Wed, 31 Dec 2014 06:09:35 +0100
Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.
1 // |jit-test| slow;
2 // This test times out in rooting analyis builds, and so is marked slow so that
3 // it's not run as part of the rooting analysis tests on tinderbox.
5 /*
6 * Copyright (c) 2003-2005 Tom Wu
7 * All Rights Reserved.
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining
10 * a copy of this software and associated documentation files (the
11 * "Software"), to deal in the Software without restriction, including
12 * without limitation the rights to use, copy, modify, merge, publish,
13 * distribute, sublicense, and/or sell copies of the Software, and to
14 * permit persons to whom the Software is furnished to do so, subject to
15 * the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be
18 * included in all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
21 * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
22 * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
23 *
24 * IN NO EVENT SHALL TOM WU BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
25 * INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER
26 * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF
27 * THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT
28 * OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
29 *
30 * In addition, the following condition applies:
31 *
32 * All redistributions must retain an intact copy of this copyright notice
33 * and disclaimer.
34 */
37 // The code has been adapted for use as a benchmark by Google.
38 //var Crypto = new BenchmarkSuite('Crypto', 203037, [
39 // new Benchmark("Encrypt", encrypt),
40 // new Benchmark("Decrypt", decrypt)
41 //]);
44 // Basic JavaScript BN library - subset useful for RSA encryption.
46 // Bits per digit
47 var dbits;
48 var BI_DB;
49 var BI_DM;
50 var BI_DV;
52 var BI_FP;
53 var BI_FV;
54 var BI_F1;
55 var BI_F2;
57 // JavaScript engine analysis
58 var canary = 0xdeadbeefcafe;
59 var j_lm = ((canary&0xffffff)==0xefcafe);
61 // This is the best random number generator available to mankind ;)
62 var MyMath = {
63 curr: 0,
64 random: function() {
65 this.curr = this.curr + 1;
66 return this.curr;
67 },
68 };
71 // (public) Constructor
72 function BigInteger(a,b,c) {
73 this.array = new Array();
74 if(a != null)
75 if("number" == typeof a) this.fromNumber(a,b,c);
76 else if(b == null && "string" != typeof a) this.fromString(a,256);
77 else this.fromString(a,b);
78 }
80 // return new, unset BigInteger
81 function nbi() { return new BigInteger(null); }
83 // am: Compute w_j += (x*this_i), propagate carries,
84 // c is initial carry, returns final carry.
85 // c < 3*dvalue, x < 2*dvalue, this_i < dvalue
86 // We need to select the fastest one that works in this environment.
88 // am1: use a single mult and divide to get the high bits,
89 // max digit bits should be 26 because
90 // max internal value = 2*dvalue^2-2*dvalue (< 2^53)
91 function am1(i,x,w,j,c,n) {
92 var this_array = this.array;
93 var w_array = w.array;
94 while(--n >= 0) {
95 var v = x*this_array[i++]+w_array[j]+c;
96 c = Math.floor(v/0x4000000);
97 w_array[j++] = v&0x3ffffff;
98 }
99 return c;
100 }
102 // am2 avoids a big mult-and-extract completely.
103 // Max digit bits should be <= 30 because we do bitwise ops
104 // on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)
105 function am2(i,x,w,j,c,n) {
106 var this_array = this.array;
107 var w_array = w.array;
108 var xl = x&0x7fff, xh = x>>15;
109 while(--n >= 0) {
110 var l = this_array[i]&0x7fff;
111 var h = this_array[i++]>>15;
112 var m = xh*l+h*xl;
113 l = xl*l+((m&0x7fff)<<15)+w_array[j]+(c&0x3fffffff);
114 c = (l>>>30)+(m>>>15)+xh*h+(c>>>30);
115 w_array[j++] = l&0x3fffffff;
116 }
117 return c;
118 }
120 // Alternately, set max digit bits to 28 since some
121 // browsers slow down when dealing with 32-bit numbers.
122 function am3(i,x,w,j,c,n) {
123 var this_array = this.array;
124 var w_array = w.array;
126 var xl = x&0x3fff, xh = x>>14;
127 while(--n >= 0) {
128 var l = this_array[i]&0x3fff;
129 var h = this_array[i++]>>14;
130 var m = xh*l+h*xl;
131 l = xl*l+((m&0x3fff)<<14)+w_array[j]+c;
132 c = (l>>28)+(m>>14)+xh*h;
133 w_array[j++] = l&0xfffffff;
134 }
135 return c;
136 }
138 // This is tailored to VMs with 2-bit tagging. It makes sure
139 // that all the computations stay within the 29 bits available.
140 function am4(i,x,w,j,c,n) {
141 var this_array = this.array;
142 var w_array = w.array;
144 var xl = x&0x1fff, xh = x>>13;
145 while(--n >= 0) {
146 var l = this_array[i]&0x1fff;
147 var h = this_array[i++]>>13;
148 var m = xh*l+h*xl;
149 l = xl*l+((m&0x1fff)<<13)+w_array[j]+c;
150 c = (l>>26)+(m>>13)+xh*h;
151 w_array[j++] = l&0x3ffffff;
152 }
153 return c;
154 }
156 // am3/28 is best for SM, Rhino, but am4/26 is best for v8.
157 // Kestrel (Opera 9.5) gets its best result with am4/26.
158 // IE7 does 9% better with am3/28 than with am4/26.
159 // Firefox (SM) gets 10% faster with am3/28 than with am4/26.
