js/src/devtools/jint/v8/crypto.js

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

     1 // Copyright 2008 the V8 project authors. All rights reserved.
     2 // Redistribution and use in source and binary forms, with or without
     3 // modification, are permitted provided that the following conditions are
     4 // met:
     5 //
     6 //     * Redistributions of source code must retain the above copyright
     7 //       notice, this list of conditions and the following disclaimer.
     8 //     * Redistributions in binary form must reproduce the above
     9 //       copyright notice, this list of conditions and the following
    10 //       disclaimer in the documentation and/or other materials provided
    11 //       with the distribution.
    12 //     * Neither the name of Google Inc. nor the names of its
    13 //       contributors may be used to endorse or promote products derived
    14 //       from this software without specific prior written permission.
    15 //
    16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
    17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
    18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
    19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
    20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
    21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
    22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
    26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
    29 // Simple framework for running the benchmark suites and
    30 // computing a score based on the timing measurements.
    33 // A benchmark has a name (string) and a function that will be run to
    34 // do the performance measurement. The optional setup and tearDown
    35 // arguments are functions that will be invoked before and after
    36 // running the benchmark, but the running time of these functions will
    37 // not be accounted for in the benchmark score.
    38 function Benchmark(name, run, setup, tearDown) {
    39   this.name = name;
    40   this.run = run;
    41   this.Setup = setup ? setup : function() { };
    42   this.TearDown = tearDown ? tearDown : function() { };
    43 }
    46 // Benchmark results hold the benchmark and the measured time used to
    47 // run the benchmark. The benchmark score is computed later once a
    48 // full benchmark suite has run to completion.
    49 function BenchmarkResult(benchmark, time) {
    50   this.benchmark = benchmark;
    51   this.time = time;
    52 }
    55 // Automatically convert results to numbers. Used by the geometric
    56 // mean computation.
    57 BenchmarkResult.prototype.valueOf = function() {
    58   return this.time;
    59 }
    62 // Suites of benchmarks consist of a name and the set of benchmarks in
    63 // addition to the reference timing that the final score will be based
    64 // on. This way, all scores are relative to a reference run and higher
    65 // scores implies better performance.
    66 function BenchmarkSuite(name, reference, benchmarks) {
    67   this.name = name;
    68   this.reference = reference;
    69   this.benchmarks = benchmarks;
    70   BenchmarkSuite.suites.push(this);
    71 }
    74 // Keep track of all declared benchmark suites.
    75 BenchmarkSuite.suites = [];
    78 // Scores are not comparable across versions. Bump the version if
    79 // you're making changes that will affect that scores, e.g. if you add
    80 // a new benchmark or change an existing one.
    81 BenchmarkSuite.version = '5';
    84 // To make the benchmark results predictable, we replace Math.random
    85 // with a 100% deterministic alternative.
    86 Math.random = (function() {
    87   var seed = 49734321;
    88   return function() {
    89     // Robert Jenkins' 32 bit integer hash function.
    90     seed = ((seed + 0x7ed55d16) + (seed << 12))  & 0xffffffff;
    91     seed = ((seed ^ 0xc761c23c) ^ (seed >>> 19)) & 0xffffffff;
    92     seed = ((seed + 0x165667b1) + (seed << 5))   & 0xffffffff;
    93     seed = ((seed + 0xd3a2646c) ^ (seed << 9))   & 0xffffffff;
    94     seed = ((seed + 0xfd7046c5) + (seed << 3))   & 0xffffffff;
    95     seed = ((seed ^ 0xb55a4f09) ^ (seed >>> 16)) & 0xffffffff;
    96     return (seed & 0xfffffff) / 0x10000000;
    97   };
    98 })();
   101 // Runs all registered benchmark suites and optionally yields between
   102 // each individual benchmark to avoid running for too long in the
   103 // context of browsers. Once done, the final score is reported to the
   104 // runner.
   105 BenchmarkSuite.RunSuites = function(runner) {
   106   var continuation = null;
   107   var suites = BenchmarkSuite.suites;
   108   var length = suites.length;
   109   BenchmarkSuite.scores = [];
   110   var index = 0;
   111   function RunStep() {
   112     while (continuation || index < length) {
   113       if (continuation) {
   114         continuation = continuation();
   115       } else {
   116         var suite = suites[index++];
   117         if (runner.NotifyStart) runner.NotifyStart(suite.name);
   118         continuation = suite.RunStep(runner);
   119       }
   120       if (continuation && typeof window != 'undefined' && window.setTimeout) {
   121         window.setTimeout(RunStep, 25);
   122         return;
   123       }
   124     }
   125     if (runner.NotifyScore) {
   126       var score = BenchmarkSuite.GeometricMean(BenchmarkSuite.scores);
   127       var formatted = BenchmarkSuite.FormatScore(100 * score);
   128       runner.NotifyScore(formatted);
   129     }
   130   }
   131   RunStep();
   132 }
   135 // Counts the total number of registered benchmarks. Useful for
   136 // showing progress as a percentage.
   137 BenchmarkSuite.CountBenchmarks = function() {
   138   var result = 0;
   139   var suites = BenchmarkSuite.suites;
   140   for (var i = 0; i < suites.length; i++) {
   141     result += suites[i].benchmarks.length;
   142   }
   143   return result;
   144 }
   147 // Computes the geometric mean of a set of numbers.
   148 BenchmarkSuite.GeometricMean = function(numbers) {
   149   var log = 0;
   150   for (var i = 0; i < numbers.length; i++) {
   151     log += Math.log(numbers[i]);
   152   }
   153   return Math.pow(Math.E, log / numbers.length);
   154 }
   157 // Converts a score value to a string with at least three significant
   158 // digits.
   159 BenchmarkSuite.FormatScore = function(value) {
   160   if (value > 100) {
   161     return value.toFixed(0);
   162   } else {
   163     return value.toPrecision(3);
   164   }
   165 }
   167 // Notifies the runner that we're done running a single benchmark in
   168 // the benchmark suite. This can be useful to report progress.
   169 BenchmarkSuite.prototype.NotifyStep = function(result) {
   170   this.results.push(result);
   171   if (this.runner.NotifyStep) this.runner.NotifyStep(result.benchmark.name);
   172 }
   175 // Notifies the runner that we're done with running a suite and that
   176 // we have a result which can be reported to the user if needed.
   177 BenchmarkSuite.prototype.NotifyResult = function() {
   178   var mean = BenchmarkSuite.GeometricMean(this.results);
   179   var score = this.reference / mean;
   180   BenchmarkSuite.scores.push(score);
   181   if (this.runner.NotifyResult) {
   182     var formatted = BenchmarkSuite.FormatScore(100 * score);
   183     this.runner.NotifyResult(this.name, formatted);
   184   }
   185 }
   188 // Notifies the runner that running a benchmark resulted in an error.
   189 BenchmarkSuite.prototype.NotifyError = function(error) {
   190   if (this.runner.NotifyError) {
   191     this.runner.NotifyError(this.name, error);
   192   }
   193   if (this.runner.NotifyStep) {
   194     this.runner.NotifyStep(this.name);
   195   }
   196 }
   199 // Runs a single benchmark for at least a second and computes the
   200 // average time it takes to run a single iteration.
   201 BenchmarkSuite.prototype.RunSingleBenchmark = function(benchmark) {
   202   var elapsed = 0;
   203   var start = new Date();
   204   for (var n = 0; elapsed < 20; n++) {
   205     benchmark.run();
   206     elapsed = new Date() - start;
   207   }
   208   var usec = (elapsed * 1000) / n;
   209   this.NotifyStep(new BenchmarkResult(benchmark, usec));
   210 }
   213 // This function starts running a suite, but stops between each
   214 // individual benchmark in the suite and returns a continuation
   215 // function which can be invoked to run the next benchmark. Once the
   216 // last benchmark has been executed, null is returned.
   217 BenchmarkSuite.prototype.RunStep = function(runner) {
   218   this.results = [];
   219   this.runner = runner;
   220   var length = this.benchmarks.length;
   221   var index = 0;
   222   var suite = this;
   224   // Run the setup, the actual benchmark, and the tear down in three
   225   // separate steps to allow the framework to yield between any of the
   226   // steps.
   228   function RunNextSetup() {
   229     if (index < length) {
   230       try {
   231         suite.benchmarks[index].Setup();
   232       } catch (e) {
   233         suite.NotifyError(e);
   234         return null;
   235       }
   236       return RunNextBenchmark;
   237     }
   238     suite.NotifyResult();
   239     return null;
   240   }
   242   function RunNextBenchmark() {
   243     try {
   244       suite.RunSingleBenchmark(suite.benchmarks[index]);
   245     } catch (e) {
   246       suite.NotifyError(e);
   247       return null;
   248     }
   249     return RunNextTearDown;
   250   }
   252   function RunNextTearDown() {
   253     try {
   254       suite.benchmarks[index++].TearDown();
   255     } catch (e) {
   256       suite.NotifyError(e);
   257       return null;
   258     }
   259     return RunNextSetup;
   260   }
   262   // Start out running the setup.
   263   return RunNextSetup();
   264 }
   266 /*
   267  * Copyright (c) 2003-2005  Tom Wu
   268  * All Rights Reserved.
   269  *
   270  * Permission is hereby granted, free of charge, to any person obtaining
   271  * a copy of this software and associated documentation files (the
   272  * "Software"), to deal in the Software without restriction, including
   273  * without limitation the rights to use, copy, modify, merge, publish,
   274  * distribute, sublicense, and/or sell copies of the Software, and to
   275  * permit persons to whom the Software is furnished to do so, subject to
   276  * the following conditions:
   277  *
   278  * The above copyright notice and this permission notice shall be
   279  * included in all copies or substantial portions of the Software.
   280  *
   281  * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
   282  * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
   283  * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
   284  *
   285  * IN NO EVENT SHALL TOM WU BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
   286  * INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER
   287  * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF
   288  * THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT
   289  * OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
   290  *
   291  * In addition, the following condition applies:
   292  *
   293  * All redistributions must retain an intact copy of this copyright notice
   294  * and disclaimer.
   295  */
   298 // The code has been adapted for use as a benchmark by Google.
   299 var Crypto = new BenchmarkSuite('Crypto', 203037, [
   300   new Benchmark("Encrypt", encrypt),
   301   new Benchmark("Decrypt", decrypt)
   302 ]);
   305 // Basic JavaScript BN library - subset useful for RSA encryption.
