js/src/devtools/jint/v8/deltablue.js

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

     1 // Copyright 2008 the V8 project authors. All rights reserved.
     2 // Redistribution and use in source and binary forms, with or without
     3 // modification, are permitted provided that the following conditions are
     4 // met:
     5 //
     6 //     * Redistributions of source code must retain the above copyright
     7 //       notice, this list of conditions and the following disclaimer.
     8 //     * Redistributions in binary form must reproduce the above
     9 //       copyright notice, this list of conditions and the following
    10 //       disclaimer in the documentation and/or other materials provided
    11 //       with the distribution.
    12 //     * Neither the name of Google Inc. nor the names of its
    13 //       contributors may be used to endorse or promote products derived
    14 //       from this software without specific prior written permission.
    15 //
    16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
    17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
    18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
    19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
    20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
    21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
    22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
    26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
    29 // Simple framework for running the benchmark suites and
    30 // computing a score based on the timing measurements.
    33 // A benchmark has a name (string) and a function that will be run to
    34 // do the performance measurement. The optional setup and tearDown
    35 // arguments are functions that will be invoked before and after
    36 // running the benchmark, but the running time of these functions will
    37 // not be accounted for in the benchmark score.
    38 function Benchmark(name, run, setup, tearDown) {
    39   this.name = name;
    40   this.run = run;
    41   this.Setup = setup ? setup : function() { };
    42   this.TearDown = tearDown ? tearDown : function() { };
    43 }
    46 // Benchmark results hold the benchmark and the measured time used to
    47 // run the benchmark. The benchmark score is computed later once a
    48 // full benchmark suite has run to completion.
    49 function BenchmarkResult(benchmark, time) {
    50   this.benchmark = benchmark;
    51   this.time = time;
    52 }
    55 // Automatically convert results to numbers. Used by the geometric
    56 // mean computation.
    57 BenchmarkResult.prototype.valueOf = function() {
    58   return this.time;
    59 }
    62 // Suites of benchmarks consist of a name and the set of benchmarks in
    63 // addition to the reference timing that the final score will be based
    64 // on. This way, all scores are relative to a reference run and higher
    65 // scores implies better performance.
    66 function BenchmarkSuite(name, reference, benchmarks) {
    67   this.name = name;
    68   this.reference = reference;
    69   this.benchmarks = benchmarks;
    70   BenchmarkSuite.suites.push(this);
    71 }
    74 // Keep track of all declared benchmark suites.
    75 BenchmarkSuite.suites = [];
    78 // Scores are not comparable across versions. Bump the version if
    79 // you're making changes that will affect that scores, e.g. if you add
    80 // a new benchmark or change an existing one.
    81 BenchmarkSuite.version = '5';
    84 // To make the benchmark results predictable, we replace Math.random
    85 // with a 100% deterministic alternative.
    86 Math.random = (function() {
    87   var seed = 49734321;
    88   return function() {
    89     // Robert Jenkins' 32 bit integer hash function.
    90     seed = ((seed + 0x7ed55d16) + (seed << 12))  & 0xffffffff;
    91     seed = ((seed ^ 0xc761c23c) ^ (seed >>> 19)) & 0xffffffff;
    92     seed = ((seed + 0x165667b1) + (seed << 5))   & 0xffffffff;
    93     seed = ((seed + 0xd3a2646c) ^ (seed << 9))   & 0xffffffff;
    94     seed = ((seed + 0xfd7046c5) + (seed << 3))   & 0xffffffff;
    95     seed = ((seed ^ 0xb55a4f09) ^ (seed >>> 16)) & 0xffffffff;
    96     return (seed & 0xfffffff) / 0x10000000;
    97   };
    98 })();
   101 // Runs all registered benchmark suites and optionally yields between
   102 // each individual benchmark to avoid running for too long in the
   103 // context of browsers. Once done, the final score is reported to the
   104 // runner.
   105 BenchmarkSuite.RunSuites = function(runner) {
   106   var continuation = null;
   107   var suites = BenchmarkSuite.suites;
   108   var length = suites.length;
   109   BenchmarkSuite.scores = [];
   110   var index = 0;
   111   function RunStep() {
   112     while (continuation || index < length) {
   113       if (continuation) {
   114         continuation = continuation();
   115       } else {
   116         var suite = suites[index++];
   117         if (runner.NotifyStart) runner.NotifyStart(suite.name);
   118         continuation = suite.RunStep(runner);
   119       }
   120       if (continuation && typeof window != 'undefined' && window.setTimeout) {
   121         window.setTimeout(RunStep, 25);
   122         return;
   123       }
   124     }
   125     if (runner.NotifyScore) {
   126       var score = BenchmarkSuite.GeometricMean(BenchmarkSuite.scores);
   127       var formatted = BenchmarkSuite.FormatScore(100 * score);
   128       runner.NotifyScore(formatted);
   129     }
   130   }
   131   RunStep();
   132 }
   135 // Counts the total number of registered benchmarks. Useful for
   136 // showing progress as a percentage.
   137 BenchmarkSuite.CountBenchmarks = function() {
   138   var result = 0;
   139   var suites = BenchmarkSuite.suites;
   140   for (var i = 0; i < suites.length; i++) {
   141     result += suites[i].benchmarks.length;
   142   }
   143   return result;
   144 }
   147 // Computes the geometric mean of a set of numbers.