161 setupEngine = function(fn, bits) {
162 BigInteger.prototype.am = fn;
163 dbits = bits;
165 BI_DB = dbits;
166 BI_DM = ((1<<dbits)-1);
167 BI_DV = (1<<dbits);
169 BI_FP = 52;
170 BI_FV = Math.pow(2,BI_FP);
171 BI_F1 = BI_FP-dbits;
172 BI_F2 = 2*dbits-BI_FP;
173 }
176 // Digit conversions
177 var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz";
178 var BI_RC = new Array();
179 var rr,vv;
180 rr = "0".charCodeAt(0);
181 for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv;
182 rr = "a".charCodeAt(0);
183 for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
184 rr = "A".charCodeAt(0);
185 for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
187 function int2char(n) { return BI_RM.charAt(n); }
188 function intAt(s,i) {
189 var c = BI_RC[s.charCodeAt(i)];
190 return (c==null)?-1:c;
191 }
193 // (protected) copy this to r
194 function bnpCopyTo(r) {
195 var this_array = this.array;
196 var r_array = r.array;
198 for(var i = this.t-1; i >= 0; --i) r_array[i] = this_array[i];
199 r.t = this.t;
200 r.s = this.s;
201 }
203 // (protected) set from integer value x, -DV <= x < DV
204 function bnpFromInt(x) {
205 var this_array = this.array;
206 this.t = 1;
207 this.s = (x<0)?-1:0;
208 if(x > 0) this_array[0] = x;
209 else if(x < -1) this_array[0] = x+DV;
210 else this.t = 0;
211 }
213 // return bigint initialized to value
214 function nbv(i) { var r = nbi(); r.fromInt(i); return r; }
216 // (protected) set from string and radix
217 function bnpFromString(s,b) {
218 var this_array = this.array;
219 var k;
220 if(b == 16) k = 4;
221 else if(b == 8) k = 3;
222 else if(b == 256) k = 8; // byte array
223 else if(b == 2) k = 1;
224 else if(b == 32) k = 5;
225 else if(b == 4) k = 2;
226 else { this.fromRadix(s,b); return; }
227 this.t = 0;
228 this.s = 0;
229 var i = s.length, mi = false, sh = 0;
230 while(--i >= 0) {
231 var x = (k==8)?s[i]&0xff:intAt(s,i);
232 if(x < 0) {
233 if(s.charAt(i) == "-") mi = true;
234 continue;
235 }
236 mi = false;
237 if(sh == 0)
238 this_array[this.t++] = x;
239 else if(sh+k > BI_DB) {
240 this_array[this.t-1] |= (x&((1<<(BI_DB-sh))-1))<<sh;
241 this_array[this.t++] = (x>>(BI_DB-sh));
242 }
243 else
244 this_array[this.t-1] |= x<<sh;
245 sh += k;
246 if(sh >= BI_DB) sh -= BI_DB;
247 }
248 if(k == 8 && (s[0]&0x80) != 0) {
249 this.s = -1;
250 if(sh > 0) this_array[this.t-1] |= ((1<<(BI_DB-sh))-1)<<sh;
251 }
252 this.clamp();
253 if(mi) BigInteger.ZERO.subTo(this,this);
254 }
256 // (protected) clamp off excess high words
257 function bnpClamp() {
258 var this_array = this.array;
259 var c = this.s&BI_DM;
260 while(this.t > 0 && this_array[this.t-1] == c) --this.t;
261 }
263 // (public) return string representation in given radix
264 function bnToString(b) {
265 var this_array = this.array;
266 if(this.s < 0) return "-"+this.negate().toString(b);
267 var k;
268 if(b == 16) k = 4;
269 else if(b == 8) k = 3;
270 else if(b == 2) k = 1;
271 else if(b == 32) k = 5;
272 else if(b == 4) k = 2;
273 else return this.toRadix(b);
274 var km = (1<<k)-1, d, m = false, r = "", i = this.t;
275 var p = BI_DB-(i*BI_DB)%k;
276 if(i-- > 0) {
277 if(p < BI_DB && (d = this_array[i]>>p) > 0) { m = true; r = int2char(d); }
278 while(i >= 0) {
279 if(p < k) {
280 d = (this_array[i]&((1<<p)-1))<<(k-p);
281 d |= this_array[--i]>>(p+=BI_DB-k);
282 }
283 else {
284 d = (this_array[i]>>(p-=k))&km;
285 if(p <= 0) { p += BI_DB; --i; }
286 }
287 if(d > 0) m = true;
288 if(m) r += int2char(d);
289 }
290 }
291 return m?r:"0";
292 }
294 // (public) -this
295 function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; }
297 // (public) |this|
298 function bnAbs() { return (this.s<0)?this.negate():this; }
300 // (public) return + if this > a, - if this < a, 0 if equal
301 function bnCompareTo(a) {
302 var this_array = this.array;
303 var a_array = a.array;
305 var r = this.s-a.s;
306 if(r != 0) return r;
307 var i = this.t;
308 r = i-a.t;
309 if(r != 0) return r;
310 while(--i >= 0) if((r=this_array[i]-a_array[i]) != 0) return r;
311 return 0;
312 }
314 // returns bit length of the integer x
315 function nbits(x) {
316 var r = 1, t;
317 if((t=x>>>16) != 0) { x = t; r += 16; }
318 if((t=x>>8) != 0) { x = t; r += 8; }
319 if((t=x>>4) != 0) { x = t; r += 4; }
320 if((t=x>>2) != 0) { x = t; r += 2; }
321 if((t=x>>1) != 0) { x = t; r += 1; }
322 return r;
323 }
325 // (public) return the number of bits in "this"
326 function bnBitLength() {
327 var this_array = this.array;
328 if(this.t <= 0) return 0;
329 return BI_DB*(this.t-1)+nbits(this_array[this.t-1]^(this.s&BI_DM));
330 }
332 // (protected) r = this << n*DB
333 function bnpDLShiftTo(n,r) {
334 var this_array = this.array;
335 var r_array = r.array;
336 var i;
337 for(i = this.t-1; i >= 0; --i) r_array[i+n] = this_array[i];
338 for(i = n-1; i >= 0; --i) r_array[i] = 0;
339 r.t = this.t+n;
340 r.s = this.s;
341 }
343 // (protected) r = this >> n*DB
344 function bnpDRShiftTo(n,r) {
345 var this_array = this.array;
346 var r_array = r.array;
347 for(var i = n; i < this.t; ++i) r_array[i-n] = this_array[i];
348 r.t = Math.max(this.t-n,0);
349 r.s = this.s;
350 }
352 // (protected) r = this << n
353 function bnpLShiftTo(n,r) {
354 var this_array = this.array;
355 var r_array = r.array;
356 var bs = n%BI_DB;
357 var cbs = BI_DB-bs;
358 var bm = (1<<cbs)-1;
359 var ds = Math.floor(n/BI_DB), c = (this.s<<bs)&BI_DM, i;
360 for(i = this.t-1; i >= 0; --i) {
361 r_array[i+ds+1] = (this_array[i]>>cbs)|c;
362 c = (this_array[i]&bm)<<bs;
363 }
364 for(i = ds-1; i >= 0; --i) r_array[i] = 0;
365 r_array[ds] = c;
366 r.t = this.t+ds+1;
367 r.s = this.s;
368 r.clamp();
369 }
371 // (protected) r = this >> n
372 function bnpRShiftTo(n,r) {
373 var this_array = this.array;
374 var r_array = r.array;
375 r.s = this.s;
376 var ds = Math.floor(n/BI_DB);
377 if(ds >= this.t) { r.t = 0; return; }
378 var bs = n%BI_DB;
379 var cbs = BI_DB-bs;
380 var bm = (1<<bs)-1;
381 r_array[0] = this_array[ds]>>bs;
382 for(var i = ds+1; i < this.t; ++i) {
383 r_array[i-ds-1] |= (this_array[i]&bm)<<cbs;
384 r_array[i-ds] = this_array[i]>>bs;
385 }
386 if(bs > 0) r_array[this.t-ds-1] |= (this.s&bm)<<cbs;
387 r.t = this.t-ds;
388 r.clamp();
389 }
391 // (protected) r = this - a
392 function bnpSubTo(a,r) {
393 var this_array = this.array;
394 var r_array = r.array;
395 var a_array = a.array;
396 var i = 0, c = 0, m = Math.min(a.t,this.t);
397 while(i < m) {
398 c += this_array[i]-a_array[i];
399 r_array[i++] = c&BI_DM;
400 c >>= BI_DB;
401 }
402 if(a.t < this.t) {
403 c -= a.s;
404 while(i < this.t) {
405 c += this_array[i];
406 r_array[i++] = c&BI_DM;
407 c >>= BI_DB;
408 }
409 c += this.s;
410 }
411 else {
412 c += this.s;
413 while(i < a.t) {
414 c -= a_array[i];
415 r_array[i++] = c&BI_DM;
416 c >>= BI_DB;
417 }
418 c -= a.s;
419 }
420 r.s = (c<0)?-1:0;
421 if(c < -1) r_array[i++] = BI_DV+c;
422 else if(c > 0) r_array[i++] = c;
423 r.t = i;
424 r.clamp();
425 }
427 // (protected) r = this * a, r != this,a (HAC 14.12)
428 // "this" should be the larger one if appropriate.