   307 // Bits per digit
   308 var dbits;
   309 var BI_DB;
   310 var BI_DM;
   311 var BI_DV;
   313 var BI_FP;
   314 var BI_FV;
   315 var BI_F1;
   316 var BI_F2;
   318 // JavaScript engine analysis
   319 var canary = 0xdeadbeefcafe;
   320 var j_lm = ((canary&0xffffff)==0xefcafe);
   322 // (public) Constructor
   323 function BigInteger(a,b,c) {
   324   this.array = new Array();
   325   if(a != null)
   326     if("number" == typeof a) this.fromNumber(a,b,c);
   327     else if(b == null && "string" != typeof a) this.fromString(a,256);
   328     else this.fromString(a,b);
   329 }
   331 // return new, unset BigInteger
   332 function nbi() { return new BigInteger(null); }
   334 // am: Compute w_j += (x*this_i), propagate carries,
   335 // c is initial carry, returns final carry.
   336 // c < 3*dvalue, x < 2*dvalue, this_i < dvalue
   337 // We need to select the fastest one that works in this environment.
   339 // am1: use a single mult and divide to get the high bits,
   340 // max digit bits should be 26 because
   341 // max internal value = 2*dvalue^2-2*dvalue (< 2^53)
   342 function am1(i,x,w,j,c,n) {
   343   var this_array = this.array;
   344   var w_array    = w.array;
   345   /* BEGIN LOOP */
   346   while(--n >= 0) {
   347     var v = x*this_array[i++]+w_array[j]+c;
   348     c = Math.floor(v/0x4000000);
   349     w_array[j++] = v&0x3ffffff;
   350   }
   351   /* END LOOP */
   352   return c;
   353 }
   355 // am2 avoids a big mult-and-extract completely.
   356 // Max digit bits should be <= 30 because we do bitwise ops
   357 // on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)
   358 function am2(i,x,w,j,c,n) {
   359   var this_array = this.array;
   360   var w_array    = w.array;
   361   var xl = x&0x7fff, xh = x>>15;
   362   /* BEGIN LOOP */
   363   while(--n >= 0) {
   364     var l = this_array[i]&0x7fff;
   365     var h = this_array[i++]>>15;
   366     var m = xh*l+h*xl;
   367     l = xl*l+((m&0x7fff)<<15)+w_array[j]+(c&0x3fffffff);
   368     c = (l>>>30)+(m>>>15)+xh*h+(c>>>30);
   369     w_array[j++] = l&0x3fffffff;
   370   }
   371   /* END LOOP */
   372   return c;
   373 }
   375 // Alternately, set max digit bits to 28 since some
   376 // browsers slow down when dealing with 32-bit numbers.
   377 function am3(i,x,w,j,c,n) {
   378   var this_array = this.array;
   379   var w_array    = w.array;
   381   var xl = x&0x3fff, xh = x>>14;
   382   /* BEGIN LOOP */
   383   while(--n >= 0) {
   384     var l = this_array[i]&0x3fff;
   385     var h = this_array[i++]>>14;
   386     var m = xh*l+h*xl;
   387     l = xl*l+((m&0x3fff)<<14)+w_array[j]+c;
   388     c = (l>>28)+(m>>14)+xh*h;
   389     w_array[j++] = l&0xfffffff;
   390   }
   391   /* END LOOP */
   392   return c;
   393 }
   395 // This is tailored to VMs with 2-bit tagging. It makes sure
   396 // that all the computations stay within the 29 bits available.
   397 function am4(i,x,w,j,c,n) {
   398   var this_array = this.array;
   399   var w_array    = w.array;
   401   var xl = x&0x1fff, xh = x>>13;
   402   /* BEGIN LOOP */
   403   while(--n >= 0) {
   404     var l = this_array[i]&0x1fff;
   405     var h = this_array[i++]>>13;
   406     var m = xh*l+h*xl;
   407     l = xl*l+((m&0x1fff)<<13)+w_array[j]+c;
   408     c = (l>>26)+(m>>13)+xh*h;
   409     w_array[j++] = l&0x3ffffff;
   410   }
   411   /* END LOOP */
   412   return c;
   413 }
   415 // am3/28 is best for SM, Rhino, but am4/26 is best for v8.
   416 // Kestrel (Opera 9.5) gets its best result with am4/26.
   417 // IE7 does 9% better with am3/28 than with am4/26.
   418 // Firefox (SM) gets 10% faster with am3/28 than with am4/26.
   420 setupEngine = function(fn, bits) {
   421   BigInteger.prototype.am = fn;
   422   dbits = bits;
   424   BI_DB = dbits;
   425   BI_DM = ((1<<dbits)-1);
   426   BI_DV = (1<<dbits);
   428   BI_FP = 52;
   429   BI_FV = Math.pow(2,BI_FP);
   430   BI_F1 = BI_FP-dbits;
   431   BI_F2 = 2*dbits-BI_FP;
   432 }
   435 // Digit conversions
   436 var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz";
   437 var BI_RC = new Array();
   438 var rr,vv;
   439 rr = "0".charCodeAt(0);
   440   /* BEGIN LOOP */
   441 for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv;
   442   /* END LOOP */
   443 rr = "a".charCodeAt(0);
   444   /* BEGIN LOOP */
   445 for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
   446   /* END LOOP */
   447 rr = "A".charCodeAt(0);
   448   /* BEGIN LOOP */
   449 for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
   450   /* END LOOP */
   452 function int2char(n) { return BI_RM.charAt(n); }
   453 function intAt(s,i) {
   454   var c = BI_RC[s.charCodeAt(i)];
   455   return (c==null)?-1:c;
   456 }
   458 // (protected) copy this to r
   459 function bnpCopyTo(r) {
   460   var this_array = this.array;
   461   var r_array    = r.array;
   463   /* BEGIN LOOP */
   464   for(var i = this.t-1; i >= 0; --i) r_array[i] = this_array[i];
   465   /* END LOOP */
   466   r.t = this.t;
   467   r.s = this.s;
   468 }
   470 // (protected) set from integer value x, -DV <= x < DV
   471 function bnpFromInt(x) {
   472   var this_array = this.array;
   473   this.t = 1;
   474   this.s = (x<0)?-1:0;
   475   if(x > 0) this_array[0] = x;
   476   else if(x < -1) this_array[0] = x+DV;
   477   else this.t = 0;
   478 }
   480 // return bigint initialized to value
   481 function nbv(i) { var r = nbi(); r.fromInt(i); return r; }
   483 // (protected) set from string and radix
   484 function bnpFromString(s,b) {
   485   var this_array = this.array;
   486   var k;
   487   if(b == 16) k = 4;
   488   else if(b == 8) k = 3;
   489   else if(b == 256) k = 8; // byte array
   490   else if(b == 2) k = 1;
   491   else if(b == 32) k = 5;
   492   else if(b == 4) k = 2;
   493   else { this.fromRadix(s,b); return; }
   494   this.t = 0;
   495   this.s = 0;
   496   var i = s.length, mi = false, sh = 0;
   497   /* BEGIN LOOP */
   498   while(--i >= 0) {
   499     var x = (k==8)?s[i]&0xff:intAt(s,i);
   500     if(x < 0) {
   501       if(s.charAt(i) == "-") mi = true;
   502       continue;
   503     }
   504     mi = false;
   505     if(sh == 0)
   506       this_array[this.t++] = x;
   507     else if(sh+k > BI_DB) {
   508       this_array[this.t-1] |= (x&((1<<(BI_DB-sh))-1))<<sh;
   509       this_array[this.t++] = (x>>(BI_DB-sh));
   510     }
   511     else
   512       this_array[this.t-1] |= x<<sh;
   513     sh += k;
   514     if(sh >= BI_DB) sh -= BI_DB;
   515   }
   516   /* END LOOP */
   517   if(k == 8 && (s[0]&0x80) != 0) {
   518     this.s = -1;
   519     if(sh > 0) this_array[this.t-1] |= ((1<<(BI_DB-sh))-1)<<sh;
   520   }
   521   this.clamp();
   522   if(mi) BigInteger.ZERO.subTo(this,this);
   523 }
   525 // (protected) clamp off excess high words
   526 function bnpClamp() {
   527   var this_array = this.array;
   528   var c = this.s&BI_DM;
   529   /* BEGIN LOOP */
   530   while(this.t > 0 && this_array[this.t-1] == c) --this.t;
   531   /* END LOOP */
   532 }
   534 // (public) return string representation in given radix
   535 function bnToString(b) {
   536   var this_array = this.array;
   537   if(this.s < 0) return "-"+this.negate().toString(b);
   538   var k;
   539   if(b == 16) k = 4;
   540   else if(b == 8) k = 3;
   541   else if(b == 2) k = 1;
   542   else if(b == 32) k = 5;
   543   else if(b == 4) k = 2;
   544   else return this.toRadix(b);
   545   var km = (1<<k)-1, d, m = false, r = "", i = this.t;
   546   var p = BI_DB-(i*BI_DB)%k;
   547   if(i-- > 0) {
   548     if(p < BI_DB && (d = this_array[i]>>p) > 0) { m = true; r = int2char(d); }
   549   /* BEGIN LOOP */
   550     while(i >= 0) {
   551       if(p < k) {
   552         d = (this_array[i]&((1<<p)-1))<<(k-p);
   553         d |= this_array[--i]>>(p+=BI_DB-k);
   554       }
   555       else {
   556         d = (this_array[i]>>(p-=k))&km;
   557         if(p <= 0) { p += BI_DB; --i; }
   558       }
   559       if(d > 0) m = true;
   560       if(m) r += int2char(d);
   561     }
   562   /* END LOOP */
   563   }
   564   return m?r:"0";
   565 }
   567 // (public) -this
   568 function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; }
   570 // (public) |this|
   571 function bnAbs() { return (this.s<0)?this.negate():this; }
   573 // (public) return + if this > a, - if this < a, 0 if equal
   574 function bnCompareTo(a) {
   575   var this_array = this.array;
   576   var a_array = a.array;
   578   var r = this.s-a.s;
   579   if(r != 0) return r;
   580   var i = this.t;
   581   r = i-a.t;
   582   if(r != 0) return r;
   583   /* BEGIN LOOP */
