfo(&msg->header()->source_event_id,
705 &msg->header()->parent_task_id,
706 &msg->header()->source_event_type);
707 #endif
709 size_t amt_to_write = msg->size() - message_send_bytes_written_;
710 DCHECK(amt_to_write != 0);
711 const char *out_bytes = reinterpret_cast<const char*>(msg->data()) +
712 message_send_bytes_written_;
714 struct iovec iov = {const_cast<char*>(out_bytes), amt_to_write};
715 msgh.msg_iov = &iov;
716 msgh.msg_iovlen = 1;
718 ssize_t bytes_written = HANDLE_EINTR(sendmsg(pipe_, &msgh, MSG_DONTWAIT));
719 #if !defined(OS_MACOSX)
720 // On OSX CommitAll gets called later, once we get the RECEIVED_FDS_MESSAGE_TYPE
721 // message.
722 if (bytes_written > 0)
723 msg->file_descriptor_set()->CommitAll();
724 #endif
726 if (bytes_written < 0 && errno != EAGAIN) {
727 CHROMIUM_LOG(ERROR) << "pipe error: " << strerror(errno);
728 return false;
729 }
731 if (static_cast<size_t>(bytes_written) != amt_to_write) {
732 if (bytes_written > 0) {
733 // If write() fails with EAGAIN then bytes_written will be -1.
734 message_send_bytes_written_ += bytes_written;
735 }
737 // Tell libevent to call us back once things are unblocked.
738 is_blocked_on_write_ = true;
739 MessageLoopForIO::current()->WatchFileDescriptor(
740 pipe_,
741 false, // One shot
742 MessageLoopForIO::WATCH_WRITE,
743 &write_watcher_,
744 this);
745 return true;
746 } else {
747 message_send_bytes_written_ = 0;
749 #if defined(OS_MACOSX)
750 if (!msg->file_descriptor_set()->empty())
751 pending_fds_.push_back(PendingDescriptors(msg->fd_cookie(),
752 msg->file_descriptor_set()));
753 #endif
755 // Message sent OK!
756 #ifdef IPC_MESSAGE_DEBUG_EXTRA
757 DLOG(INFO) << "sent message @" << msg << " on channel @" << this <<
758 " with type " << msg->type();
759 #endif
760 OutputQueuePop();
761 delete msg;
762 }
763 }
764 return true;
765 }
767 bool Channel::ChannelImpl::Send(Message* message) {
768 #ifdef IPC_MESSAGE_DEBUG_EXTRA
769 DLOG(INFO) << "sending message @" << message << " on channel @" << this
770 << " with type " << message->type()
771 << " (" << output_queue_.size() << " in queue)";
772 #endif
774 #ifdef IPC_MESSAGE_LOG_ENABLED
775 Logging::current()->OnSendMessage(message, L"");
776 #endif
778 // If the channel has been closed, ProcessOutgoingMessages() is never going
779 // to pop anything off output_queue; output_queue will only get emptied when
780 // the channel is destructed. We might as well delete message now, instead
781 // of waiting for the channel to be destructed.
782 if (closed_) {
783 if (mozilla::ipc::LoggingEnabled()) {
784 fprintf(stderr, "Can't send message %s, because this channel is closed.\n",
785 message->name());
786 }
787 delete message;
788 return false;
789 }
791 OutputQueuePush(message);
792 if (!waiting_connect_) {
793 if (!is_blocked_on_write_) {
794 if (!ProcessOutgoingMessages())
795 return false;
796 }
797 }
799 return true;
800 }
802 void Channel::ChannelImpl::GetClientFileDescriptorMapping(int *src_fd,
803 int *dest_fd) const {
804 DCHECK(mode_ == MODE_SERVER);
805 *src_fd = client_pipe_;
806 *dest_fd = kClientChannelFd;
807 }
809 void Channel::ChannelImpl::CloseClientFileDescriptor() {
810 if (client_pipe_ != -1) {
811 Singleton<PipeMap>()->Remove(pipe_name_);
812 HANDLE_EINTR(close(client_pipe_));
813 client_pipe_ = -1;
814 }
815 }
817 // Called by libevent when we can read from th pipe without blocking.
818 void Channel::ChannelImpl::OnFileCanReadWithoutBlocking(int fd) {
819 bool send_server_hello_msg = false;
820 if (waiting_connect_ && mode_ == MODE_SERVER) {
821 // In the case of a socketpair() the server starts listening on its end
822 // of the pipe in Connect().
823 DCHECK(uses_fifo_);
825 if (!ServerAcceptFifoConnection(server_listen_pipe_, &pipe_)) {
826 Close();
827 }
829 // No need to watch the listening socket any longer since only one client
830 // can connect. So unregister with libevent.
831 server_listen_connection_watcher_.StopWatchingFileDescriptor();
833 // Start watching our end of the socket.
834 MessageLoopForIO::current()->WatchFileDescriptor(
835 pipe_,
836 true,
837 MessageLoopForIO::WATCH_READ,
838 &read_watcher_,
839 this);
841 waiting_connect_ = false;
842 send_server_hello_msg = true;
843 }
845 if (!waiting_connect_ && fd == pipe_) {
846 if (!ProcessIncomingMessages()) {
847 Close();
848 listener_->OnChannelError();
849 }
850 }
852 // If we're a server and handshaking, then we want to make sure that we
853 // only send our handshake message after we've processed the client's.