429 function bnpMultiplyTo(a,r) {
430 var this_array = this.array;
431 var r_array = r.array;
432 var x = this.abs(), y = a.abs();
433 var y_array = y.array;
435 var i = x.t;
436 r.t = i+y.t;
437 while(--i >= 0) r_array[i] = 0;
438 for(i = 0; i < y.t; ++i) r_array[i+x.t] = x.am(0,y_array[i],r,i,0,x.t);
439 r.s = 0;
440 r.clamp();
441 if(this.s != a.s) BigInteger.ZERO.subTo(r,r);
442 }
444 // (protected) r = this^2, r != this (HAC 14.16)
445 function bnpSquareTo(r) {
446 var x = this.abs();
447 var x_array = x.array;
448 var r_array = r.array;
450 var i = r.t = 2*x.t;
451 while(--i >= 0) r_array[i] = 0;
452 for(i = 0; i < x.t-1; ++i) {
453 var c = x.am(i,x_array[i],r,2*i,0,1);
454 if((r_array[i+x.t]+=x.am(i+1,2*x_array[i],r,2*i+1,c,x.t-i-1)) >= BI_DV) {
455 r_array[i+x.t] -= BI_DV;
456 r_array[i+x.t+1] = 1;
457 }
458 }
459 if(r.t > 0) r_array[r.t-1] += x.am(i,x_array[i],r,2*i,0,1);
460 r.s = 0;
461 r.clamp();
462 }
464 // (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)
465 // r != q, this != m. q or r may be null.
466 function bnpDivRemTo(m,q,r) {
467 var pm = m.abs();
468 if(pm.t <= 0) return;
469 var pt = this.abs();
470 if(pt.t < pm.t) {
471 if(q != null) q.fromInt(0);
472 if(r != null) this.copyTo(r);
473 return;
474 }
475 if(r == null) r = nbi();
476 var y = nbi(), ts = this.s, ms = m.s;
477 var pm_array = pm.array;
478 var nsh = BI_DB-nbits(pm_array[pm.t-1]); // normalize modulus
479 if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); }
480 else { pm.copyTo(y); pt.copyTo(r); }
481 var ys = y.t;
483 var y_array = y.array;
484 var y0 = y_array[ys-1];
485 if(y0 == 0) return;
486 var yt = y0*(1<<BI_F1)+((ys>1)?y_array[ys-2]>>BI_F2:0);
487 var d1 = BI_FV/yt, d2 = (1<<BI_F1)/yt, e = 1<<BI_F2;
488 var i = r.t, j = i-ys, t = (q==null)?nbi():q;
489 y.dlShiftTo(j,t);
491 var r_array = r.array;
492 if(r.compareTo(t) >= 0) {
493 r_array[r.t++] = 1;
494 r.subTo(t,r);
495 }
496 BigInteger.ONE.dlShiftTo(ys,t);
497 t.subTo(y,y); // "negative" y so we can replace sub with am later
498 while(y.t < ys) y_array[y.t++] = 0;
499 while(--j >= 0) {
500 // Estimate quotient digit
501 var qd = (r_array[--i]==y0)?BI_DM:Math.floor(r_array[i]*d1+(r_array[i-1]+e)*d2);
502 if((r_array[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out
503 y.dlShiftTo(j,t);
504 r.subTo(t,r);
505 while(r_array[i] < --qd) r.subTo(t,r);
506 }
507 }
508 if(q != null) {
509 r.drShiftTo(ys,q);
510 if(ts != ms) BigInteger.ZERO.subTo(q,q);
511 }
512 r.t = ys;
513 r.clamp();
514 if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder
515 if(ts < 0) BigInteger.ZERO.subTo(r,r);
516 }
518 // (public) this mod a
519 function bnMod(a) {
520 var r = nbi();
521 this.abs().divRemTo(a,null,r);
522 if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r);
523 return r;
524 }
526 // Modular reduction using "classic" algorithm
527 function Classic(m) { this.m = m; }
528 function cConvert(x) {
529 if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m);
530 else return x;
531 }
532 function cRevert(x) { return x; }
533 function cReduce(x) { x.divRemTo(this.m,null,x); }
534 function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
535 function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
537 Classic.prototype.convert = cConvert;
538 Classic.prototype.revert = cRevert;
539 Classic.prototype.reduce = cReduce;
540 Classic.prototype.mulTo = cMulTo;
541 Classic.prototype.sqrTo = cSqrTo;
543 // (protected) return "-1/this % 2^DB"; useful for Mont. reduction
544 // justification:
545 // xy == 1 (mod m)
546 // xy = 1+km
547 // xy(2-xy) = (1+km)(1-km)
548 // x[y(2-xy)] = 1-k^2m^2
549 // x[y(2-xy)] == 1 (mod m^2)
550 // if y is 1/x mod m, then y(2-xy) is 1/x mod m^2
551 // should reduce x and y(2-xy) by m^2 at each step to keep size bounded.
552 // JS multiply "overflows" differently from C/C++, so care is needed here.
553 function bnpInvDigit() {
554 var this_array = this.array;
555 if(this.t < 1) return 0;
556 var x = this_array[0];
557 if((x&1) == 0) return 0;
558 var y = x&3; // y == 1/x mod 2^2
559 y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4
560 y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8
561 y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16
562 // last step - calculate inverse mod DV directly;
563 // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints
564 y = (y*(2-x*y%BI_DV))%BI_DV; // y == 1/x mod 2^dbits
565 // we really want the negative inverse, and -DV < y < DV
566 return (y>0)?BI_DV-y:-y;
567 }
569 // Montgomery reduction
570 function Montgomery(m) {
571 this.m = m;
572 this.mp = m.invDigit();
573 this.mpl = this.mp&0x7fff;
574 this.mph = this.mp>>15;
575 this.um = (1<<(BI_DB-15))-1;
576 this.mt2 = 2*m.t;
577 }
579 // xR mod m
580 function montConvert(x) {
581 var r = nbi();
582 x.abs().dlShiftTo(this.m.t,r);
583 r.divRemTo(this.m,null,r);
584 if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r);
585 return r;
586 }
588 // x/R mod m
589 function montRevert(x) {
590 var r = nbi();
591 x.copyTo(r);
592 this.reduce(r);
593 return r;
594 }
596 // x = x/R mod m (HAC 14.32)
597 function montReduce(x) {
598 var x_array = x.array;
599 while(x.t <= this.mt2) // pad x so am has enough room later
600 x_array[x.t++] = 0;
601 for(var i = 0; i < this.m.t; ++i) {
602 // faster way of calculating u0 = x[i]*mp mod DV
603 var j = x_array[i]&0x7fff;
604 var u0 = (j*this.mpl+(((j*this.mph+(x_array[i]>>15)*this.mpl)&this.um)<<15))&BI_DM;
605 // use am to combine the multiply-shift-add into one call
606 j = i+this.m.t;
607 x_array[j] += this.m.am(0,u0,x,i,0,this.m.t);
608 // propagate carry
609 while(x_array[j] >= BI_DV) { x_array[j] -= BI_DV; x_array[++j]++; }
610 }
611 x.clamp();
612 x.drShiftTo(this.m.t,x);
613 if(x.compareTo(this.m) >= 0) x.subTo(this.m,x);
614 }
616 // r = "x^2/R mod m"; x != r
617 function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
619 // r = "xy/R mod m"; x,y != r
620 function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