   584   while(--i >= 0) if((r=this_array[i]-a_array[i]) != 0) return r;
   585   /* END LOOP */
   586   return 0;
   587 }
   589 // returns bit length of the integer x
   590 function nbits(x) {
   591   var r = 1, t;
   592   if((t=x>>>16) != 0) { x = t; r += 16; }
   593   if((t=x>>8) != 0) { x = t; r += 8; }
   594   if((t=x>>4) != 0) { x = t; r += 4; }
   595   if((t=x>>2) != 0) { x = t; r += 2; }
   596   if((t=x>>1) != 0) { x = t; r += 1; }
   597   return r;
   598 }
   600 // (public) return the number of bits in "this"
   601 function bnBitLength() {
   602   var this_array = this.array;
   603   if(this.t <= 0) return 0;
   604   return BI_DB*(this.t-1)+nbits(this_array[this.t-1]^(this.s&BI_DM));
   605 }
   607 // (protected) r = this << n*DB
   608 function bnpDLShiftTo(n,r) {
   609   var this_array = this.array;
   610   var r_array = r.array;
   611   var i;
   612   /* BEGIN LOOP */
   613   for(i = this.t-1; i >= 0; --i) r_array[i+n] = this_array[i];
   614   /* END LOOP */
   615   /* BEGIN LOOP */
   616   for(i = n-1; i >= 0; --i) r_array[i] = 0;
   617   /* END LOOP */
   618   r.t = this.t+n;
   619   r.s = this.s;
   620 }
   622 // (protected) r = this >> n*DB
   623 function bnpDRShiftTo(n,r) {
   624   var this_array = this.array;
   625   var r_array = r.array;
   626   /* BEGIN LOOP */
   627   for(var i = n; i < this.t; ++i) r_array[i-n] = this_array[i];
   628   /* END LOOP */
   629   r.t = Math.max(this.t-n,0);
   630   r.s = this.s;
   631 }
   633 // (protected) r = this << n
   634 function bnpLShiftTo(n,r) {
   635   var this_array = this.array;
   636   var r_array = r.array;
   637   var bs = n%BI_DB;
   638   var cbs = BI_DB-bs;
   639   var bm = (1<<cbs)-1;
   640   var ds = Math.floor(n/BI_DB), c = (this.s<<bs)&BI_DM, i;
   641   /* BEGIN LOOP */
   642   for(i = this.t-1; i >= 0; --i) {
   643     r_array[i+ds+1] = (this_array[i]>>cbs)|c;
   644     c = (this_array[i]&bm)<<bs;
   645   }
   646   /* END LOOP */
   647   /* BEGIN LOOP */
   648   for(i = ds-1; i >= 0; --i) r_array[i] = 0;
   649   /* END LOOP */
   650   r_array[ds] = c;
   651   r.t = this.t+ds+1;
   652   r.s = this.s;
   653   r.clamp();
   654 }
   656 // (protected) r = this >> n
   657 function bnpRShiftTo(n,r) {
   658   var this_array = this.array;
   659   var r_array = r.array;
   660   r.s = this.s;
   661   var ds = Math.floor(n/BI_DB);
   662   if(ds >= this.t) { r.t = 0; return; }
   663   var bs = n%BI_DB;
   664   var cbs = BI_DB-bs;
   665   var bm = (1<<bs)-1;
   666   r_array[0] = this_array[ds]>>bs;
   667   /* BEGIN LOOP */
   668   for(var i = ds+1; i < this.t; ++i) {
   669     r_array[i-ds-1] |= (this_array[i]&bm)<<cbs;
   670     r_array[i-ds] = this_array[i]>>bs;
   671   }
   672   /* END LOOP */
   673   if(bs > 0) r_array[this.t-ds-1] |= (this.s&bm)<<cbs;
   674   r.t = this.t-ds;
   675   r.clamp();
   676 }
   678 // (protected) r = this - a
   679 function bnpSubTo(a,r) {
   680   var this_array = this.array;
   681   var r_array = r.array;
   682   var a_array = a.array;
   683   var i = 0, c = 0, m = Math.min(a.t,this.t);
   684   /* BEGIN LOOP */
   685   while(i < m) {
   686     c += this_array[i]-a_array[i];
   687     r_array[i++] = c&BI_DM;
   688     c >>= BI_DB;
   689   }
   690   /* END LOOP */
   691   if(a.t < this.t) {
   692     c -= a.s;
   693   /* BEGIN LOOP */
   694     while(i < this.t) {
   695       c += this_array[i];
   696       r_array[i++] = c&BI_DM;
   697       c >>= BI_DB;
   698     }
   699   /* END LOOP */
   700     c += this.s;
   701   }
   702   else {
   703     c += this.s;
   704   /* BEGIN LOOP */
   705     while(i < a.t) {
   706       c -= a_array[i];
   707       r_array[i++] = c&BI_DM;
   708       c >>= BI_DB;
   709     }
   710   /* END LOOP */
   711     c -= a.s;
   712   }
   713   r.s = (c<0)?-1:0;
   714   if(c < -1) r_array[i++] = BI_DV+c;
   715   else if(c > 0) r_array[i++] = c;
   716   r.t = i;
   717   r.clamp();
   718 }
   720 // (protected) r = this * a, r != this,a (HAC 14.12)
   721 // "this" should be the larger one if appropriate.
   722 function bnpMultiplyTo(a,r) {
   723   var this_array = this.array;
   724   var r_array = r.array;
   725   var x = this.abs(), y = a.abs();
   726   var y_array = y.array;
   728   var i = x.t;
   729   r.t = i+y.t;
   730   /* BEGIN LOOP */
   731   while(--i >= 0) r_array[i] = 0;
   732   /* END LOOP */
   733   /* BEGIN LOOP */
   734   for(i = 0; i < y.t; ++i) r_array[i+x.t] = x.am(0,y_array[i],r,i,0,x.t);
   735   r.s = 0;
   736   r.clamp();
   737   if(this.s != a.s) BigInteger.ZERO.subTo(r,r);
   738 }
   740 // (protected) r = this^2, r != this (HAC 14.16)
   741 function bnpSquareTo(r) {
   742   var x = this.abs();
   743   var x_array = x.array;
   744   var r_array = r.array;
   746   var i = r.t = 2*x.t;
   747   /* BEGIN LOOP */
   748   while(--i >= 0) r_array[i] = 0;
   749   /* END LOOP */
   750   /* BEGIN LOOP */
   751   for(i = 0; i < x.t-1; ++i) {
   752     var c = x.am(i,x_array[i],r,2*i,0,1);
   753     if((r_array[i+x.t]+=x.am(i+1,2*x_array[i],r,2*i+1,c,x.t-i-1)) >= BI_DV) {
   754       r_array[i+x.t] -= BI_DV;
   755       r_array[i+x.t+1] = 1;
   756     }
   757   }
   758   /* END LOOP */
   759   if(r.t > 0) r_array[r.t-1] += x.am(i,x_array[i],r,2*i,0,1);
   760   r.s = 0;
   761   r.clamp();
   762 }
   764 // (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)
   765 // r != q, this != m.  q or r may be null.
   766 function bnpDivRemTo(m,q,r) {
   767   var pm = m.abs();
   768   if(pm.t <= 0) return;
   769   var pt = this.abs();
   770   if(pt.t < pm.t) {
   771     if(q != null) q.fromInt(0);
   772     if(r != null) this.copyTo(r);
   773     return;
   774   }
   775   if(r == null) r = nbi();
   776   var y = nbi(), ts = this.s, ms = m.s;
   777   var pm_array = pm.array;
   778   var nsh = BI_DB-nbits(pm_array[pm.t-1]);	// normalize modulus
   779   if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); }
   780   else { pm.copyTo(y); pt.copyTo(r); }
   781   var ys = y.t;
   783   var y_array = y.array;
   784   var y0 = y_array[ys-1];
   785   if(y0 == 0) return;
   786   var yt = y0*(1<<BI_F1)+((ys>1)?y_array[ys-2]>>BI_F2:0);
   787   var d1 = BI_FV/yt, d2 = (1<<BI_F1)/yt, e = 1<<BI_F2;
   788   var i = r.t, j = i-ys, t = (q==null)?nbi():q;
   789   y.dlShiftTo(j,t);
   791   var r_array = r.array;
   792   if(r.compareTo(t) >= 0) {
   793     r_array[r.t++] = 1;
   794     r.subTo(t,r);
   795   }
   796   BigInteger.ONE.dlShiftTo(ys,t);
   797   t.subTo(y,y);	// "negative" y so we can replace sub with am later
   798   /* BEGIN LOOP */
   799   while(y.t < ys) y_array[y.t++] = 0;
   800   /* END LOOP */
   801   /* BEGIN LOOP */
   802   while(--j >= 0) {
   803     // Estimate quotient digit
   804     var qd = (r_array[--i]==y0)?BI_DM:Math.floor(r_array[i]*d1+(r_array[i-1]+e)*d2);
   805     if((r_array[i]+=y.am(0,qd,r,j,0,ys)) < qd) {	// Try it out
   806       y.dlShiftTo(j,t);
   807       r.subTo(t,r);
   808   /* BEGIN LOOP */
   809       while(r_array[i] < --qd) r.subTo(t,r);
   810   /* END LOOP */
   811     }
   812   }
   813   /* END LOOP */
   814   if(q != null) {
   815     r.drShiftTo(ys,q);
   816     if(ts != ms) BigInteger.ZERO.subTo(q,q);
   817   }
   818   r.t = ys;
   819   r.clamp();
   820   if(nsh > 0) r.rShiftTo(nsh,r);	// Denormalize remainder
   821   if(ts < 0) BigInteger.ZERO.subTo(r,r);
   822 }
   824 // (public) this mod a
   825 function bnMod(a) {
   826   var r = nbi();
   827   this.abs().divRemTo(a,null,r);
   828   if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r);
   829   return r;
   830 }
   832 // Modular reduction using "classic" algorithm
   833 function Classic(m) { this.m = m; }
   834 function cConvert(x) {
   835   if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m);
   836   else return x;
   837 }
   838 function cRevert(x) { return x; }
   839 function cReduce(x) { x.divRemTo(this.m,null,x); }
   840 function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
   841 function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
   843 Classic.prototype.convert = cConvert;
   844 Classic.prototype.revert = cRevert;
   845 Classic.prototype.reduce = cReduce;
   846 Classic.prototype.mulTo = cMulTo;
   847 Classic.prototype.sqrTo = cSqrTo;
   849 // (protected) return "-1/this % 2^DB"; useful for Mont. reduction
   850 // justification:
   851 //         xy == 1 (mod m)
   852 //         xy =  1+km
   853 //   xy(2-xy) = (1+km)(1-km)
   854 // x[y(2-xy)] = 1-k^2m^2
   855 // x[y(2-xy)] == 1 (mod m^2)
   856 // if y is 1/x mod m, then y(2-xy) is 1/x mod m^2
   857 // should reduce x and y(2-xy) by m^2 at each step to keep size bounded.