   148 BenchmarkSuite.GeometricMean = function(numbers) {
   149   var log = 0;
   150   for (var i = 0; i < numbers.length; i++) {
   151     log += Math.log(numbers[i]);
   152   }
   153   return Math.pow(Math.E, log / numbers.length);
   154 }
   157 // Converts a score value to a string with at least three significant
   158 // digits.
   159 BenchmarkSuite.FormatScore = function(value) {
   160   if (value > 100) {
   161     return value.toFixed(0);
   162   } else {
   163     return value.toPrecision(3);
   164   }
   165 }
   167 // Notifies the runner that we're done running a single benchmark in
   168 // the benchmark suite. This can be useful to report progress.
   169 BenchmarkSuite.prototype.NotifyStep = function(result) {
   170   this.results.push(result);
   171   if (this.runner.NotifyStep) this.runner.NotifyStep(result.benchmark.name);
   172 }
   175 // Notifies the runner that we're done with running a suite and that
   176 // we have a result which can be reported to the user if needed.
   177 BenchmarkSuite.prototype.NotifyResult = function() {
   178   var mean = BenchmarkSuite.GeometricMean(this.results);
   179   var score = this.reference / mean;
   180   BenchmarkSuite.scores.push(score);
   181   if (this.runner.NotifyResult) {
   182     var formatted = BenchmarkSuite.FormatScore(100 * score);
   183     this.runner.NotifyResult(this.name, formatted);
   184   }
   185 }
   188 // Notifies the runner that running a benchmark resulted in an error.
   189 BenchmarkSuite.prototype.NotifyError = function(error) {
   190   if (this.runner.NotifyError) {
   191     this.runner.NotifyError(this.name, error);
   192   }
   193   if (this.runner.NotifyStep) {
   194     this.runner.NotifyStep(this.name);
   195   }
   196 }
   199 // Runs a single benchmark for at least a second and computes the
   200 // average time it takes to run a single iteration.
   201 BenchmarkSuite.prototype.RunSingleBenchmark = function(benchmark) {
   202   var elapsed = 0;
   203   var start = new Date();
   204   for (var n = 0; elapsed < 200; n++) {
   205     benchmark.run();
   206     elapsed = new Date() - start;
   207   }
   208   var usec = (elapsed * 1000) / n;
   209   this.NotifyStep(new BenchmarkResult(benchmark, usec));
   210 }
   213 // This function starts running a suite, but stops between each
   214 // individual benchmark in the suite and returns a continuation
   215 // function which can be invoked to run the next benchmark. Once the
   216 // last benchmark has been executed, null is returned.
   217 BenchmarkSuite.prototype.RunStep = function(runner) {
   218   this.results = [];
   219   this.runner = runner;
   220   var length = this.benchmarks.length;
   221   var index = 0;
   222   var suite = this;
   224   // Run the setup, the actual benchmark, and the tear down in three
   225   // separate steps to allow the framework to yield between any of the
   226   // steps.
   228   function RunNextSetup() {
   229     if (index < length) {
   230       try {
   231         suite.benchmarks[index].Setup();
   232       } catch (e) {
   233         suite.NotifyError(e);
   234         return null;
   235       }
   236       return RunNextBenchmark;
   237     }
   238     suite.NotifyResult();
   239     return null;
   240   }
   242   function RunNextBenchmark() {
   243     try {
   244       suite.RunSingleBenchmark(suite.benchmarks[index]);
   245     } catch (e) {
   246       suite.NotifyError(e);
   247       return null;
   248     }
   249     return RunNextTearDown;
   250   }
   252   function RunNextTearDown() {
   253     try {
   254       suite.benchmarks[index++].TearDown();
   255     } catch (e) {
   256       suite.NotifyError(e);
   257       return null;
   258     }
   259     return RunNextSetup;
   260   }
   262   // Start out running the setup.
   263   return RunNextSetup();
   264 }
   267 // Copyright 2008 Google Inc. All Rights Reserved.
   268 // Copyright 1996 John Maloney and Mario Wolczko.
   270 // This program is free software; you can redistribute it and/or modify
   271 // it under the terms of the GNU General Public License as published by
   272 // the Free Software Foundation; either version 2 of the License, or
   273 // (at your option) any later version.
   274 //
   275 // This program is distributed in the hope that it will be useful,
   276 // but WITHOUT ANY WARRANTY; without even the implied warranty of
   277 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   278 // GNU General Public License for more details.
   279 //
   280 // You should have received a copy of the GNU General Public License
   281 // along with this program; if not, write to the Free Software
   282 // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
   285 // This implementation of the DeltaBlue benchmark is derived 
   286 // from the Smalltalk implementation by John Maloney and Mario 
   287 // Wolczko. Some parts have been translated directly, whereas 
   288 // others have been modified more aggresively to make it feel 
   289 // more like a JavaScript program.