622 Montgomery.prototype.convert = montConvert;
623 Montgomery.prototype.revert = montRevert;
624 Montgomery.prototype.reduce = montReduce;
625 Montgomery.prototype.mulTo = montMulTo;
626 Montgomery.prototype.sqrTo = montSqrTo;
628 // (protected) true iff this is even
629 function bnpIsEven() {
630 var this_array = this.array;
631 return ((this.t>0)?(this_array[0]&1):this.s) == 0;
632 }
634 // (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)
635 function bnpExp(e,z) {
636 if(e > 0xffffffff || e < 1) return BigInteger.ONE;
637 var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1;
638 g.copyTo(r);
639 while(--i >= 0) {
640 z.sqrTo(r,r2);
641 if((e&(1<<i)) > 0) z.mulTo(r2,g,r);
642 else { var t = r; r = r2; r2 = t; }
643 }
644 return z.revert(r);
645 }
647 // (public) this^e % m, 0 <= e < 2^32
648 function bnModPowInt(e,m) {
649 var z;
650 if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m);
651 return this.exp(e,z);
652 }
654 // protected
655 BigInteger.prototype.copyTo = bnpCopyTo;
656 BigInteger.prototype.fromInt = bnpFromInt;
657 BigInteger.prototype.fromString = bnpFromString;
658 BigInteger.prototype.clamp = bnpClamp;
659 BigInteger.prototype.dlShiftTo = bnpDLShiftTo;
660 BigInteger.prototype.drShiftTo = bnpDRShiftTo;
661 BigInteger.prototype.lShiftTo = bnpLShiftTo;
662 BigInteger.prototype.rShiftTo = bnpRShiftTo;
663 BigInteger.prototype.subTo = bnpSubTo;
664 BigInteger.prototype.multiplyTo = bnpMultiplyTo;
665 BigInteger.prototype.squareTo = bnpSquareTo;
666 BigInteger.prototype.divRemTo = bnpDivRemTo;
667 BigInteger.prototype.invDigit = bnpInvDigit;
668 BigInteger.prototype.isEven = bnpIsEven;
669 BigInteger.prototype.exp = bnpExp;
671 // public
672 BigInteger.prototype.toString = bnToString;
673 BigInteger.prototype.negate = bnNegate;
674 BigInteger.prototype.abs = bnAbs;
675 BigInteger.prototype.compareTo = bnCompareTo;
676 BigInteger.prototype.bitLength = bnBitLength;
677 BigInteger.prototype.mod = bnMod;
678 BigInteger.prototype.modPowInt = bnModPowInt;
680 // "constants"
681 BigInteger.ZERO = nbv(0);
682 BigInteger.ONE = nbv(1);
683 // Copyright (c) 2005 Tom Wu
684 // All Rights Reserved.
685 // See "LICENSE" for details.
687 // Extended JavaScript BN functions, required for RSA private ops.
689 // (public)
690 function bnClone() { var r = nbi(); this.copyTo(r); return r; }
692 // (public) return value as integer
693 function bnIntValue() {
694 var this_array = this.array;
695 if(this.s < 0) {
696 if(this.t == 1) return this_array[0]-BI_DV;
697 else if(this.t == 0) return -1;
698 }
699 else if(this.t == 1) return this_array[0];
700 else if(this.t == 0) return 0;
701 // assumes 16 < DB < 32
702 return ((this_array[1]&((1<<(32-BI_DB))-1))<<BI_DB)|this_array[0];
703 }
705 // (public) return value as byte
706 function bnByteValue() {
707 var this_array = this.array;
708 return (this.t==0)?this.s:(this_array[0]<<24)>>24;
709 }
711 // (public) return value as short (assumes DB>=16)
712 function bnShortValue() {
713 var this_array = this.array;
714 return (this.t==0)?this.s:(this_array[0]<<16)>>16;
715 }
717 // (protected) return x s.t. r^x < DV
718 function bnpChunkSize(r) { return Math.floor(Math.LN2*BI_DB/Math.log(r)); }
720 // (public) 0 if this == 0, 1 if this > 0
721 function bnSigNum() {
722 var this_array = this.array;
723 if(this.s < 0) return -1;
724 else if(this.t <= 0 || (this.t == 1 && this_array[0] <= 0)) return 0;
725 else return 1;
726 }
728 // (protected) convert to radix string
729 function bnpToRadix(b) {
730 if(b == null) b = 10;
731 if(this.signum() == 0 || b < 2 || b > 36) return "0";
732 var cs = this.chunkSize(b);
733 var a = Math.pow(b,cs);
734 var d = nbv(a), y = nbi(), z = nbi(), r = "";
735 this.divRemTo(d,y,z);
736 while(y.signum() > 0) {
737 r = (a+z.intValue()).toString(b).substr(1) + r;
738 y.divRemTo(d,y,z);
739 }
740 return z.intValue().toString(b) + r;
741 }
743 // (protected) convert from radix string
744 function bnpFromRadix(s,b) {
745 this.fromInt(0);
746 if(b == null) b = 10;
747 var cs = this.chunkSize(b);
748 var d = Math.pow(b,cs), mi = false, j = 0, w = 0;
749 for(var i = 0; i < s.length; ++i) {
750 var x = intAt(s,i);
751 if(x < 0) {
752 if(s.charAt(i) == "-" && this.signum() == 0) mi = true;
753 continue;
754 }
755 w = b*w+x;
756 if(++j >= cs) {
757 this.dMultiply(d);
758 this.dAddOffset(w,0);
759 j = 0;
760 w = 0;
761 }
762 }
763 if(j > 0) {
764 this.dMultiply(Math.pow(b,j));
765 this.dAddOffset(w,0);
766 }
767 if(mi) BigInteger.ZERO.subTo(this,this);
768 }
770 // (protected) alternate constructor
771 function bnpFromNumber(a,b,c) {
772 if("number" == typeof b) {
773 // new BigInteger(int,int,RNG)
774 if(a < 2) this.fromInt(1);
775 else {
776 this.fromNumber(a,c);
777 if(!this.testBit(a-1)) // force MSB set
778 this.bitwiseTo(BigInteger.ONE.shiftLeft(a-1),op_or,this);
779 if(this.isEven()) this.dAddOffset(1,0); // force odd
780 while(!this.isProbablePrime(b)) {
781 this.dAddOffset(2,0);
782 if(this.bitLength() > a) this.subTo(BigInteger.ONE.shiftLeft(a-1),this);
783 }
784 }
785 }
786 else {
787 // new BigInteger(int,RNG)
788 var x = new Array(), t = a&7;
789 x.length = (a>>3)+1;
790 b.nextBytes(x);
791 if(t > 0) x[0] &= ((1<<t)-1); else x[0] = 0;
792 this.fromString(x,256);
793 }
794 }
796 // (public) convert to bigendian byte array
797 function bnToByteArray() {
798 var this_array = this.array;
799 var i = this.t, r = new Array();
800 r[0] = this.s;
801 var p = BI_DB-(i*BI_DB)%8, d, k = 0;
802 if(i-- > 0) {
803 if(p < BI_DB && (d = this_array[i]>>p) != (this.s&BI_DM)>>p)
804 r[k++] = d|(this.s<<(BI_DB-p));
805 while(i >= 0) {
806 if(p < 8) {
807 d = (this_array[i]&((1<<p)-1))<<(8-p);
808 d |= this_array[--i]>>(p+=BI_DB-8);
809 }
810 else {
811 d = (this_array[i]>>(p-=8))&0xff;
812 if(p <= 0) { p += BI_DB; --i; }
813 }
814 if((d&0x80) != 0) d |= -256;
815 if(k == 0 && (this.s&0x80) != (d&0x80)) ++k;
816 if(k > 0 || d != this.s) r[k++] = d;
817 }
818 }
819 return r;
820 }
822 function bnEquals(a) { return(this.compareTo(a)==0); }