   858 // JS multiply "overflows" differently from C/C++, so care is needed here.
   859 function bnpInvDigit() {
   860   var this_array = this.array;
   861   if(this.t < 1) return 0;
   862   var x = this_array[0];
   863   if((x&1) == 0) return 0;
   864   var y = x&3;		// y == 1/x mod 2^2
   865   y = (y*(2-(x&0xf)*y))&0xf;	// y == 1/x mod 2^4
   866   y = (y*(2-(x&0xff)*y))&0xff;	// y == 1/x mod 2^8
   867   y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff;	// y == 1/x mod 2^16
   868   // last step - calculate inverse mod DV directly;
   869   // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints
   870   y = (y*(2-x*y%BI_DV))%BI_DV;		// y == 1/x mod 2^dbits
   871   // we really want the negative inverse, and -DV < y < DV
   872   return (y>0)?BI_DV-y:-y;
   873 }
   875 // Montgomery reduction
   876 function Montgomery(m) {
   877   this.m = m;
   878   this.mp = m.invDigit();
   879   this.mpl = this.mp&0x7fff;
   880   this.mph = this.mp>>15;
   881   this.um = (1<<(BI_DB-15))-1;
   882   this.mt2 = 2*m.t;
   883 }
   885 // xR mod m
   886 function montConvert(x) {
   887   var r = nbi();
   888   x.abs().dlShiftTo(this.m.t,r);
   889   r.divRemTo(this.m,null,r);
   890   if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r);
   891   return r;
   892 }
   894 // x/R mod m
   895 function montRevert(x) {
   896   var r = nbi();
   897   x.copyTo(r);
   898   this.reduce(r);
   899   return r;
   900 }
   902 // x = x/R mod m (HAC 14.32)
   903 function montReduce(x) {
   904   var x_array = x.array;
   905   /* BEGIN LOOP */
   906   while(x.t <= this.mt2)	// pad x so am has enough room later
   907     x_array[x.t++] = 0;
   908   /* END LOOP */
   909   /* BEGIN LOOP */
   910   for(var i = 0; i < this.m.t; ++i) {
   911     // faster way of calculating u0 = x[i]*mp mod DV
   912     var j = x_array[i]&0x7fff;
   913     var u0 = (j*this.mpl+(((j*this.mph+(x_array[i]>>15)*this.mpl)&this.um)<<15))&BI_DM;
   914     // use am to combine the multiply-shift-add into one call
   915     j = i+this.m.t;
   916     x_array[j] += this.m.am(0,u0,x,i,0,this.m.t);
   917     // propagate carry
   918   /* BEGIN LOOP */
   919     while(x_array[j] >= BI_DV) { x_array[j] -= BI_DV; x_array[++j]++; }
   920   /* BEGIN LOOP */
   921   }
   922   /* END LOOP */
   923   x.clamp();
   924   x.drShiftTo(this.m.t,x);
   925   if(x.compareTo(this.m) >= 0) x.subTo(this.m,x);
   926 }
   928 // r = "x^2/R mod m"; x != r
   929 function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
   931 // r = "xy/R mod m"; x,y != r
   932 function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
   934 Montgomery.prototype.convert = montConvert;
   935 Montgomery.prototype.revert = montRevert;
   936 Montgomery.prototype.reduce = montReduce;
   937 Montgomery.prototype.mulTo = montMulTo;
   938 Montgomery.prototype.sqrTo = montSqrTo;
   940 // (protected) true iff this is even
   941 function bnpIsEven() {
   942   var this_array = this.array;
   943   return ((this.t>0)?(this_array[0]&1):this.s) == 0;
   944 }
   946 // (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)
   947 function bnpExp(e,z) {
   948   if(e > 0xffffffff || e < 1) return BigInteger.ONE;
   949   var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1;
   950   g.copyTo(r);
   951   /* BEGIN LOOP */
   952   while(--i >= 0) {
   953     z.sqrTo(r,r2);
   954     if((e&(1<<i)) > 0) z.mulTo(r2,g,r);
   955     else { var t = r; r = r2; r2 = t; }
   956   }
   957   /* END LOOP */
   958   return z.revert(r);
   959 }
   961 // (public) this^e % m, 0 <= e < 2^32
   962 function bnModPowInt(e,m) {
   963   var z;
   964   if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m);
   965   return this.exp(e,z);
   966 }
   968 // protected
   969 BigInteger.prototype.copyTo = bnpCopyTo;
   970 BigInteger.prototype.fromInt = bnpFromInt;
   971 BigInteger.prototype.fromString = bnpFromString;
   972 BigInteger.prototype.clamp = bnpClamp;
   973 BigInteger.prototype.dlShiftTo = bnpDLShiftTo;
   974 BigInteger.prototype.drShiftTo = bnpDRShiftTo;
   975 BigInteger.prototype.lShiftTo = bnpLShiftTo;
   976 BigInteger.prototype.rShiftTo = bnpRShiftTo;
   977 BigInteger.prototype.subTo = bnpSubTo;
   978 BigInteger.prototype.multiplyTo = bnpMultiplyTo;
   979 BigInteger.prototype.squareTo = bnpSquareTo;
   980 BigInteger.prototype.divRemTo = bnpDivRemTo;
   981 BigInteger.prototype.invDigit = bnpInvDigit;
   982 BigInteger.prototype.isEven = bnpIsEven;
   983 BigInteger.prototype.exp = bnpExp;
   985 // public
   986 BigInteger.prototype.toString = bnToString;
   987 BigInteger.prototype.negate = bnNegate;
   988 BigInteger.prototype.abs = bnAbs;
   989 BigInteger.prototype.compareTo = bnCompareTo;
   990 BigInteger.prototype.bitLength = bnBitLength;
   991 BigInteger.prototype.mod = bnMod;
   992 BigInteger.prototype.modPowInt = bnModPowInt;
   994 // "constants"
   995 BigInteger.ZERO = nbv(0);
   996 BigInteger.ONE = nbv(1);
   997 // Copyright (c) 2005  Tom Wu
   998 // All Rights Reserved.
   999 // See "LICENSE" for details.
  1001 // Extended JavaScript BN functions, required for RSA private ops.
  1003 // (public)
  1004 function bnClone() { var r = nbi(); this.copyTo(r); return r; }
  1006 // (public) return value as integer
  1007 function bnIntValue() {
  1008   var this_array = this.array;
  1009   if(this.s < 0) {
  1010     if(this.t == 1) return this_array[0]-BI_DV;
  1011     else if(this.t == 0) return -1;
  1013   else if(this.t == 1) return this_array[0];
  1014   else if(this.t == 0) return 0;
  1015   // assumes 16 < DB < 32
  1016   return ((this_array[1]&((1<<(32-BI_DB))-1))<<BI_DB)|this_array[0];
  1019 // (public) return value as byte
  1020 function bnByteValue() {
  1021   var this_array = this.array;
  1022   return (this.t==0)?this.s:(this_array[0]<<24)>>24;
  1025 // (public) return value as short (assumes DB>=16)
  1026 function bnShortValue() {
  1027   var this_array = this.array;
  1028   return (this.t==0)?this.s:(this_array[0]<<16)>>16;
  1031 // (protected) return x s.t. r^x < DV
  1032 function bnpChunkSize(r) { return Math.floor(Math.LN2*BI_DB/Math.log(r)); }
  1034 // (public) 0 if this == 0, 1 if this > 0
  1035 function bnSigNum() {
  1036   var this_array = this.array;
  1037   if(this.s < 0) return -1;
  1038   else if(this.t <= 0 || (this.t == 1 && this_array[0] <= 0)) return 0;
  1039   else return 1;
  1042 // (protected) convert to radix string
  1043 function bnpToRadix(b) {
  1044   if(b == null) b = 10;
  1045   if(this.signum() == 0 || b < 2 || b > 36) return "0";
  1046   var cs = this.chunkSize(b);
  1047   var a = Math.pow(b,cs);
  1048   var d = nbv(a), y = nbi(), z = nbi(), r = "";
  1049   this.divRemTo(d,y,z);
  1050   /* BEGIN LOOP */
  1051   while(y.signum() > 0) {
  1052     r = (a+z.intValue()).toString(b).substr(1) + r;
  1053     y.divRemTo(d,y,z);
  1055   /* END LOOP */
  1056   return z.intValue().toString(b) + r;
  1059 // (protected) convert from radix string
  1060 function bnpFromRadix(s,b) {
  1061   this.fromInt(0);
  1062   if(b == null) b = 10;
  1063   var cs = this.chunkSize(b);
  1064   var d = Math.pow(b,cs), mi = false, j = 0, w = 0;
  1065   /* BEGIN LOOP */
  1066   for(var i = 0; i < s.length; ++i) {
  1067     var x = intAt(s,i);
  1068     if(x < 0) {
  1069       if(s.charAt(i) == "-" && this.signum() == 0) mi = true;
  1070       continue;
  1072     w = b*w+x;
  1073     if(++j >= cs) {
  1074       this.dMultiply(d);
  1075       this.dAddOffset(w,0);
  1076       j = 0;
  1077       w = 0;
  1080   /* END LOOP */
  1081   if(j > 0) {
  1082     this.dMultiply(Math.pow(b,j));
  1083     this.dAddOffset(w,0);
  1085   if(mi) BigInteger.ZERO.subTo(this,this);
  1088 // (protected) alternate constructor
  1089 function bnpFromNumber(a,b,c) {
  1090   if("number" == typeof b) {
  1091     // new BigInteger(int,int,RNG)
  1092     if(a < 2) this.fromInt(1);
  1093     else {
  1094       this.fromNumber(a,c);
  1095       if(!this.testBit(a-1))	// force MSB set
  1096         this.bitwiseTo(BigInteger.ONE.shiftLeft(a-1),op_or,this);
  1097       if(this.isEven()) this.dAddOffset(1,0); // force odd
  1098   /* BEGIN LOOP */
  1099       while(!this.isProbablePrime(b)) {
  1100         this.dAddOffset(2,0);
  1101         if(this.bitLength() > a) this.subTo(BigInteger.ONE.shiftLeft(a-1),this);