   292 var DeltaBlue = new BenchmarkSuite('DeltaBlue', 71104, [
   293   new Benchmark('DeltaBlue', deltaBlue)
   294 ]);
   297 /**
   298  * A JavaScript implementation of the DeltaBlue constrain-solving
   299  * algorithm, as described in:
   300  *
   301  * "The DeltaBlue Algorithm: An Incremental Constraint Hierarchy Solver"
   302  *   Bjorn N. Freeman-Benson and John Maloney
   303  *   January 1990 Communications of the ACM,
   304  *   also available as University of Washington TR 89-08-06.
   305  *
   306  * Beware: this benchmark is written in a grotesque style where
   307  * the constraint model is built by side-effects from constructors.
   308  * I've kept it this way to avoid deviating too much from the original
   309  * implementation.
   310  */
   313 /* --- O b j e c t   M o d e l --- */
   315 Object.prototype.inherits = function (shuper) {
   316   function Inheriter() { }
   317   Inheriter.prototype = shuper.prototype;
   318   this.prototype = new Inheriter();
   319   this.superConstructor = shuper;
   320 }
   322 function OrderedCollection() {
   323   this.elms = new Array();
   324 }
   326 OrderedCollection.prototype.add = function (elm) {
   327   this.elms.push(elm);
   328 }
   330 OrderedCollection.prototype.at = function (index) {
   331   return this.elms[index];
   332 }
   334 OrderedCollection.prototype.size = function () {
   335   return this.elms.length;
   336 }
   338 OrderedCollection.prototype.removeFirst = function () {
   339   return this.elms.pop();
   340 }
   342 OrderedCollection.prototype.remove = function (elm) {
   343   var index = 0, skipped = 0;
   344   /* BEGIN LOOP */
   345   for (var i = 0; i < this.elms.length; i++) {
   346     var value = this.elms[i];
   347     if (value != elm) {
   348       this.elms[index] = value;
   349       index++;
   350     } else {
   351       skipped++;
   352     }
   353   }
   354   /* END LOOP */
   355   /* BEGIN LOOP */
   356   for (var i = 0; i < skipped; i++)
   357     this.elms.pop();
   358   /* END LOOP */
   359 }
   361 /* --- *
   362  * S t r e n g t h
   363  * --- */
   365 /**
   366  * Strengths are used to measure the relative importance of constraints.
   367  * New strengths may be inserted in the strength hierarchy without
   368  * disrupting current constraints.  Strengths cannot be created outside
   369  * this class, so pointer comparison can be used for value comparison.
   370  */
   371 function Strength(strengthValue, name) {
   372   this.strengthValue = strengthValue;
   373   this.name = name;
   374 }
   376 Strength.stronger = function (s1, s2) {
   377   return s1.strengthValue < s2.strengthValue;
   378 }
   380 Strength.weaker = function (s1, s2) {
   381   return s1.strengthValue > s2.strengthValue;
   382 }
   384 Strength.weakestOf = function (s1, s2) {
   385   return this.weaker(s1, s2) ? s1 : s2;
   386 }
   388 Strength.strongest = function (s1, s2) {
   389   return this.stronger(s1, s2) ? s1 : s2;
   390 }
   392 Strength.prototype.nextWeaker = function () {
   393   switch (this.strengthValue) {
   394     case 0: return Strength.WEAKEST;
   395     case 1: return Strength.WEAK_DEFAULT;
   396     case 2: return Strength.NORMAL;
   397     case 3: return Strength.STRONG_DEFAULT;
   398     case 4: return Strength.PREFERRED;
   399     case 5: return Strength.REQUIRED;
   400   }
   401 }
   403 // Strength constants.
   404 Strength.REQUIRED        = new Strength(0, "required");
   405 Strength.STONG_PREFERRED = new Strength(1, "strongPreferred");
   406 Strength.PREFERRED       = new Strength(2, "preferred");
   407 Strength.STRONG_DEFAULT  = new Strength(3, "strongDefault");
   408 Strength.NORMAL          = new Strength(4, "normal");
   409 Strength.WEAK_DEFAULT    = new Strength(5, "weakDefault");
   410 Strength.WEAKEST         = new Strength(6, "weakest");
   412 /* --- *
   413  * C o n s t r a i n t
   414  * --- */
   416 /**
   417  * An abstract class representing a system-maintainable relationship
   418  * (or "constraint") between a set of variables. A constraint supplies
   419  * a strength instance variable; concrete subclasses provide a means
   420  * of storing the constrained variables and other information required
   421  * to represent a constraint.
   422  */
   423 function Constraint(strength) {
   424   this.strength = strength;
   425 }
   427 /**
   428  * Activate this constraint and attempt to satisfy it.
   429  */
   430 Constraint.prototype.addConstraint = function () {
   431   this.addToGraph();
   432   planner.incrementalAdd(this);
   433 }
   435 /**
   436  * Attempt to find a way to enforce this constraint. If successful,
   437  * record the solution, perhaps modifying the current dataflow
   438  * graph. Answer the constraint that this constraint overrides, if
   439  * there is one, or nil, if there isn't.
   440  * Assume: I am not already satisfied.