823 function bnMin(a) { return(this.compareTo(a)<0)?this:a; }
824 function bnMax(a) { return(this.compareTo(a)>0)?this:a; }
826 // (protected) r = this op a (bitwise)
827 function bnpBitwiseTo(a,op,r) {
828 var this_array = this.array;
829 var a_array = a.array;
830 var r_array = r.array;
831 var i, f, m = Math.min(a.t,this.t);
832 for(i = 0; i < m; ++i) r_array[i] = op(this_array[i],a_array[i]);
833 if(a.t < this.t) {
834 f = a.s&BI_DM;
835 for(i = m; i < this.t; ++i) r_array[i] = op(this_array[i],f);
836 r.t = this.t;
837 }
838 else {
839 f = this.s&BI_DM;
840 for(i = m; i < a.t; ++i) r_array[i] = op(f,a_array[i]);
841 r.t = a.t;
842 }
843 r.s = op(this.s,a.s);
844 r.clamp();
845 }
847 // (public) this & a
848 function op_and(x,y) { return x&y; }
849 function bnAnd(a) { var r = nbi(); this.bitwiseTo(a,op_and,r); return r; }
851 // (public) this | a
852 function op_or(x,y) { return x|y; }
853 function bnOr(a) { var r = nbi(); this.bitwiseTo(a,op_or,r); return r; }
855 // (public) this ^ a
856 function op_xor(x,y) { return x^y; }
857 function bnXor(a) { var r = nbi(); this.bitwiseTo(a,op_xor,r); return r; }
859 // (public) this & ~a
860 function op_andnot(x,y) { return x&~y; }
861 function bnAndNot(a) { var r = nbi(); this.bitwiseTo(a,op_andnot,r); return r; }
863 // (public) ~this
864 function bnNot() {
865 var this_array = this.array;
866 var r = nbi();
867 var r_array = r.array;
869 for(var i = 0; i < this.t; ++i) r_array[i] = BI_DM&~this_array[i];
870 r.t = this.t;
871 r.s = ~this.s;
872 return r;
873 }
875 // (public) this << n
876 function bnShiftLeft(n) {
877 var r = nbi();
878 if(n < 0) this.rShiftTo(-n,r); else this.lShiftTo(n,r);
879 return r;
880 }
882 // (public) this >> n
883 function bnShiftRight(n) {
884 var r = nbi();
885 if(n < 0) this.lShiftTo(-n,r); else this.rShiftTo(n,r);
886 return r;
887 }
889 // return index of lowest 1-bit in x, x < 2^31
890 function lbit(x) {
891 if(x == 0) return -1;
892 var r = 0;
893 if((x&0xffff) == 0) { x >>= 16; r += 16; }
894 if((x&0xff) == 0) { x >>= 8; r += 8; }
895 if((x&0xf) == 0) { x >>= 4; r += 4; }
896 if((x&3) == 0) { x >>= 2; r += 2; }
897 if((x&1) == 0) ++r;
898 return r;
899 }
901 // (public) returns index of lowest 1-bit (or -1 if none)
902 function bnGetLowestSetBit() {
903 var this_array = this.array;
904 for(var i = 0; i < this.t; ++i)
905 if(this_array[i] != 0) return i*BI_DB+lbit(this_array[i]);
906 if(this.s < 0) return this.t*BI_DB;
907 return -1;
908 }
910 // return number of 1 bits in x
911 function cbit(x) {
912 var r = 0;
913 while(x != 0) { x &= x-1; ++r; }
914 return r;
915 }
917 // (public) return number of set bits
918 function bnBitCount() {
919 var r = 0, x = this.s&BI_DM;
920 for(var i = 0; i < this.t; ++i) r += cbit(this_array[i]^x);
921 return r;
922 }
924 // (public) true iff nth bit is set
925 function bnTestBit(n) {
926 var this_array = this.array;
927 var j = Math.floor(n/BI_DB);
928 if(j >= this.t) return(this.s!=0);
929 return((this_array[j]&(1<<(n%BI_DB)))!=0);
930 }
932 // (protected) this op (1<<n)
933 function bnpChangeBit(n,op) {
934 var r = BigInteger.ONE.shiftLeft(n);
935 this.bitwiseTo(r,op,r);
936 return r;
937 }
939 // (public) this | (1<<n)
940 function bnSetBit(n) { return this.changeBit(n,op_or); }
942 // (public) this & ~(1<<n)
943 function bnClearBit(n) { return this.changeBit(n,op_andnot); }
945 // (public) this ^ (1<<n)
946 function bnFlipBit(n) { return this.changeBit(n,op_xor); }
948 // (protected) r = this + a
949 function bnpAddTo(a,r) {
950 var this_array = this.array;
951 var a_array = a.array;
952 var r_array = r.array;
953 var i = 0, c = 0, m = Math.min(a.t,this.t);
954 while(i < m) {
955 c += this_array[i]+a_array[i];
956 r_array[i++] = c&BI_DM;
957 c >>= BI_DB;
958 }
959 if(a.t < this.t) {
960 c += a.s;
961 while(i < this.t) {
962 c += this_array[i];
963 r_array[i++] = c&BI_DM;
964 c >>= BI_DB;
965 }
966 c += this.s;
967 }
968 else {
969 c += this.s;
970 while(i < a.t) {
971 c += a_array[i];
972 r_array[i++] = c&BI_DM;
973 c >>= BI_DB;
974 }
975 c += a.s;
976 }
977 r.s = (c<0)?-1:0;
978 if(c > 0) r_array[i++] = c;
979 else if(c < -1) r_array[i++] = BI_DV+c;
980 r.t = i;
981 r.clamp();
982 }
984 // (public) this + a
985 function bnAdd(a) { var r = nbi(); this.addTo(a,r); return r; }
987 // (public) this - a
988 function bnSubtract(a) { var r = nbi(); this.subTo(a,r); return r; }
990 // (public) this * a
991 function bnMultiply(a) { var r = nbi(); this.multiplyTo(a,r); return r; }
993 // (public) this / a
994 function bnDivide(a) { var r = nbi(); this.divRemTo(a,r,null); return r; }
996 // (public) this % a
997 function bnRemainder(a) { var r = nbi(); this.divRemTo(a,null,r); return r; }
999 // (public) [this/a,this%a]
1000 function bnDivideAndRemainder(a) {
1001 var q = nbi(), r = nbi();
1002 this.divRemTo(a,q,r);
1003 return new Array(q,r);
1004 }
1006 // (protected) this *= n, this >= 0, 1 < n < DV
1007 function bnpDMultiply(n) {
1008 var this_array = this.array;
1009 this_array[this.t] = this.am(0,n-1,this,0,0,this.t);
1010 ++this.t;
1011 this.clamp();
1012 }
1014 // (protected) this += n << w words, this >= 0
1015 function bnpDAddOffset(n,w) {
1016 var this_array = this.array;
1017 while(this.t <= w) this_array[this.t++] = 0;
1018 this_array[w] += n;
1019 while(this_array[w] >= BI_DV) {
1020 this_array[w] -= BI_DV;
1021 if(++w >= this.t) this_array[this.t++] = 0;
1022 ++this_array[w];
1023 }
1024 }
1026 // A "null" reducer
1027 function NullExp() {}
1028 function nNop(x) { return x; }
1029 function nMulTo(x,y,r) { x.multiplyTo(y,r); }
1030 function nSqrTo(x,r) { x.squareTo(r); }
1032 NullExp.prototype.convert = nNop;
1033 NullExp.prototype.revert = nNop;
1034 NullExp.prototype.mulTo = nMulTo;
1035 NullExp.prototype.sqrTo = nSqrTo;
1037 // (public) this^e
1038 function bnPow(e) { return this.exp(e,new NullExp()); }
1040 // (protected) r = lower n words of "this * a", a.t <= n
1041 // "this" should be the larger one if appropriate.