  1103   /* END LOOP */
  1106   else {
  1107     // new BigInteger(int,RNG)
  1108     var x = new Array(), t = a&7;
  1109     x.length = (a>>3)+1;
  1110     b.nextBytes(x);
  1111     if(t > 0) x[0] &= ((1<<t)-1); else x[0] = 0;
  1112     this.fromString(x,256);
  1116 // (public) convert to bigendian byte array
  1117 function bnToByteArray() {
  1118   var this_array = this.array;
  1119   var i = this.t, r = new Array();
  1120   r[0] = this.s;
  1121   var p = BI_DB-(i*BI_DB)%8, d, k = 0;
  1122   if(i-- > 0) {
  1123     if(p < BI_DB && (d = this_array[i]>>p) != (this.s&BI_DM)>>p)
  1124       r[k++] = d|(this.s<<(BI_DB-p));
  1125   /* BEGIN LOOP */
  1126     while(i >= 0) {
  1127       if(p < 8) {
  1128         d = (this_array[i]&((1<<p)-1))<<(8-p);
  1129         d |= this_array[--i]>>(p+=BI_DB-8);
  1131       else {
  1132         d = (this_array[i]>>(p-=8))&0xff;
  1133         if(p <= 0) { p += BI_DB; --i; }
  1135       if((d&0x80) != 0) d |= -256;
  1136       if(k == 0 && (this.s&0x80) != (d&0x80)) ++k;
  1137       if(k > 0 || d != this.s) r[k++] = d;
  1139   /* END LOOP */
  1141   return r;
  1144 function bnEquals(a) { return(this.compareTo(a)==0); }
  1145 function bnMin(a) { return(this.compareTo(a)<0)?this:a; }
  1146 function bnMax(a) { return(this.compareTo(a)>0)?this:a; }
  1148 // (protected) r = this op a (bitwise)
  1149 function bnpBitwiseTo(a,op,r) {
  1150   var this_array = this.array;
  1151   var a_array    = a.array;
  1152   var r_array    = r.array;
  1153   var i, f, m = Math.min(a.t,this.t);
  1154   /* BEGIN LOOP */
  1155   for(i = 0; i < m; ++i) r_array[i] = op(this_array[i],a_array[i]);
  1156   /* END LOOP */
  1157   if(a.t < this.t) {
  1158     f = a.s&BI_DM;
  1159   /* BEGIN LOOP */
  1160     for(i = m; i < this.t; ++i) r_array[i] = op(this_array[i],f);
  1161   /* END LOOP */
  1162     r.t = this.t;
  1164   else {
  1165     f = this.s&BI_DM;
  1166   /* BEGIN LOOP */
  1167     for(i = m; i < a.t; ++i) r_array[i] = op(f,a_array[i]);
  1168   /* END LOOP */
  1169     r.t = a.t;
  1171   r.s = op(this.s,a.s);
  1172   r.clamp();
  1175 // (public) this & a
  1176 function op_and(x,y) { return x&y; }
  1177 function bnAnd(a) { var r = nbi(); this.bitwiseTo(a,op_and,r); return r; }
  1179 // (public) this | a
  1180 function op_or(x,y) { return x|y; }
  1181 function bnOr(a) { var r = nbi(); this.bitwiseTo(a,op_or,r); return r; }
  1183 // (public) this ^ a
  1184 function op_xor(x,y) { return x^y; }
  1185 function bnXor(a) { var r = nbi(); this.bitwiseTo(a,op_xor,r); return r; }
  1187 // (public) this & ~a
  1188 function op_andnot(x,y) { return x&~y; }
  1189 function bnAndNot(a) { var r = nbi(); this.bitwiseTo(a,op_andnot,r); return r; }
  1191 // (public) ~this
  1192 function bnNot() {
  1193   var this_array = this.array;
  1194   var r = nbi();
  1195   var r_array = r.array;
  1197   /* BEGIN LOOP */
  1198   for(var i = 0; i < this.t; ++i) r_array[i] = BI_DM&~this_array[i];
  1199   /* END LOOP */
  1200   r.t = this.t;
  1201   r.s = ~this.s;
  1202   return r;
  1205 // (public) this << n
  1206 function bnShiftLeft(n) {
  1207   var r = nbi();
  1208   if(n < 0) this.rShiftTo(-n,r); else this.lShiftTo(n,r);
  1209   return r;
  1212 // (public) this >> n
  1213 function bnShiftRight(n) {
  1214   var r = nbi();
  1215   if(n < 0) this.lShiftTo(-n,r); else this.rShiftTo(n,r);
  1216   return r;
  1219 // return index of lowest 1-bit in x, x < 2^31
  1220 function lbit(x) {
  1221   if(x == 0) return -1;
  1222   var r = 0;
  1223   if((x&0xffff) == 0) { x >>= 16; r += 16; }
  1224   if((x&0xff) == 0) { x >>= 8; r += 8; }
  1225   if((x&0xf) == 0) { x >>= 4; r += 4; }
  1226   if((x&3) == 0) { x >>= 2; r += 2; }
  1227   if((x&1) == 0) ++r;
  1228   return r;
  1231 // (public) returns index of lowest 1-bit (or -1 if none)
  1232 function bnGetLowestSetBit() {
  1233   var this_array = this.array;
  1234   /* BEGIN LOOP */
  1235   for(var i = 0; i < this.t; ++i)
  1236     if(this_array[i] != 0) return i*BI_DB+lbit(this_array[i]);
  1237   /* END LOOP */
  1238   if(this.s < 0) return this.t*BI_DB;
  1239   return -1;
  1242 // return number of 1 bits in x
  1243 function cbit(x) {
  1244   var r = 0;
  1245   /* BEGIN LOOP */
  1246   while(x != 0) { x &= x-1; ++r; }
  1247   /* END LOOP */
  1248   return r;
  1251 // (public) return number of set bits
  1252 function bnBitCount() {
  1253   var r = 0, x = this.s&BI_DM;
  1254   /* BEGIN LOOP */
  1255   for(var i = 0; i < this.t; ++i) r += cbit(this_array[i]^x);
  1256   /* END LOOP */
  1257   return r;
  1260 // (public) true iff nth bit is set
  1261 function bnTestBit(n) {
  1262   var this_array = this.array;
  1263   var j = Math.floor(n/BI_DB);
  1264   if(j >= this.t) return(this.s!=0);
  1265   return((this_array[j]&(1<<(n%BI_DB)))!=0);
  1268 // (protected) this op (1<<n)
  1269 function bnpChangeBit(n,op) {
  1270   var r = BigInteger.ONE.shiftLeft(n);
  1271   this.bitwiseTo(r,op,r);
  1272   return r;
  1275 // (public) this | (1<<n)
  1276 function bnSetBit(n) { return this.changeBit(n,op_or); }
  1278 // (public) this & ~(1<<n)
  1279 function bnClearBit(n) { return this.changeBit(n,op_andnot); }
  1281 // (public) this ^ (1<<n)
  1282 function bnFlipBit(n) { return this.changeBit(n,op_xor); }
  1284 // (protected) r = this + a
  1285 function bnpAddTo(a,r) {
  1286   var this_array = this.array;
  1287   var a_array = a.array;
  1288   var r_array = r.array;
  1289   var i = 0, c = 0, m = Math.min(a.t,this.t);
  1290   /* BEGIN LOOP */
  1291   while(i < m) {
  1292     c += this_array[i]+a_array[i];
  1293     r_array[i++] = c&BI_DM;
  1294     c >>= BI_DB;
  1296   /* END LOOP */
  1297   if(a.t < this.t) {
  1298     c += a.s;
  1299   /* BEGIN LOOP */
  1300     while(i < this.t) {
  1301       c += this_array[i];
  1302       r_array[i++] = c&BI_DM;
  1303       c >>= BI_DB;
  1305   /* END LOOP */
  1306     c += this.s;
  1308   else {
  1309     c += this.s;
  1310   /* BEGIN LOOP */
  1311     while(i < a.t) {
  1312       c += a_array[i];
  1313       r_array[i++] = c&BI_DM;
  1314       c >>= BI_DB;
  1316   /* END LOOP */
  1317     c += a.s;
  1319   r.s = (c<0)?-1:0;
  1320   if(c > 0) r_array[i++] = c;
  1321   else if(c < -1) r_array[i++] = BI_DV+c;
  1322   r.t = i;
  1323   r.clamp();
  1326 // (public) this + a
  1327 function bnAdd(a) { var r = nbi(); this.addTo(a,r); return r; }
  1329 // (public) this - a
  1330 function bnSubtract(a) { var r = nbi(); this.subTo(a,r); return r; }
  1332 // (public) this * a
  1333 function bnMultiply(a) { var r = nbi(); this.multiplyTo(a,r); return r; }
  1335 // (public) this / a
  1336 function bnDivide(a) { var r = nbi(); this.divRemTo(a,r,null); return r; }
  1338 // (public) this % a
  1339 function bnRemainder(a) { var r = nbi(); this.divRemTo(a,null,r); return r; }
  1341 // (public) [this/a,this%a]
  1342 function bnDivideAndRemainder(a) {
  1343   var q = nbi(), r = nbi();
  1344   this.divRemTo(a,q,r);
  1345   return new Array(q,r);
  1348 // (protected) this *= n, this >= 0, 1 < n < DV
  1349 function bnpDMultiply(n) {
  1350   var this_array = this.array;
  1351   this_array[this.t] = this.am(0,n-1,this,0,0,this.t);
  1352   ++this.t;
  1353   this.clamp();
  1356 // (protected) this += n << w words, this >= 0
  1357 function bnpDAddOffset(n,w) {
  1358   var this_array = this.array;
  1359   /* BEGIN LOOP */
  1360   while(this.t <= w) this_array[this.t++] = 0;
  1361   /* END LOOP */
  1362   this_array[w] += n;
  1363   /* BEGIN LOOP */
  1364   while(this_array[w] >= BI_DV) {
  1365     this_array[w] -= BI_DV;
  1366     if(++w >= this.t) this_array[this.t++] = 0;
  1367     ++this_array[w];
  1369   /* END LOOP */
  1372 // A "null" reducer
  1373 function NullExp() {}
  1374 function nNop(x) { return x; }
  1375 function nMulTo(x,y,r) { x.multiplyTo(y,r); }
  1376 function nSqrTo(x,r) { x.squareTo(r); }
  1378 NullExp.prototype.convert = nNop;
  1379 NullExp.prototype.revert = nNop;
  1380 NullExp.prototype.mulTo = nMulTo;
  1381 NullExp.prototype.sqrTo = nSqrTo;
  1383 // (public) this^e
  1384 function bnPow(e) { return this.exp(e,new NullExp()); }
  1386 // (protected) r = lower n words of "this * a", a.t <= n
  1387 // "this" should be the larger one if appropriate.