   441  */
   442 Constraint.prototype.satisfy = function (mark) {
   443   this.chooseMethod(mark);
   444   if (!this.isSatisfied()) {
   445     if (this.strength == Strength.REQUIRED)
   446       alert("Could not satisfy a required constraint!");
   447     return null;
   448   }
   449   this.markInputs(mark);
   450   var out = this.output();
   451   var overridden = out.determinedBy;
   452   if (overridden != null) overridden.markUnsatisfied();
   453   out.determinedBy = this;
   454   if (!planner.addPropagate(this, mark))
   455     alert("Cycle encountered");
   456   out.mark = mark;
   457   return overridden;
   458 }
   460 Constraint.prototype.destroyConstraint = function () {
   461   if (this.isSatisfied()) planner.incrementalRemove(this);
   462   else this.removeFromGraph();
   463 }
   465 /**
   466  * Normal constraints are not input constraints.  An input constraint
   467  * is one that depends on external state, such as the mouse, the
   468  * keybord, a clock, or some arbitraty piece of imperative code.
   469  */
   470 Constraint.prototype.isInput = function () {
   471   return false;
   472 }
   474 /* --- *
   475  * U n a r y   C o n s t r a i n t
   476  * --- */
   478 /**
   479  * Abstract superclass for constraints having a single possible output
   480  * variable.
   481  */
   482 function UnaryConstraint(v, strength) {
   483   UnaryConstraint.superConstructor.call(this, strength);
   484   this.myOutput = v;
   485   this.satisfied = false;
   486   this.addConstraint();
   487 }
   489 UnaryConstraint.inherits(Constraint);
   491 /**
   492  * Adds this constraint to the constraint graph
   493  */
   494 UnaryConstraint.prototype.addToGraph = function () {
   495   this.myOutput.addConstraint(this);
   496   this.satisfied = false;
   497 }
   499 /**
   500  * Decides if this constraint can be satisfied and records that
   501  * decision.
   502  */
   503 UnaryConstraint.prototype.chooseMethod = function (mark) {
   504   this.satisfied = (this.myOutput.mark != mark)
   505     && Strength.stronger(this.strength, this.myOutput.walkStrength);
   506 }
   508 /**
   509  * Returns true if this constraint is satisfied in the current solution.
   510  */
   511 UnaryConstraint.prototype.isSatisfied = function () {
   512   return this.satisfied;
   513 }
   515 UnaryConstraint.prototype.markInputs = function (mark) {
   516   // has no inputs
   517 }
   519 /**
   520  * Returns the current output variable.
   521  */
   522 UnaryConstraint.prototype.output = function () {
   523   return this.myOutput;
   524 }
   526 /**
   527  * Calculate the walkabout strength, the stay flag, and, if it is
   528  * 'stay', the value for the current output of this constraint. Assume
   529  * this constraint is satisfied.
   530  */
   531 UnaryConstraint.prototype.recalculate = function () {
   532   this.myOutput.walkStrength = this.strength;
   533   this.myOutput.stay = !this.isInput();
   534   if (this.myOutput.stay) this.execute(); // Stay optimization
   535 }
   537 /**
   538  * Records that this constraint is unsatisfied
   539  */
   540 UnaryConstraint.prototype.markUnsatisfied = function () {
   541   this.satisfied = false;
   542 }
   544 UnaryConstraint.prototype.inputsKnown = function () {
   545   return true;
   546 }
   548 UnaryConstraint.prototype.removeFromGraph = function () {
   549   if (this.myOutput != null) this.myOutput.removeConstraint(this);
   550   this.satisfied = false;
   551 }
   553 /* --- *
   554  * S t a y   C o n s t r a i n t
   555  * --- */
   557 /**
   558  * Variables that should, with some level of preference, stay the same.
   559  * Planners may exploit the fact that instances, if satisfied, will not
   560  * change their output during plan execution.  This is called "stay
   561  * optimization".
   562  */
   563 function StayConstraint(v, str) {
   564   StayConstraint.superConstructor.call(this, v, str);
   565 }
   567 StayConstraint.inherits(UnaryConstraint);
   569 StayConstraint.prototype.execute = function () {
   570   // Stay constraints do nothing
   571 }
   573 /* --- *
   574  * E d i t   C o n s t r a i n t
   575  * --- */
   577 /**
   578  * A unary input constraint used to mark a variable that the client
   579  * wishes to change.
   580  */
   581 function EditConstraint(v, str) {
   582   EditConstraint.superConstructor.call(this, v, str);
   583 }
   585 EditConstraint.inherits(UnaryConstraint);
   587 /**
   588  * Edits indicate that a variable is to be changed by imperative code.
   589  */
   590 EditConstraint.prototype.isInput = function () {
   591   return true;
   592 }
   594 EditConstraint.prototype.execute = function () {
   595   // Edit constraints do nothing
   596 }
   598 /* --- *
   599  * B i n a r y   C o n s t r a i n t
   600  * --- */
   602 var Direction = new Object();
   603 Direction.NONE     = 0;
   604 Direction.FORWARD  = 1;
   605 Direction.BACKWARD = -1;
   607 /**
   608  * Abstract superclass for constraints having two possible output
   609  * variables.
   610  */
   611 function BinaryConstraint(var1, var2, strength) {
   612   BinaryConstraint.superConstructor.call(this, strength);
   613   this.v1 = var1;
   614   this.v2 = var2;
   615   this.direction = Direction.NONE;
   616   this.addConstraint();
   617 }
   619 BinaryConstraint.inherits(Constraint);
   621 /**
   622  * Decides if this constratint can be satisfied and which way it
   623  * should flow based on the relative strength of the variables related,
   624  * and record that decision.