854 // This gives us a chance to kill the client if the incoming handshake
855 // is invalid.
856 if (send_server_hello_msg) {
857 // This should be our first write so there's no chance we can block here...
858 DCHECK(is_blocked_on_write_ == false);
859 ProcessOutgoingMessages();
860 }
861 }
863 #if defined(OS_MACOSX)
864 void Channel::ChannelImpl::CloseDescriptors(uint32_t pending_fd_id)
865 {
866 DCHECK(pending_fd_id != 0);
867 for (std::list<PendingDescriptors>::iterator i = pending_fds_.begin();
868 i != pending_fds_.end();
869 i++) {
870 if ((*i).id == pending_fd_id) {
871 (*i).fds->CommitAll();
872 pending_fds_.erase(i);
873 return;
874 }
875 }
876 DCHECK(false) << "pending_fd_id not in our list!";
877 }
878 #endif
880 void Channel::ChannelImpl::OutputQueuePush(Message* msg)
881 {
882 output_queue_.push(msg);
883 output_queue_length_++;
884 }
886 void Channel::ChannelImpl::OutputQueuePop()
887 {
888 output_queue_.pop();
889 output_queue_length_--;
890 }
892 // Called by libevent when we can write to the pipe without blocking.
893 void Channel::ChannelImpl::OnFileCanWriteWithoutBlocking(int fd) {
894 if (!ProcessOutgoingMessages()) {
895 Close();
896 listener_->OnChannelError();
897 }
898 }
900 void Channel::ChannelImpl::Close() {
901 // Close can be called multiple times, so we need to make sure we're
902 // idempotent.
904 // Unregister libevent for the listening socket and close it.
905 server_listen_connection_watcher_.StopWatchingFileDescriptor();
907 if (server_listen_pipe_ != -1) {
908 HANDLE_EINTR(close(server_listen_pipe_));
909 server_listen_pipe_ = -1;
910 }
912 // Unregister libevent for the FIFO and close it.
913 read_watcher_.StopWatchingFileDescriptor();
914 write_watcher_.StopWatchingFileDescriptor();
915 if (pipe_ != -1) {
916 HANDLE_EINTR(close(pipe_));
917 pipe_ = -1;
918 }
919 if (client_pipe_ != -1) {
920 Singleton<PipeMap>()->Remove(pipe_name_);
921 HANDLE_EINTR(close(client_pipe_));
922 client_pipe_ = -1;
923 }
925 if (uses_fifo_) {
926 // Unlink the FIFO
927 unlink(pipe_name_.c_str());
928 }
930 while (!output_queue_.empty()) {
931 Message* m = output_queue_.front();
932 OutputQueuePop();
933 delete m;
934 }
936 // Close any outstanding, received file descriptors
937 for (std::vector<int>::iterator
938 i = input_overflow_fds_.begin(); i != input_overflow_fds_.end(); ++i) {
939 HANDLE_EINTR(close(*i));
940 }
941 input_overflow_fds_.clear();
943 #if defined(OS_MACOSX)
944 for (std::list<PendingDescriptors>::iterator i = pending_fds_.begin();
945 i != pending_fds_.end();
946 i++) {
947 (*i).fds->CommitAll();
948 }
949 pending_fds_.clear();
950 #endif
952 closed_ = true;
953 }
955 bool Channel::ChannelImpl::Unsound_IsClosed() const
956 {
957 return closed_;
958 }
960 uint32_t Channel::ChannelImpl::Unsound_NumQueuedMessages() const
961 {
962 return output_queue_length_;
963 }
965 //------------------------------------------------------------------------------
966 // Channel's methods simply call through to ChannelImpl.
967 Channel::Channel(const std::wstring& channel_id, Mode mode,
968 Listener* listener)
969 : channel_impl_(new ChannelImpl(channel_id, mode, listener)) {
970 }
972 Channel::Channel(int fd, Mode mode, Listener* listener)
973 : channel_impl_(new ChannelImpl(fd, mode, listener)) {
974 }
976 Channel::~Channel() {
977 delete channel_impl_;
978 }
980 bool Channel::Connect() {
981 return channel_impl_->Connect();
982 }
984 void Channel::Close() {
985 channel_impl_->Close();
986 }
988 Channel::Listener* Channel::set_listener(Listener* listener) {
989 return channel_impl_->set_listener(listener);
990 }
992 bool Channel::Send(Message* message) {
993 return channel_impl_->Send(message);
994 }
996 void Channel::GetClientFileDescriptorMapping(int *src_fd, int *dest_fd) const {
997 return channel_impl_->GetClientFileDescriptorMapping(src_fd, dest_fd);
998 }
1000 void Channel::ResetFileDescriptor(int fd) {
1001 channel_impl_->ResetFileDescriptor(fd);
1002 }
1004 int Channel::GetFileDescriptor() const {
1005 return channel_impl_->GetFileDescriptor();
1006 }
1008 void Channel::CloseClientFileDescriptor() {
1009 channel_impl_->CloseClientFileDescriptor();
1010 }
1012 bool Channel::Unsound_IsClosed() const {
1013 return channel_impl_->Unsound_IsClosed();
1014 }
1016 uint32_t Channel::Unsound_NumQueuedMessages() const {
1017 return channel_impl_->Unsound_NumQueuedMessages();
1018 }
1020 } // namespace IPC