  1388 function bnpMultiplyLowerTo(a,n,r) {
  1389   var r_array = r.array;
  1390   var a_array = a.array;
  1391   var i = Math.min(this.t+a.t,n);
  1392   r.s = 0; // assumes a,this >= 0
  1393   r.t = i;
  1394   /* BEGIN LOOP */
  1395   while(i > 0) r_array[--i] = 0;
  1396   /* END LOOP */
  1397   var j;
  1398   /* BEGIN LOOP */
  1399   for(j = r.t-this.t; i < j; ++i) r_array[i+this.t] = this.am(0,a_array[i],r,i,0,this.t);
  1400   /* END LOOP */
  1401   /* BEGIN LOOP */
  1402   for(j = Math.min(a.t,n); i < j; ++i) this.am(0,a_array[i],r,i,0,n-i);
  1403   /* END LOOP */
  1404   r.clamp();
  1407 // (protected) r = "this * a" without lower n words, n > 0
  1408 // "this" should be the larger one if appropriate.
  1409 function bnpMultiplyUpperTo(a,n,r) {
  1410   var r_array = r.array;
  1411   var a_array = a.array;
  1412   --n;
  1413   var i = r.t = this.t+a.t-n;
  1414   r.s = 0; // assumes a,this >= 0
  1415   /* BEGIN LOOP */
  1416   while(--i >= 0) r_array[i] = 0;
  1417   /* END LOOP */
  1418   /* BEGIN LOOP */
  1419   for(i = Math.max(n-this.t,0); i < a.t; ++i)
  1420     r_array[this.t+i-n] = this.am(n-i,a_array[i],r,0,0,this.t+i-n);
  1421   /* END LOOP */
  1422   r.clamp();
  1423   r.drShiftTo(1,r);
  1426 // Barrett modular reduction
  1427 function Barrett(m) {
  1428   // setup Barrett
  1429   this.r2 = nbi();
  1430   this.q3 = nbi();
  1431   BigInteger.ONE.dlShiftTo(2*m.t,this.r2);
  1432   this.mu = this.r2.divide(m);
  1433   this.m = m;
  1436 function barrettConvert(x) {
  1437   if(x.s < 0 || x.t > 2*this.m.t) return x.mod(this.m);
  1438   else if(x.compareTo(this.m) < 0) return x;
  1439   else { var r = nbi(); x.copyTo(r); this.reduce(r); return r; }
  1442 function barrettRevert(x) { return x; }
  1444 // x = x mod m (HAC 14.42)
  1445 function barrettReduce(x) {
  1446   x.drShiftTo(this.m.t-1,this.r2);
  1447   if(x.t > this.m.t+1) { x.t = this.m.t+1; x.clamp(); }
  1448   this.mu.multiplyUpperTo(this.r2,this.m.t+1,this.q3);
  1449   this.m.multiplyLowerTo(this.q3,this.m.t+1,this.r2);
  1450   /* BEGIN LOOP */
  1451   while(x.compareTo(this.r2) < 0) x.dAddOffset(1,this.m.t+1);
  1452   /* END LOOP */
  1453   x.subTo(this.r2,x);
  1454   /* BEGIN LOOP */
  1455   while(x.compareTo(this.m) >= 0) x.subTo(this.m,x);
  1456   /* END LOOP */
  1459 // r = x^2 mod m; x != r
  1460 function barrettSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
  1462 // r = x*y mod m; x,y != r
  1463 function barrettMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
  1465 Barrett.prototype.convert = barrettConvert;
  1466 Barrett.prototype.revert = barrettRevert;
  1467 Barrett.prototype.reduce = barrettReduce;
  1468 Barrett.prototype.mulTo = barrettMulTo;
  1469 Barrett.prototype.sqrTo = barrettSqrTo;
  1471 // (public) this^e % m (HAC 14.85)
  1472 function bnModPow(e,m) {
  1473   var e_array = e.array;
  1474   var i = e.bitLength(), k, r = nbv(1), z;
  1475   if(i <= 0) return r;
  1476   else if(i < 18) k = 1;
  1477   else if(i < 48) k = 3;
  1478   else if(i < 144) k = 4;
  1479   else if(i < 768) k = 5;
  1480   else k = 6;
  1481   if(i < 8)
  1482     z = new Classic(m);
  1483   else if(m.isEven())
  1484     z = new Barrett(m);
  1485   else
  1486     z = new Montgomery(m);
  1488   // precomputation
  1489   var g = new Array(), n = 3, k1 = k-1, km = (1<<k)-1;
  1490   g[1] = z.convert(this);
  1491   if(k > 1) {
  1492     var g2 = nbi();
  1493     z.sqrTo(g[1],g2);
  1494   /* BEGIN LOOP */
  1495     while(n <= km) {
  1496       g[n] = nbi();
  1497       z.mulTo(g2,g[n-2],g[n]);
  1498       n += 2;
  1500   /* END LOOP */
  1503   var j = e.t-1, w, is1 = true, r2 = nbi(), t;
  1504   i = nbits(e_array[j])-1;
  1505   /* BEGIN LOOP */
  1506   while(j >= 0) {
  1507     if(i >= k1) w = (e_array[j]>>(i-k1))&km;
  1508     else {
  1509       w = (e_array[j]&((1<<(i+1))-1))<<(k1-i);
  1510       if(j > 0) w |= e_array[j-1]>>(BI_DB+i-k1);
  1513     n = k;
  1514   /* BEGIN LOOP */
  1515     while((w&1) == 0) { w >>= 1; --n; }
  1516   /* END LOOP */
  1517     if((i -= n) < 0) { i += BI_DB; --j; }
  1518     if(is1) {	// ret == 1, don't bother squaring or multiplying it
  1519       g[w].copyTo(r);
  1520       is1 = false;
  1522     else {
  1523   /* BEGIN LOOP */
  1524       while(n > 1) { z.sqrTo(r,r2); z.sqrTo(r2,r); n -= 2; }
  1525   /* END LOOP */
  1526       if(n > 0) z.sqrTo(r,r2); else { t = r; r = r2; r2 = t; }
  1527       z.mulTo(r2,g[w],r);
  1530   /* BEGIN LOOP */
  1531     while(j >= 0 && (e_array[j]&(1<<i)) == 0) {
  1532       z.sqrTo(r,r2); t = r; r = r2; r2 = t;
  1533       if(--i < 0) { i = BI_DB-1; --j; }
  1535   /* END LOOP */
  1537   /* END LOOP */
  1538   return z.revert(r);
  1541 // (public) gcd(this,a) (HAC 14.54)
  1542 function bnGCD(a) {
  1543   var x = (this.s<0)?this.negate():this.clone();
  1544   var y = (a.s<0)?a.negate():a.clone();
  1545   if(x.compareTo(y) < 0) { var t = x; x = y; y = t; }
  1546   var i = x.getLowestSetBit(), g = y.getLowestSetBit();
  1547   if(g < 0) return x;
  1548   if(i < g) g = i;
  1549   if(g > 0) {
  1550     x.rShiftTo(g,x);
  1551     y.rShiftTo(g,y);
  1553   /* BEGIN LOOP */
  1554   while(x.signum() > 0) {
  1555     if((i = x.getLowestSetBit()) > 0) x.rShiftTo(i,x);
  1556     if((i = y.getLowestSetBit()) > 0) y.rShiftTo(i,y);
  1557     if(x.compareTo(y) >= 0) {
  1558       x.subTo(y,x);
  1559       x.rShiftTo(1,x);
  1561     else {
  1562       y.subTo(x,y);
  1563       y.rShiftTo(1,y);
  1566   /* END LOOP */
  1567   if(g > 0) y.lShiftTo(g,y);
  1568   return y;
  1571 // (protected) this % n, n < 2^26
  1572 function bnpModInt(n) {
  1573   var this_array = this.array;
  1574   if(n <= 0) return 0;
  1575   var d = BI_DV%n, r = (this.s<0)?n-1:0;
  1576   if(this.t > 0)
  1577     if(d == 0) r = this_array[0]%n;
  1578     else for(var i = this.t-1; i >= 0; --i) r = (d*r+this_array[i])%n;
  1579   return r;
  1582 // (public) 1/this % m (HAC 14.61)
  1583 function bnModInverse(m) {
  1584   var ac = m.isEven();
  1585   if((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO;
  1586   var u = m.clone(), v = this.clone();
  1587   var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1);
  1588   /* BEGIN LOOP */
  1589   while(u.signum() != 0) {
  1590   /* BEGIN LOOP */
  1591     while(u.isEven()) {
  1592       u.rShiftTo(1,u);
  1593       if(ac) {
  1594         if(!a.isEven() || !b.isEven()) { a.addTo(this,a); b.subTo(m,b); }
  1595         a.rShiftTo(1,a);
  1597       else if(!b.isEven()) b.subTo(m,b);
  1598       b.rShiftTo(1,b);
  1600   /* END LOOP */
  1601   /* BEGIN LOOP */
  1602     while(v.isEven()) {
  1603       v.rShiftTo(1,v);
  1604       if(ac) {
  1605         if(!c.isEven() || !d.isEven()) { c.addTo(this,c); d.subTo(m,d); }
  1606         c.rShiftTo(1,c);
  1608       else if(!d.isEven()) d.subTo(m,d);
  1609       d.rShiftTo(1,d);
  1611   /* END LOOP */
  1612     if(u.compareTo(v) >= 0) {
  1613       u.subTo(v,u);
  1614       if(ac) a.subTo(c,a);