   625  */
   626 BinaryConstraint.prototype.chooseMethod = function (mark) {
   627   if (this.v1.mark == mark) {
   628     this.direction = (this.v1.mark != mark && Strength.stronger(this.strength, this.v2.walkStrength))
   629       ? Direction.FORWARD
   630       : Direction.NONE;
   631   }
   632   if (this.v2.mark == mark) {
   633     this.direction = (this.v1.mark != mark && Strength.stronger(this.strength, this.v1.walkStrength))
   634       ? Direction.BACKWARD
   635       : Direction.NONE;
   636   }
   637   if (Strength.weaker(this.v1.walkStrength, this.v2.walkStrength)) {
   638     this.direction = Strength.stronger(this.strength, this.v1.walkStrength)
   639       ? Direction.BACKWARD
   640       : Direction.NONE;
   641   } else {
   642     this.direction = Strength.stronger(this.strength, this.v2.walkStrength)
   643       ? Direction.FORWARD
   644       : Direction.BACKWARD
   645   }
   646 }
   648 /**
   649  * Add this constraint to the constraint graph
   650  */
   651 BinaryConstraint.prototype.addToGraph = function () {
   652   this.v1.addConstraint(this);
   653   this.v2.addConstraint(this);
   654   this.direction = Direction.NONE;
   655 }
   657 /**
   658  * Answer true if this constraint is satisfied in the current solution.
   659  */
   660 BinaryConstraint.prototype.isSatisfied = function () {
   661   return this.direction != Direction.NONE;
   662 }
   664 /**
   665  * Mark the input variable with the given mark.
   666  */
   667 BinaryConstraint.prototype.markInputs = function (mark) {
   668   this.input().mark = mark;
   669 }
   671 /**
   672  * Returns the current input variable
   673  */
   674 BinaryConstraint.prototype.input = function () {
   675   return (this.direction == Direction.FORWARD) ? this.v1 : this.v2;
   676 }
   678 /**
   679  * Returns the current output variable
   680  */
   681 BinaryConstraint.prototype.output = function () {
   682   return (this.direction == Direction.FORWARD) ? this.v2 : this.v1;
   683 }
   685 /**
   686  * Calculate the walkabout strength, the stay flag, and, if it is
   687  * 'stay', the value for the current output of this
   688  * constraint. Assume this constraint is satisfied.
   689  */
   690 BinaryConstraint.prototype.recalculate = function () {
   691   var ihn = this.input(), out = this.output();
   692   out.walkStrength = Strength.weakestOf(this.strength, ihn.walkStrength);
   693   out.stay = ihn.stay;
   694   if (out.stay) this.execute();
   695 }
   697 /**
   698  * Record the fact that this constraint is unsatisfied.
   699  */
   700 BinaryConstraint.prototype.markUnsatisfied = function () {
   701   this.direction = Direction.NONE;
   702 }
   704 BinaryConstraint.prototype.inputsKnown = function (mark) {
   705   var i = this.input();
   706   return i.mark == mark || i.stay || i.determinedBy == null;
   707 }
   709 BinaryConstraint.prototype.removeFromGraph = function () {
   710   if (this.v1 != null) this.v1.removeConstraint(this);
   711   if (this.v2 != null) this.v2.removeConstraint(this);
   712   this.direction = Direction.NONE;
   713 }
   715 /* --- *
   716  * S c a l e   C o n s t r a i n t
   717  * --- */
   719 /**
   720  * Relates two variables by the linear scaling relationship: "v2 =
   721  * (v1 * scale) + offset". Either v1 or v2 may be changed to maintain
   722  * this relationship but the scale factor and offset are considered
   723  * read-only.
   724  */
   725 function ScaleConstraint(src, scale, offset, dest, strength) {
   726   this.direction = Direction.NONE;
   727   this.scale = scale;
   728   this.offset = offset;
   729   ScaleConstraint.superConstructor.call(this, src, dest, strength);
   730 }
   732 ScaleConstraint.inherits(BinaryConstraint);
   734 /**
   735  * Adds this constraint to the constraint graph.
   736  */
   737 ScaleConstraint.prototype.addToGraph = function () {
   738   ScaleConstraint.superConstructor.prototype.addToGraph.call(this);
   739   this.scale.addConstraint(this);
   740   this.offset.addConstraint(this);
   741 }
   743 ScaleConstraint.prototype.removeFromGraph = function () {
   744   ScaleConstraint.superConstructor.prototype.removeFromGraph.call(this);
   745   if (this.scale != null) this.scale.removeConstraint(this);
   746   if (this.offset != null) this.offset.removeConstraint(this);
   747 }
   749 ScaleConstraint.prototype.markInputs = function (mark) {
   750   ScaleConstraint.superConstructor.prototype.markInputs.call(this, mark);
   751   this.scale.mark = this.offset.mark = mark;
   752 }
   754 /**
   755  * Enforce this constraint. Assume that it is satisfied.