1042 function bnpMultiplyLowerTo(a,n,r) {
1043 var r_array = r.array;
1044 var a_array = a.array;
1045 var i = Math.min(this.t+a.t,n);
1046 r.s = 0; // assumes a,this >= 0
1047 r.t = i;
1048 while(i > 0) r_array[--i] = 0;
1049 var j;
1050 for(j = r.t-this.t; i < j; ++i) r_array[i+this.t] = this.am(0,a_array[i],r,i,0,this.t);
1051 for(j = Math.min(a.t,n); i < j; ++i) this.am(0,a_array[i],r,i,0,n-i);
1052 r.clamp();
1053 }
1055 // (protected) r = "this * a" without lower n words, n > 0
1056 // "this" should be the larger one if appropriate.
1057 function bnpMultiplyUpperTo(a,n,r) {
1058 var r_array = r.array;
1059 var a_array = a.array;
1060 --n;
1061 var i = r.t = this.t+a.t-n;
1062 r.s = 0; // assumes a,this >= 0
1063 while(--i >= 0) r_array[i] = 0;
1064 for(i = Math.max(n-this.t,0); i < a.t; ++i)
1065 r_array[this.t+i-n] = this.am(n-i,a_array[i],r,0,0,this.t+i-n);
1066 r.clamp();
1067 r.drShiftTo(1,r);
1068 }
1070 // Barrett modular reduction
1071 function Barrett(m) {
1072 // setup Barrett
1073 this.r2 = nbi();
1074 this.q3 = nbi();
1075 BigInteger.ONE.dlShiftTo(2*m.t,this.r2);
1076 this.mu = this.r2.divide(m);
1077 this.m = m;
1078 }
1080 function barrettConvert(x) {
1081 if(x.s < 0 || x.t > 2*this.m.t) return x.mod(this.m);
1082 else if(x.compareTo(this.m) < 0) return x;
1083 else { var r = nbi(); x.copyTo(r); this.reduce(r); return r; }
1084 }
1086 function barrettRevert(x) { return x; }
1088 // x = x mod m (HAC 14.42)
1089 function barrettReduce(x) {
1090 x.drShiftTo(this.m.t-1,this.r2);
1091 if(x.t > this.m.t+1) { x.t = this.m.t+1; x.clamp(); }
1092 this.mu.multiplyUpperTo(this.r2,this.m.t+1,this.q3);
1093 this.m.multiplyLowerTo(this.q3,this.m.t+1,this.r2);
1094 while(x.compareTo(this.r2) < 0) x.dAddOffset(1,this.m.t+1);
1095 x.subTo(this.r2,x);
1096 while(x.compareTo(this.m) >= 0) x.subTo(this.m,x);
1097 }
1099 // r = x^2 mod m; x != r
1100 function barrettSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
1102 // r = x*y mod m; x,y != r
1103 function barrettMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
1105 Barrett.prototype.convert = barrettConvert;
1106 Barrett.prototype.revert = barrettRevert;
1107 Barrett.prototype.reduce = barrettReduce;
1108 Barrett.prototype.mulTo = barrettMulTo;
1109 Barrett.prototype.sqrTo = barrettSqrTo;
1111 // (public) this^e % m (HAC 14.85)
1112 function bnModPow(e,m) {
1113 var e_array = e.array;
1114 var i = e.bitLength(), k, r = nbv(1), z;
1115 if(i <= 0) return r;
1116 else if(i < 18) k = 1;
1117 else if(i < 48) k = 3;
1118 else if(i < 144) k = 4;
1119 else if(i < 768) k = 5;
1120 else k = 6;
1121 if(i < 8)
1122 z = new Classic(m);
1123 else if(m.isEven())
1124 z = new Barrett(m);
1125 else
1126 z = new Montgomery(m);
1128 // precomputation
1129 var g = new Array(), n = 3, k1 = k-1, km = (1<<k)-1;
1130 g[1] = z.convert(this);
1131 if(k > 1) {
1132 var g2 = nbi();
1133 z.sqrTo(g[1],g2);
1134 while(n <= km) {
1135 g[n] = nbi();
1136 z.mulTo(g2,g[n-2],g[n]);
1137 n += 2;
1138 }
1139 }
1141 var j = e.t-1, w, is1 = true, r2 = nbi(), t;
1142 i = nbits(e_array[j])-1;
1143 while(j >= 0) {
1144 if(i >= k1) w = (e_array[j]>>(i-k1))&km;
1145 else {
1146 w = (e_array[j]&((1<<(i+1))-1))<<(k1-i);
1147 if(j > 0) w |= e_array[j-1]>>(BI_DB+i-k1);
1148 }
1150 n = k;
1151 while((w&1) == 0) { w >>= 1; --n; }
1152 if((i -= n) < 0) { i += BI_DB; --j; }
1153 if(is1) { // ret == 1, don't bother squaring or multiplying it
1154 g[w].copyTo(r);
1155 is1 = false;
1156 }
1157 else {
1158 while(n > 1) { z.sqrTo(r,r2); z.sqrTo(r2,r); n -= 2; }
1159 if(n > 0) z.sqrTo(r,r2); else { t = r; r = r2; r2 = t; }
1160 z.mulTo(r2,g[w],r);
1161 }
1163 while(j >= 0 && (e_array[j]&(1<<i)) == 0) {
1164 z.sqrTo(r,r2); t = r; r = r2; r2 = t;
1165 if(--i < 0) { i = BI_DB-1; --j; }
1166 }
1167 }
1168 return z.revert(r);
1169 }
1171 // (public) gcd(this,a) (HAC 14.54)
1172 function bnGCD(a) {
1173 var x = (this.s<0)?this.negate():this.clone();
1174 var y = (a.s<0)?a.negate():a.clone();
1175 if(x.compareTo(y) < 0) { var t = x; x = y; y = t; }
1176 var i = x.getLowestSetBit(), g = y.getLowestSetBit();
1177 if(g < 0) return x;
1178 if(i < g) g = i;
1179 if(g > 0) {
1180 x.rShiftTo(g,x);
1181 y.rShiftTo(g,y);
1182 }
1183 while(x.signum() > 0) {
1184 if((i = x.getLowestSetBit()) > 0) x.rShiftTo(i,x);
1185 if((i = y.getLowestSetBit()) > 0) y.rShiftTo(i,y);
1186 if(x.compareTo(y) >= 0) {
1187 x.subTo(y,x);
1188 x.rShiftTo(1,x);
1189 }
1190 else {
1191 y.subTo(x,y);
1192 y.rShiftTo(1,y);
1193 }
1194 }
1195 if(g > 0) y.lShiftTo(g,y);
1196 return y;
1197 }
1199 // (protected) this % n, n < 2^26
1200 function bnpModInt(n) {
1201 var this_array = this.array;
1202 if(n <= 0) return 0;
1203 var d = BI_DV%n, r = (this.s<0)?n-1:0;
1204 if(this.t > 0)
1205 if(d == 0) r = this_array[0]%n;
1206 else for(var i = this.t-1; i >= 0; --i) r = (d*r+this_array[i])%n;
1207 return r;
1208 }
1210 // (public) 1/this % m (HAC 14.61)
1211 function bnModInverse(m) {
1212 var ac = m.isEven();
1213 if((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO;
1214 var u = m.clone(), v = this.clone();
1215 var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1);
1216 while(u.signum() != 0) {
1217 while(u.isEven()) {
1218 u.rShiftTo(1,u);
1219 if(ac) {
1220 if(!a.isEven() || !b.isEven()) { a.addTo(this,a); b.subTo(m,b); }
1221 a.rShiftTo(1,a);
1222 }
1223 else if(!b.isEven()) b.subTo(m,b);
1224 b.rShiftTo(1,b);
1225 }
1226 while(v.isEven()) {
1227 v.rShiftTo(1,v);
1228 if(ac) {
1229 if(!c.isEven() || !d.isEven()) { c.addTo(this,c); d.subTo(m,d); }
1230 c.rShiftTo(1,c);
1231 }