  1615       b.subTo(d,b);
  1617     else {
  1618       v.subTo(u,v);
  1619       if(ac) c.subTo(a,c);
  1620       d.subTo(b,d);
  1623   /* END LOOP */
  1624   if(v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO;
  1625   if(d.compareTo(m) >= 0) return d.subtract(m);
  1626   if(d.signum() < 0) d.addTo(m,d); else return d;
  1627   if(d.signum() < 0) return d.add(m); else return d;
  1630 var lowprimes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509];
  1631 var lplim = (1<<26)/lowprimes[lowprimes.length-1];
  1633 // (public) test primality with certainty >= 1-.5^t
  1634 function bnIsProbablePrime(t) {
  1635   var i, x = this.abs();
  1636   var x_array = x.array;
  1637   if(x.t == 1 && x_array[0] <= lowprimes[lowprimes.length-1]) {
  1638     for(i = 0; i < lowprimes.length; ++i)
  1639       if(x_array[0] == lowprimes[i]) return true;
  1640     return false;
  1642   if(x.isEven()) return false;
  1643   i = 1;
  1644   /* BEGIN LOOP */
  1645   while(i < lowprimes.length) {
  1646     var m = lowprimes[i], j = i+1;
  1647   /* BEGIN LOOP */
  1648     while(j < lowprimes.length && m < lplim) m *= lowprimes[j++];
  1649   /* END LOOP */
  1650     m = x.modInt(m);
  1651   /* BEGIN LOOP */
  1652     while(i < j) if(m%lowprimes[i++] == 0) return false;
  1653   /* END LOOP */
  1655   /* END LOOP */
  1656   return x.millerRabin(t);
  1659 // (protected) true if probably prime (HAC 4.24, Miller-Rabin)
  1660 function bnpMillerRabin(t) {
  1661   var n1 = this.subtract(BigInteger.ONE);
  1662   var k = n1.getLowestSetBit();
  1663   if(k <= 0) return false;
  1664   var r = n1.shiftRight(k);
  1665   t = (t+1)>>1;
  1666   if(t > lowprimes.length) t = lowprimes.length;
  1667   var a = nbi();
  1668   /* BEGIN LOOP */
  1669   for(var i = 0; i < t; ++i) {
  1670     a.fromInt(lowprimes[i]);
  1671     var y = a.modPow(r,this);
  1672     if(y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) {
  1673       var j = 1;
  1674   /* BEGIN LOOP */
  1675       while(j++ < k && y.compareTo(n1) != 0) {
  1676         y = y.modPowInt(2,this);
  1677         if(y.compareTo(BigInteger.ONE) == 0) return false;
  1679   /* END LOOP */
  1680       if(y.compareTo(n1) != 0) return false;
  1683   /* END LOOP */
  1684   return true;
  1687 // protected
  1688 BigInteger.prototype.chunkSize = bnpChunkSize;
  1689 BigInteger.prototype.toRadix = bnpToRadix;
  1690 BigInteger.prototype.fromRadix = bnpFromRadix;
  1691 BigInteger.prototype.fromNumber = bnpFromNumber;
  1692 BigInteger.prototype.bitwiseTo = bnpBitwiseTo;
  1693 BigInteger.prototype.changeBit = bnpChangeBit;
  1694 BigInteger.prototype.addTo = bnpAddTo;
  1695 BigInteger.prototype.dMultiply = bnpDMultiply;
  1696 BigInteger.prototype.dAddOffset = bnpDAddOffset;
  1697 BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo;
  1698 BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo;
  1699 BigInteger.prototype.modInt = bnpModInt;
  1700 BigInteger.prototype.millerRabin = bnpMillerRabin;
  1702 // public
  1703 BigInteger.prototype.clone = bnClone;
  1704 BigInteger.prototype.intValue = bnIntValue;
  1705 BigInteger.prototype.byteValue = bnByteValue;
  1706 BigInteger.prototype.shortValue = bnShortValue;
  1707 BigInteger.prototype.signum = bnSigNum;
  1708 BigInteger.prototype.toByteArray = bnToByteArray;
  1709 BigInteger.prototype.equals = bnEquals;
  1710 BigInteger.prototype.min = bnMin;
  1711 BigInteger.prototype.max = bnMax;
  1712 BigInteger.prototype.and = bnAnd;
  1713 BigInteger.prototype.or = bnOr;
  1714 BigInteger.prototype.xor = bnXor;
  1715 BigInteger.prototype.andNot = bnAndNot;
  1716 BigInteger.prototype.not = bnNot;
  1717 BigInteger.prototype.shiftLeft = bnShiftLeft;
  1718 BigInteger.prototype.shiftRight = bnShiftRight;
  1719 BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit;
  1720 BigInteger.prototype.bitCount = bnBitCount;
  1721 BigInteger.prototype.testBit = bnTestBit;
  1722 BigInteger.prototype.setBit = bnSetBit;
  1723 BigInteger.prototype.clearBit = bnClearBit;
  1724 BigInteger.prototype.flipBit = bnFlipBit;
  1725 BigInteger.prototype.add = bnAdd;
  1726 BigInteger.prototype.subtract = bnSubtract;
  1727 BigInteger.prototype.multiply = bnMultiply;
  1728 BigInteger.prototype.divide = bnDivide;
  1729 BigInteger.prototype.remainder = bnRemainder;
  1730 BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder;
  1731 BigInteger.prototype.modPow = bnModPow;
  1732 BigInteger.prototype.modInverse = bnModInverse;
  1733 BigInteger.prototype.pow = bnPow;
  1734 BigInteger.prototype.gcd = bnGCD;
  1735 BigInteger.prototype.isProbablePrime = bnIsProbablePrime;
  1737 // BigInteger interfaces not implemented in jsbn:
  1739 // BigInteger(int signum, byte[] magnitude)
  1740 // double doubleValue()
  1741 // float floatValue()
  1742 // int hashCode()
  1743 // long longValue()
  1744 // static BigInteger valueOf(long val)
  1745 // prng4.js - uses Arcfour as a PRNG
  1747 function Arcfour() {
  1748   this.i = 0;
  1749   this.j = 0;
  1750   this.S = new Array();
  1753 // Initialize arcfour context from key, an array of ints, each from [0..255]
  1754 function ARC4init(key) {
  1755   var i, j, t;
  1756   /* BEGIN LOOP */
  1757   for(i = 0; i < 256; ++i)
  1758     this.S[i] = i;
  1759   /* END LOOP */
  1760   j = 0;
  1761   /* BEGIN LOOP */
  1762   for(i = 0; i < 256; ++i) {
  1763     j = (j + this.S[i] + key[i % key.length]) & 255;
  1764     t = this.S[i];
  1765     this.S[i] = this.S[j];
  1766     this.S[j] = t;
  1768   /* END LOOP */
  1769   this.i = 0;
  1770   this.j = 0;
  1773 function ARC4next() {
  1774   var t;
  1775   this.i = (this.i + 1) & 255;
  1776   this.j = (this.j + this.S[this.i]) & 255;
  1777   t = this.S[this.i];
  1778   this.S[this.i] = this.S[this.j];
  1779   this.S[this.j] = t;
  1780   return this.S[(t + this.S[this.i]) & 255];
  1783 Arcfour.prototype.init = ARC4init;
  1784 Arcfour.prototype.next = ARC4next;
  1786 // Plug in your RNG constructor here
  1787 function prng_newstate() {
  1788   return new Arcfour();
  1791 // Pool size must be a multiple of 4 and greater than 32.
  1792 // An array of bytes the size of the pool will be passed to init()
  1793 var rng_psize = 256;
  1794 // Random number generator - requires a PRNG backend, e.g. prng4.js
  1796 // For best results, put code like
  1797 // <body onClick='rng_seed_time();' onKeyPress='rng_seed_time();'>
  1798 // in your main HTML document.
  1800 var rng_state;
  1801 var rng_pool;
  1802 var rng_pptr;
  1804 // Mix in a 32-bit integer into the pool
  1805 function rng_seed_int(x) {
  1806   rng_pool[rng_pptr++] ^= x & 255;
  1807   rng_pool[rng_pptr++] ^= (x >> 8) & 255;
  1808   rng_pool[rng_pptr++] ^= (x >> 16) & 255;
  1809   rng_pool[rng_pptr++] ^= (x >> 24) & 255;
  1810   if(rng_pptr >= rng_psize) rng_pptr -= rng_psize;
  1813 // Mix in the current time (w/milliseconds) into the pool
  1814 function rng_seed_time() {
  1815   rng_seed_int(new Date().getTime());
  1818 // Initialize the pool with junk if needed.