   756  */
   757 ScaleConstraint.prototype.execute = function () {
   758   if (this.direction == Direction.FORWARD) {
   759     this.v2.value = this.v1.value * this.scale.value + this.offset.value;
   760   } else {
   761     this.v1.value = (this.v2.value - this.offset.value) / this.scale.value;
   762   }
   763 }
   765 /**
   766  * Calculate the walkabout strength, the stay flag, and, if it is
   767  * 'stay', the value for the current output of this constraint. Assume
   768  * this constraint is satisfied.
   769  */
   770 ScaleConstraint.prototype.recalculate = function () {
   771   var ihn = this.input(), out = this.output();
   772   out.walkStrength = Strength.weakestOf(this.strength, ihn.walkStrength);
   773   out.stay = ihn.stay && this.scale.stay && this.offset.stay;
   774   if (out.stay) this.execute();
   775 }
   777 /* --- *
   778  * E q u a l i t  y   C o n s t r a i n t
   779  * --- */
   781 /**
   782  * Constrains two variables to have the same value.
   783  */
   784 function EqualityConstraint(var1, var2, strength) {
   785   EqualityConstraint.superConstructor.call(this, var1, var2, strength);
   786 }
   788 EqualityConstraint.inherits(BinaryConstraint);
   790 /**
   791  * Enforce this constraint. Assume that it is satisfied.
   792  */
   793 EqualityConstraint.prototype.execute = function () {
   794   this.output().value = this.input().value;
   795 }
   797 /* --- *
   798  * V a r i a b l e
   799  * --- */
   801 /**
   802  * A constrained variable. In addition to its value, it maintain the
   803  * structure of the constraint graph, the current dataflow graph, and
   804  * various parameters of interest to the DeltaBlue incremental
   805  * constraint solver.
   806  **/
   807 function Variable(name, initialValue) {
   808   this.value = initialValue || 0;
   809   this.constraints = new OrderedCollection();
   810   this.determinedBy = null;
   811   this.mark = 0;
   812   this.walkStrength = Strength.WEAKEST;
   813   this.stay = true;
   814   this.name = name;
   815 }
   817 /**
   818  * Add the given constraint to the set of all constraints that refer
   819  * this variable.
   820  */
   821 Variable.prototype.addConstraint = function (c) {
   822   this.constraints.add(c);
   823 }
   825 /**
   826  * Removes all traces of c from this variable.
   827  */
   828 Variable.prototype.removeConstraint = function (c) {
   829   this.constraints.remove(c);
   830   if (this.determinedBy == c) this.determinedBy = null;
   831 }
   833 /* --- *
   834  * P l a n n e r
   835  * --- */
   837 /**
   838  * The DeltaBlue planner
   839  */
   840 function Planner() {
   841   this.currentMark = 0;
   842 }
   844 /**
   845  * Attempt to satisfy the given constraint and, if successful,
   846  * incrementally update the dataflow graph.  Details: If satifying
   847  * the constraint is successful, it may override a weaker constraint
   848  * on its output. The algorithm attempts to resatisfy that
   849  * constraint using some other method. This process is repeated
   850  * until either a) it reaches a variable that was not previously
   851  * determined by any constraint or b) it reaches a constraint that
   852  * is too weak to be satisfied using any of its methods. The
   853  * variables of constraints that have been processed are marked with
   854  * a unique mark value so that we know where we've been. This allows
   855  * the algorithm to avoid getting into an infinite loop even if the
   856  * constraint graph has an inadvertent cycle.
   857  */
   858 Planner.prototype.incrementalAdd = function (c) {
   859   var mark = this.newMark();
   860   var overridden = c.satisfy(mark);
   861   /* BEGIN LOOP */
   862   while (overridden != null)
   863     overridden = overridden.satisfy(mark);
   864   /* END LOOP */
   865 }
   867 /**
   868  * Entry point for retracting a constraint. Remove the given
   869  * constraint and incrementally update the dataflow graph.
   870  * Details: Retracting the given constraint may allow some currently
   871  * unsatisfiable downstream constraint to be satisfied. We therefore collect
   872  * a list of unsatisfied downstream constraints and attempt to
   873  * satisfy each one in turn. This list is traversed by constraint
   874  * strength, strongest first, as a heuristic for avoiding
   875  * unnecessarily adding and then overriding weak constraints.
   876  * Assume: c is satisfied.
   877  */
   878 Planner.prototype.incrementalRemove = function (c) {
   879   var out = c.output();
   880   c.markUnsatisfied();
   881   c.removeFromGraph();
   882   var unsatisfied = this.removePropagateFrom(out);
   883   var strength = Strength.REQUIRED;
   884   /* BEGIN LOOP */
   885   do {
   886   /* BEGIN LOOP */
   887     for (var i = 0; i < unsatisfied.size(); i++) {
   888       var u = unsatisfied.at(i);
   889       if (u.strength == strength)
   890         this.incrementalAdd(u);
   891     }
   892   /* END LOOP */
   893     strength = strength.nextWeaker();
   894   } while (strength != Strength.WEAKEST);
   895   /* END LOOP */
   896 }
   898 /**
   899  * Select a previously unused mark value.