1232 else if(!d.isEven()) d.subTo(m,d);
1233 d.rShiftTo(1,d);
1234 }
1235 if(u.compareTo(v) >= 0) {
1236 u.subTo(v,u);
1237 if(ac) a.subTo(c,a);
1238 b.subTo(d,b);
1239 }
1240 else {
1241 v.subTo(u,v);
1242 if(ac) c.subTo(a,c);
1243 d.subTo(b,d);
1244 }
1245 }
1246 if(v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO;
1247 if(d.compareTo(m) >= 0) return d.subtract(m);
1248 if(d.signum() < 0) d.addTo(m,d); else return d;
1249 if(d.signum() < 0) return d.add(m); else return d;
1250 }
1252 var lowprimes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509];
1253 var lplim = (1<<26)/lowprimes[lowprimes.length-1];
1255 // (public) test primality with certainty >= 1-.5^t
1256 function bnIsProbablePrime(t) {
1257 var i, x = this.abs();
1258 var x_array = x.array;
1259 if(x.t == 1 && x_array[0] <= lowprimes[lowprimes.length-1]) {
1260 for(i = 0; i < lowprimes.length; ++i)
1261 if(x_array[0] == lowprimes[i]) return true;
1262 return false;
1263 }
1264 if(x.isEven()) return false;
1265 i = 1;
1266 while(i < lowprimes.length) {
1267 var m = lowprimes[i], j = i+1;
1268 while(j < lowprimes.length && m < lplim) m *= lowprimes[j++];
1269 m = x.modInt(m);
1270 while(i < j) if(m%lowprimes[i++] == 0) return false;
1271 }
1272 return x.millerRabin(t);
1273 }
1275 // (protected) true if probably prime (HAC 4.24, Miller-Rabin)
1276 function bnpMillerRabin(t) {
1277 var n1 = this.subtract(BigInteger.ONE);
1278 var k = n1.getLowestSetBit();
1279 if(k <= 0) return false;
1280 var r = n1.shiftRight(k);
1281 t = (t+1)>>1;
1282 if(t > lowprimes.length) t = lowprimes.length;
1283 var a = nbi();
1284 for(var i = 0; i < t; ++i) {
1285 a.fromInt(lowprimes[i]);
1286 var y = a.modPow(r,this);
1287 if(y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) {
1288 var j = 1;
1289 while(j++ < k && y.compareTo(n1) != 0) {
1290 y = y.modPowInt(2,this);
1291 if(y.compareTo(BigInteger.ONE) == 0) return false;
1292 }
1293 if(y.compareTo(n1) != 0) return false;
1294 }
1295 }
1296 return true;
1297 }
1299 // protected
1300 BigInteger.prototype.chunkSize = bnpChunkSize;
1301 BigInteger.prototype.toRadix = bnpToRadix;
1302 BigInteger.prototype.fromRadix = bnpFromRadix;
1303 BigInteger.prototype.fromNumber = bnpFromNumber;
1304 BigInteger.prototype.bitwiseTo = bnpBitwiseTo;
1305 BigInteger.prototype.changeBit = bnpChangeBit;
1306 BigInteger.prototype.addTo = bnpAddTo;
1307 BigInteger.prototype.dMultiply = bnpDMultiply;
1308 BigInteger.prototype.dAddOffset = bnpDAddOffset;
1309 BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo;
1310 BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo;
1311 BigInteger.prototype.modInt = bnpModInt;
1312 BigInteger.prototype.millerRabin = bnpMillerRabin;
1314 // public
1315 BigInteger.prototype.clone = bnClone;
1316 BigInteger.prototype.intValue = bnIntValue;
1317 BigInteger.prototype.byteValue = bnByteValue;
1318 BigInteger.prototype.shortValue = bnShortValue;
1319 BigInteger.prototype.signum = bnSigNum;
1320 BigInteger.prototype.toByteArray = bnToByteArray;
1321 BigInteger.prototype.equals = bnEquals;
1322 BigInteger.prototype.min = bnMin;
1323 BigInteger.prototype.max = bnMax;
1324 BigInteger.prototype.and = bnAnd;
1325 BigInteger.prototype.or = bnOr;
1326 BigInteger.prototype.xor = bnXor;
1327 BigInteger.prototype.andNot = bnAndNot;
1328 BigInteger.prototype.not = bnNot;
1329 BigInteger.prototype.shiftLeft = bnShiftLeft;
1330 BigInteger.prototype.shiftRight = bnShiftRight;
1331 BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit;
1332 BigInteger.prototype.bitCount = bnBitCount;
1333 BigInteger.prototype.testBit = bnTestBit;
1334 BigInteger.prototype.setBit = bnSetBit;
1335 BigInteger.prototype.clearBit = bnClearBit;
1336 BigInteger.prototype.flipBit = bnFlipBit;
1337 BigInteger.prototype.add = bnAdd;
1338 BigInteger.prototype.subtract = bnSubtract;
1339 BigInteger.prototype.multiply = bnMultiply;
1340 BigInteger.prototype.divide = bnDivide;
1341 BigInteger.prototype.remainder = bnRemainder;
1342 BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder;
1343 BigInteger.prototype.modPow = bnModPow;
1344 BigInteger.prototype.modInverse = bnModInverse;
1345 BigInteger.prototype.pow = bnPow;
1346 BigInteger.prototype.gcd = bnGCD;
1347 BigInteger.prototype.isProbablePrime = bnIsProbablePrime;
1349 // BigInteger interfaces not implemented in jsbn:
1351 // BigInteger(int signum, byte[] magnitude)
1352 // double doubleValue()
1353 // float floatValue()
1354 // int hashCode()
1355 // long longValue()
1356 // static BigInteger valueOf(long val)
1357 // prng4.js - uses Arcfour as a PRNG
1359 function Arcfour() {
1360 this.i = 0;
1361 this.j = 0;
1362 this.S = new Array();
1363 }
1365 // Initialize arcfour context from key, an array of ints, each from [0..255]
1366 function ARC4init(key) {
1367 var i, j, t;
1368 for(i = 0; i < 256; ++i)
1369 this.S[i] = i;
1370 j = 0;
1371 for(i = 0; i < 256; ++i) {
1372 j = (j + this.S[i] + key[i % key.length]) & 255;
1373 t = this.S[i];
1374 this.S[i] = this.S[j];
1375 this.S[j] = t;
1376 }
1377 this.i = 0;
1378 this.j = 0;
1379 }
1381 function ARC4next() {
1382 var t;
1383 this.i = (this.i + 1) & 255;
1384 this.j = (this.j + this.S[this.i]) & 255;
1385 t = this.S[this.i];
1386 this.S[this.i] = this.S[this.j];
1387 this.S[this.j] = t;
1388 return this.S[(t + this.S[this.i]) & 255];
1389 }
1391 Arcfour.prototype.init = ARC4init;
1392 Arcfour.prototype.next = ARC4next;
1394 // Plug in your RNG constructor here
1395 function prng_newstate() {
1396 return new Arcfour();
1397 }
1399 // Pool size must be a multiple of 4 and greater than 32.