  1819 if(rng_pool == null) {
  1820   rng_pool = new Array();
  1821   rng_pptr = 0;
  1822   var t;
  1823   /* BEGIN LOOP */
  1824   while(rng_pptr < rng_psize) {  // extract some randomness from Math.random()
  1825     t = Math.floor(65536 * Math.random());
  1826     rng_pool[rng_pptr++] = t >>> 8;
  1827     rng_pool[rng_pptr++] = t & 255;
  1829   /* END LOOP */
  1830   rng_pptr = 0;
  1831   rng_seed_time();
  1832   //rng_seed_int(window.screenX);
  1833   //rng_seed_int(window.screenY);
  1836 function rng_get_byte() {
  1837   if(rng_state == null) {
  1838     rng_seed_time();
  1839     rng_state = prng_newstate();
  1840     rng_state.init(rng_pool);
  1841   /* BEGIN LOOP */
  1842     for(rng_pptr = 0; rng_pptr < rng_pool.length; ++rng_pptr)
  1843       rng_pool[rng_pptr] = 0;
  1844   /* END LOOP */
  1845     rng_pptr = 0;
  1846     //rng_pool = null;
  1848   // TODO: allow reseeding after first request
  1849   return rng_state.next();
  1852 function rng_get_bytes(ba) {
  1853   var i;
  1854   /* BEGIN LOOP */
  1855   for(i = 0; i < ba.length; ++i) ba[i] = rng_get_byte();
  1856   /* END LOOP */
  1859 function SecureRandom() {}
  1861 SecureRandom.prototype.nextBytes = rng_get_bytes;
  1862 // Depends on jsbn.js and rng.js
  1864 // convert a (hex) string to a bignum object
  1865 function parseBigInt(str,r) {
  1866   return new BigInteger(str,r);
  1869 function linebrk(s,n) {
  1870   var ret = "";
  1871   var i = 0;
  1872   /* BEGIN LOOP */
  1873   while(i + n < s.length) {
  1874     ret += s.substring(i,i+n) + "\n";
  1875     i += n;
  1877   /* END LOOP */
  1878   return ret + s.substring(i,s.length);
  1881 function byte2Hex(b) {
  1882   if(b < 0x10)
  1883     return "0" + b.toString(16);
  1884   else
  1885     return b.toString(16);
  1888 // PKCS#1 (type 2, random) pad input string s to n bytes, and return a bigint
  1889 function pkcs1pad2(s,n) {
  1890   if(n < s.length + 11) {
  1891     alert("Message too long for RSA");
  1892     return null;
  1894   var ba = new Array();
  1895   var i = s.length - 1;
  1896   /* BEGIN LOOP */
  1897   while(i >= 0 && n > 0) ba[--n] = s.charCodeAt(i--);
  1898   /* END LOOP */
  1899   ba[--n] = 0;
  1900   var rng = new SecureRandom();
  1901   var x = new Array();
  1902   /* BEGIN LOOP */
  1903   while(n > 2) { // random non-zero pad
  1904     x[0] = 0;
  1905   /* BEGIN LOOP */
  1906     while(x[0] == 0) rng.nextBytes(x);
  1907   /* END LOOP */
  1908     ba[--n] = x[0];
  1910   /* END LOOP */
  1911   ba[--n] = 2;
  1912   ba[--n] = 0;
  1913   return new BigInteger(ba);
  1916 // "empty" RSA key constructor
  1917 function RSAKey() {
  1918   this.n = null;
  1919   this.e = 0;
  1920   this.d = null;
  1921   this.p = null;
  1922   this.q = null;
  1923   this.dmp1 = null;
  1924   this.dmq1 = null;
  1925   this.coeff = null;
  1928 // Set the public key fields N and e from hex strings
  1929 function RSASetPublic(N,E) {
  1930   if(N != null && E != null && N.length > 0 && E.length > 0) {
  1931     this.n = parseBigInt(N,16);
  1932     this.e = parseInt(E,16);
  1934   else
  1935     alert("Invalid RSA public key");
  1938 // Perform raw public operation on "x": return x^e (mod n)
  1939 function RSADoPublic(x) {
  1940   return x.modPowInt(this.e, this.n);
  1943 // Return the PKCS#1 RSA encryption of "text" as an even-length hex string
  1944 function RSAEncrypt(text) {
  1945   var m = pkcs1pad2(text,(this.n.bitLength()+7)>>3);
  1946   if(m == null) return null;
  1947   var c = this.doPublic(m);
  1948   if(c == null) return null;
  1949   var h = c.toString(16);
  1950   if((h.length & 1) == 0) return h; else return "0" + h;
  1953 // Return the PKCS#1 RSA encryption of "text" as a Base64-encoded string
  1954 //function RSAEncryptB64(text) {
  1955 //  var h = this.encrypt(text);
  1956 //  if(h) return hex2b64(h); else return null;
  1957 //}
  1959 // protected
  1960 RSAKey.prototype.doPublic = RSADoPublic;
  1962 // public
  1963 RSAKey.prototype.setPublic = RSASetPublic;
  1964 RSAKey.prototype.encrypt = RSAEncrypt;
  1965 //RSAKey.prototype.encrypt_b64 = RSAEncryptB64;
  1966 // Depends on rsa.js and jsbn2.js
  1968 // Undo PKCS#1 (type 2, random) padding and, if valid, return the plaintext
  1969 function pkcs1unpad2(d,n) {
  1970   var b = d.toByteArray();
  1971   var i = 0;
  1972   /* BEGIN LOOP */
  1973   while(i < b.length && b[i] == 0) ++i;
  1974   /* END LOOP */
  1975   if(b.length-i != n-1 || b[i] != 2)
  1976     return null;
  1977   ++i;
  1978   /* BEGIN LOOP */
  1979   while(b[i] != 0)
  1980     if(++i >= b.length) return null;
  1981   /* END LOOP */
  1982   var ret = "";
  1983   /* BEGIN LOOP */
  1984   while(++i < b.length)
  1985     ret += String.fromCharCode(b[i]);
  1986   /* END LOOP */
  1987   return ret;
  1990 // Set the private key fields N, e, and d from hex strings
  1991 function RSASetPrivate(N,E,D) {
  1992   if(N != null && E != null && N.length > 0 && E.length > 0) {
  1993     this.n = parseBigInt(N,16);
  1994     this.e = parseInt(E,16);
  1995     this.d = parseBigInt(D,16);
  1997   else
  1998     alert("Invalid RSA private key");
  2001 // Set the private key fields N, e, d and CRT params from hex strings
  2002 function RSASetPrivateEx(N,E,D,P,Q,DP,DQ,C) {
  2003   if(N != null && E != null && N.length > 0 && E.length > 0) {
  2004     this.n = parseBigInt(N,16);
  2005     this.e = parseInt(E,16);
  2006     this.d = parseBigInt(D,16);
  2007     this.p = parseBigInt(P,16);
  2008     this.q = parseBigInt(Q,16);
  2009     this.dmp1 = parseBigInt(DP,16);
  2010     this.dmq1 = parseBigInt(DQ,16);
  2011     this.coeff = parseBigInt(C,16);
  2013   else
  2014     alert("Invalid RSA private key");
  2017 // Generate a new random private key B bits long, using public expt E
  2018 function RSAGenerate(B,E) {
  2019   var rng = new SecureRandom();
  2020   var qs = B>>1;
  2021   this.e = parseInt(E,16);
  2022   var ee = new BigInteger(E,16);
  2023   /* BEGIN LOOP */
  2024   for(;;) {
  2025   /* BEGIN LOOP */
  2026     for(;;) {
  2027       this.p = new BigInteger(B-qs,1,rng);
  2028       if(this.p.subtract(BigInteger.ONE).gcd(ee).compareTo(BigInteger.ONE) == 0 && this.p.isProbablePrime(10)) break;
  2030   /* END LOOP */
  2031   /* BEGIN LOOP */
  2032     for(;;) {
  2033       this.q = new BigInteger(qs,1,rng);
  2034       if(this.q.subtract(BigInteger.ONE).gcd(ee).compareTo(BigInteger.ONE) == 0 && this.q.isProbablePrime(10)) break;
  2036   /* END LOOP */
  2037     if(this.p.compareTo(this.q) <= 0) {
  2038       var t = this.p;
  2039       this.p = this.q;
  2040       this.q = t;
  2042     var p1 = this.p.subtract(BigInteger.ONE);
  2043     var q1 = this.q.subtract(BigInteger.ONE);
  2044     var phi = p1.multiply(q1);
  2045     if(phi.gcd(ee).compareTo(BigInteger.ONE) == 0) {
  2046       this.n = this.p.multiply(this.q);
  2047       this.d = ee.modInverse(phi);
  2048       this.dmp1 = this.d.mod(p1);
  2049       this.dmq1 = this.d.mod(q1);
  2050       this.coeff = this.q.modInverse(this.p);
  2051       break;
  2054   /* END LOOP */
  2057 // Perform raw private operation on "x": return x^d (mod n)
  2058 function RSADoPrivate(x) {
  2059   if(this.p == null || this.q == null)
  2060     return x.modPow(this.d, this.n);
  2062   // TODO: re-calculate any missing CRT params
  2063   var xp = x.mod(this.p).modPow(this.dmp1, this.p);
  2064   var xq = x.mod(this.q).modPow(this.dmq1, this.q);
  2066   /* BEGIN LOOP */
  2067   while(xp.compareTo(xq) < 0)
  2068     xp = xp.add(this.p);
  2069   /* END LOOP */
  2070   return xp.subtract(xq).multiply(this.coeff).mod(this.p).multiply(this.q).add(xq);
  2073 // Return the PKCS#1 RSA decryption of "ctext".
  2074 // "ctext" is an even-length hex string and the output is a plain string.
  2075 function RSADecrypt(ctext) {
  2076   var c = parseBigInt(ctext, 16);
  2077   var m = this.doPrivate(c);
  2078   if(m == null) return null;
  2079   return pkcs1unpad2(m, (this.n.bitLength()+7)>>3);
  2082 // Return the PKCS#1 RSA decryption of "ctext".
  2083 // "ctext" is a Base64-encoded string and the output is a plain string.
  2084 //function RSAB64Decrypt(ctext) {
  2085 //  var h = b64tohex(ctext);
  2086 //  if(h) return this.decrypt(h); else return null;
  2087 //}
  2089 // protected
  2090 RSAKey.prototype.doPrivate = RSADoPrivate;
  2092 // public
  2093 RSAKey.prototype.setPrivate = RSASetPrivate;
  2094 RSAKey.prototype.setPrivateEx = RSASetPrivateEx;
  2095 RSAKey.prototype.generate = RSAGenerate;
  2096 RSAKey.prototype.decrypt = RSADecrypt;
  2097 //RSAKey.prototype.b64_decrypt = RSAB64Decrypt;
  2100 nValue="a5261939975948bb7a58dffe5ff54e65f0498f9175f5a09288810b8975871e99af3b5dd94057b0fc07535f5f97444504fa35169d461d0d30cf0192e307727c065168c788771c561a9400fb49175e9e6aa4e23fe11af69e9412dd23b0cb6684c4c2429bce139e848ab26d0829073351f4acd36074eafd036a5eb83359d2a698d3";
  2101 eValue="10001";
  2102 dValue="8e9912f6d3645894e8d38cb58c0db81ff516cf4c7e5a14c7f1eddb1459d2cded4d8d293fc97aee6aefb861859c8b6a3d1dfe710463e1f9ddc72048c09751971c4a580aa51eb523357a3cc48d31cfad1d4a165066ed92d4748fb6571211da5cb14bc11b6e2df7c1a559e6d5ac1cd5c94703a22891464fba23d0d965086277a161";
  2103 pValue="d090ce58a92c75233a6486cb0a9209bf3583b64f540c76f5294bb97d285eed33aec220bde14b2417951178ac152ceab6da7090905b478195498b352048f15e7d";
  2104 qValue="cab575dc652bb66df15a0359609d51d1db184750c00c6698b90ef3465c99655103edbf0d54c56aec0ce3c4d22592338092a126a0cc49f65a4a30d222b411e58f";
  2105 dmp1Value="1a24bca8e273df2f0e47c199bbf678604e7df7215480c77c8db39f49b000ce2cf7500038acfff5433b7d582a01f1826e6f4d42e1c57f5e1fef7b12aabc59fd25";
  2106 dmq1Value="3d06982efbbe47339e1f6d36b1216b8a741d410b0c662f54f7118b27b9a4ec9d914337eb39841d8666f3034408cf94f5b62f11c402fc994fe15a05493150d9fd";
  2107 coeffValue="3a3e731acd8960b7ff9eb81a7ff93bd1cfa74cbd56987db58b4594fb09c09084db1734c8143f98b602b981aaa9243ca28deb69b5b280ee8dcee0fd2625e53250";
  2109 setupEngine(am3, 28);
  2111 var RSA = new RSAKey();
  2112 var TEXT = "The quick brown fox jumped over the extremely lazy frogs!";
  2114 RSA.setPublic(nValue, eValue);
  2115 RSA.setPrivateEx(nValue, eValue, dValue, pValue, qValue, dmp1Value, dmq1Value, coeffValue);
  2117 function encrypt() {
  2118   return RSA.encrypt(TEXT);
  2121 function decrypt() {
  2122   return RSA.decrypt(TEXT);
  2125 function PrintResult(name, result) {
  2129 function PrintScore(score) {
  2130 //  print(score);
  2134 BenchmarkSuite.RunSuites({ NotifyResult: PrintResult,
  2135                            NotifyScore: PrintScore });

mercurial