   900  */
   901 Planner.prototype.newMark = function () {
   902   return ++this.currentMark;
   903 }
   905 /**
   906  * Extract a plan for resatisfaction starting from the given source
   907  * constraints, usually a set of input constraints. This method
   908  * assumes that stay optimization is desired; the plan will contain
   909  * only constraints whose output variables are not stay. Constraints
   910  * that do no computation, such as stay and edit constraints, are
   911  * not included in the plan.
   912  * Details: The outputs of a constraint are marked when it is added
   913  * to the plan under construction. A constraint may be appended to
   914  * the plan when all its input variables are known. A variable is
   915  * known if either a) the variable is marked (indicating that has
   916  * been computed by a constraint appearing earlier in the plan), b)
   917  * the variable is 'stay' (i.e. it is a constant at plan execution
   918  * time), or c) the variable is not determined by any
   919  * constraint. The last provision is for past states of history
   920  * variables, which are not stay but which are also not computed by
   921  * any constraint.
   922  * Assume: sources are all satisfied.
   923  */
   924 Planner.prototype.makePlan = function (sources) {
   925   var mark = this.newMark();
   926   var plan = new Plan();
   927   var todo = sources;
   928   /* BEGIN LOOP */
   929   while (todo.size() > 0) {
   930     var c = todo.removeFirst();
   931     if (c.output().mark != mark && c.inputsKnown(mark)) {
   932       plan.addConstraint(c);
   933       c.output().mark = mark;
   934       this.addConstraintsConsumingTo(c.output(), todo);
   935     }
   936   }
   937   /* END LOOP */
   938   return plan;
   939 }
   941 /**
   942  * Extract a plan for resatisfying starting from the output of the
   943  * given constraints, usually a set of input constraints.
   944  */
   945 Planner.prototype.extractPlanFromConstraints = function (constraints) {
   946   var sources = new OrderedCollection();
   947   /* BEGIN LOOP */
   948   for (var i = 0; i < constraints.size(); i++) {
   949     var c = constraints.at(i);
   950     if (c.isInput() && c.isSatisfied())
   951       // not in plan already and eligible for inclusion
   952       sources.add(c);
   953   }
   954   /* END LOOP */
   955   return this.makePlan(sources);
   956 }
   958 /**
   959  * Recompute the walkabout strengths and stay flags of all variables
   960  * downstream of the given constraint and recompute the actual
   961  * values of all variables whose stay flag is true. If a cycle is
   962  * detected, remove the given constraint and answer
   963  * false. Otherwise, answer true.
   964  * Details: Cycles are detected when a marked variable is
   965  * encountered downstream of the given constraint. The sender is
   966  * assumed to have marked the inputs of the given constraint with
   967  * the given mark. Thus, encountering a marked node downstream of
   968  * the output constraint means that there is a path from the
   969  * constraint's output to one of its inputs.
   970  */
   971 Planner.prototype.addPropagate = function (c, mark) {
   972   var todo = new OrderedCollection();
   973   todo.add(c);
   974   /* BEGIN LOOP */
   975   while (todo.size() > 0) {
   976     var d = todo.removeFirst();
   977     if (d.output().mark == mark) {
   978       this.incrementalRemove(c);
   979       return false;
   980     }
   981     d.recalculate();
   982     this.addConstraintsConsumingTo(d.output(), todo);
   983   }
   984   /* END LOOP */
   985   return true;
   986 }
   989 /**
   990  * Update the walkabout strengths and stay flags of all variables
   991  * downstream of the given constraint. Answer a collection of
   992  * unsatisfied constraints sorted in order of decreasing strength.
   993  */
   994 Planner.prototype.removePropagateFrom = function (out) {
   995   out.determinedBy = null;
   996   out.walkStrength = Strength.WEAKEST;
   997   out.stay = true;
   998   var unsatisfied = new OrderedCollection();
   999   var todo = new OrderedCollection();
  1000   todo.add(out);
  1001   /* BEGIN LOOP */
  1002   while (todo.size() > 0) {
  1003     var v = todo.removeFirst();
  1004   /* BEGIN LOOP */
  1005     for (var i = 0; i < v.constraints.size(); i++) {
  1006       var c = v.constraints.at(i);
  1007       if (!c.isSatisfied())
  1008         unsatisfied.add(c);
  1010   /* END LOOP */
  1011     var determining = v.determinedBy;
  1012   /* BEGIN LOOP */
  1013     for (var i = 0; i < v.constraints.size(); i++) {
  1014       var next = v.constraints.at(i);
  1015       if (next != determining && next.isSatisfied()) {
  1016         next.recalculate();
  1017         todo.add(next.output());
  1020   /* END LOOP */
  1022   /* END LOOP */
  1023   return unsatisfied;
  1026 Planner.prototype.addConstraintsConsumingTo = function (v, coll) {
  1027   var determining = v.determinedBy;
  1028   var cc = v.constraints;
  1029   /* BEGIN LOOP */
  1030   for (var i = 0; i < cc.size(); i++) {
  1031     var c = cc.at(i);
  1032     if (c != determining && c.isSatisfied())
  1033       coll.add(c);
  1035   /* END LOOP */
  1038 /* --- *
  1039  * P l a n
  1040  * --- */
  1042 /**
  1043  * A Plan is an ordered list of constraints to be executed in sequence
  1044  * to resatisfy all currently satisfiable constraints in the face of
  1045  * one or more changing inputs.
  1046  */
  1047 function Plan() {
  1048   this.v = new OrderedCollection();
  1051 Plan.prototype.addConstraint = function (c) {
  1052   this.v.add(c);
  1055 Plan.prototype.size = function () {
  1056   return this.v.size();
  1059 Plan.prototype.constraintAt = function (index) {
  1060   return this.v.at(index);
  1063 Plan.prototype.execute = function () {
  1064   /* BEGIN LOOP */
  1065   for (var i = 0; i < this.size(); i++) {
  1066     var c = this.constraintAt(i);
  1067     c.execute();
  1069   /* END LOOP */
  1072 /* --- *
  1073  * M a i n
  1074  * --- */
  1076 /**
  1077  * This is the standard DeltaBlue benchmark. A long chain of equality
  1078  * constraints is constructed with a stay constraint on one end. An
  1079  * edit constraint is then added to the opposite end and the time is
  1080  * measured for adding and removing this constraint, and extracting
  1081  * and executing a constraint satisfaction plan. There are two cases.
  1082  * In case 1, the added constraint is stronger than the stay
  1083  * constraint and values must propagate down the entire length of the
  1084  * chain. In case 2, the added constraint is weaker than the stay
  1085  * constraint so it cannot be accomodated. The cost in this case is,
  1086  * of course, very low. Typical situations lie somewhere between these
  1087  * two extremes.
  1088  */
  1089 function chainTest(n) {
  1090   planner = new Planner();
  1091   var prev = null, first = null, last = null;
  1093   // Build chain of n equality constraints
  1094   /* BEGIN LOOP */
  1095   for (var i = 0; i <= n; i++) {
  1096     var name = "v" + i;
  1097     var v = new Variable(name);
  1098     if (prev != null)
  1099       new EqualityConstraint(prev, v, Strength.REQUIRED);
  1100     if (i == 0) first = v;
  1101     if (i == n) last = v;
  1102     prev = v;
  1104   /* END LOOP */
  1106   new StayConstraint(last, Strength.STRONG_DEFAULT);
  1107   var edit = new EditConstraint(first, Strength.PREFERRED);
  1108   var edits = new OrderedCollection();
  1109   edits.add(edit);
  1110   var plan = planner.extractPlanFromConstraints(edits);
  1111   /* BEGIN LOOP */
  1112   for (var i = 0; i < 100; i++) {
  1113     first.value = i;
  1114     plan.execute();
  1115     if (last.value != i)
  1116       alert("Chain test failed.");
  1118   /* END LOOP */
  1121 /**
  1122  * This test constructs a two sets of variables related to each
  1123  * other by a simple linear transformation (scale and offset). The
  1124  * time is measured to change a variable on either side of the
  1125  * mapping and to change the scale and offset factors.
  1126  */
  1127 function projectionTest(n) {
  1128   planner = new Planner();
  1129   var scale = new Variable("scale", 10);
  1130   var offset = new Variable("offset", 1000);
  1131   var src = null, dst = null;
  1133   var dests = new OrderedCollection();
  1134   /* BEGIN LOOP */
  1135   for (var i = 0; i < n; i++) {
  1136     src = new Variable("src" + i, i);
  1137     dst = new Variable("dst" + i, i);
  1138     dests.add(dst);
  1139     new StayConstraint(src, Strength.NORMAL);
  1140     new ScaleConstraint(src, scale, offset, dst, Strength.REQUIRED);
  1142   /* END LOOP */
  1144   change(src, 17);
  1145   if (dst.value != 1170) alert("Projection 1 failed");
  1146   change(dst, 1050);
  1147   if (src.value != 5) alert("Projection 2 failed");
  1148   change(scale, 5);
  1149   /* BEGIN LOOP */
  1150   for (var i = 0; i < n - 1; i++) {
  1151     if (dests.at(i).value != i * 5 + 1000)
  1152       alert("Projection 3 failed");
  1154   /* END LOOP */
  1155   change(offset, 2000);
  1156   /* BEGIN LOOP */
  1157   for (var i = 0; i < n - 1; i++) {
  1158     if (dests.at(i).value != i * 5 + 2000)
  1159       alert("Projection 4 failed");
  1161   /* END LOOP */
  1164 function change(v, newValue) {
  1165   var edit = new EditConstraint(v, Strength.PREFERRED);
  1166   var edits = new OrderedCollection();
  1167   edits.add(edit);
  1168   var plan = planner.extractPlanFromConstraints(edits);
  1169   /* BEGIN LOOP */
  1170   for (var i = 0; i < 10; i++) {
  1171     v.value = newValue;
  1172     plan.execute();
  1174   /* END LOOP */
  1175   edit.destroyConstraint();
  1178 // Global variable holding the current planner.
  1179 var planner = null;
  1181 function deltaBlue() {
  1182   chainTest(100);
  1183   projectionTest(100);
  1186 function PrintResult(name, result) {
  1190 function PrintScore(score) {
  1194 BenchmarkSuite.RunSuites({ NotifyResult: PrintResult,
  1195                            NotifyScore: PrintScore });

mercurial