1400 // An array of bytes the size of the pool will be passed to init()
1401 var rng_psize = 256;
1402 // Random number generator - requires a PRNG backend, e.g. prng4.js
1404 // For best results, put code like
1405 // <body onClick='rng_seed_time();' onKeyPress='rng_seed_time();'>
1406 // in your main HTML document.
1408 var rng_state;
1409 var rng_pool;
1410 var rng_pptr;
1412 // Mix in a 32-bit integer into the pool
1413 function rng_seed_int(x) {
1414 rng_pool[rng_pptr++] ^= x & 255;
1415 rng_pool[rng_pptr++] ^= (x >> 8) & 255;
1416 rng_pool[rng_pptr++] ^= (x >> 16) & 255;
1417 rng_pool[rng_pptr++] ^= (x >> 24) & 255;
1418 if(rng_pptr >= rng_psize) rng_pptr -= rng_psize;
1419 }
1421 // Mix in the current time (w/milliseconds) into the pool
1422 function rng_seed_time() {
1423 // Use pre-computed date to avoid making the benchmark
1424 // results dependent on the current date.
1425 rng_seed_int(1122926989487);
1426 }
1428 // Initialize the pool with junk if needed.
1429 if(rng_pool == null) {
1430 rng_pool = new Array();
1431 rng_pptr = 0;
1432 var t;
1433 while(rng_pptr < rng_psize) { // extract some randomness from Math.random()
1434 t = Math.floor(65536 * MyMath.random());
1435 rng_pool[rng_pptr++] = t >>> 8;
1436 rng_pool[rng_pptr++] = t & 255;
1437 }
1438 rng_pptr = 0;
1439 rng_seed_time();
1440 //rng_seed_int(window.screenX);
1441 //rng_seed_int(window.screenY);
1442 }
1444 function rng_get_byte() {
1445 if(rng_state == null) {
1446 rng_seed_time();
1447 rng_state = prng_newstate();
1448 rng_state.init(rng_pool);
1449 for(rng_pptr = 0; rng_pptr < rng_pool.length; ++rng_pptr)
1450 rng_pool[rng_pptr] = 0;
1451 rng_pptr = 0;
1452 //rng_pool = null;
1453 }
1454 // TODO: allow reseeding after first request
1455 return rng_state.next();
1456 }
1458 function rng_get_bytes(ba) {
1459 var i;
1460 for(i = 0; i < ba.length; ++i) ba[i] = rng_get_byte();
1461 }
1463 function SecureRandom() {}
1465 SecureRandom.prototype.nextBytes = rng_get_bytes;
1466 // Depends on jsbn.js and rng.js
1468 // convert a (hex) string to a bignum object
1469 function parseBigInt(str,r) {
1470 return new BigInteger(str,r);
1471 }
1473 function linebrk(s,n) {
1474 var ret = "";
1475 var i = 0;
1476 while(i + n < s.length) {
1477 ret += s.substring(i,i+n) + "\n";
1478 i += n;
1479 }
1480 return ret + s.substring(i,s.length);
1481 }
1483 function byte2Hex(b) {
1484 if(b < 0x10)
1485 return "0" + b.toString(16);
1486 else
1487 return b.toString(16);
1488 }
1490 // PKCS#1 (type 2, random) pad input string s to n bytes, and return a bigint
1491 function pkcs1pad2(s,n) {
1492 if(n < s.length + 11) {
1493 alert("Message too long for RSA");
1494 return null;
1495 }
1496 var ba = new Array();
1497 var i = s.length - 1;
1498 while(i >= 0 && n > 0) ba[--n] = s.charCodeAt(i--);
1499 ba[--n] = 0;
1500 var rng = new SecureRandom();
1501 var x = new Array();
1502 while(n > 2) { // random non-zero pad
1503 x[0] = 0;
1504 while(x[0] == 0) rng.nextBytes(x);
1505 ba[--n] = x[0];
1506 }
1507 ba[--n] = 2;
1508 ba[--n] = 0;
1509 return new BigInteger(ba);
1510 }
1512 // "empty" RSA key constructor
1513 function RSAKey() {
1514 this.n = null;
1515 this.e = 0;
1516 this.d = null;
1517 this.p = null;
1518 this.q = null;
1519 this.dmp1 = null;
1520 this.dmq1 = null;
1521 this.coeff = null;
1522 }
1524 // Set the public key fields N and e from hex strings
1525 function RSASetPublic(N,E) {
1526 if(N != null && E != null && N.length > 0 && E.length > 0) {
1527 this.n = parseBigInt(N,16);
1528 this.e = parseInt(E,16);
1529 }
1530 else
1531 alert("Invalid RSA public key");
1532 }
1534 // Perform raw public operation on "x": return x^e (mod n)
1535 function RSADoPublic(x) {
1536 return x.modPowInt(this.e, this.n);
1537 }
1539 // Return the PKCS#1 RSA encryption of "text" as an even-length hex string
1540 function RSAEncrypt(text) {
1541 var m = pkcs1pad2(text,(this.n.bitLength()+7)>>3);
1542 if(m == null) return null;
1543 var c = this.doPublic(m);
1544 if(c == null) return null;
1545 var h = c.toString(16);
1546 if((h.length & 1) == 0) return h; else return "0" + h;
1547 }
1549 // Return the PKCS#1 RSA encryption of "text" as a Base64-encoded string
1550 //function RSAEncryptB64(text) {
1551 // var h = this.encrypt(text);
1552 // if(h) return hex2b64(h); else return null;
1553 //}
1555 // protected
1556 RSAKey.prototype.doPublic = RSADoPublic;
1558 // public
1559 RSAKey.prototype.setPublic = RSASetPublic;
1560 RSAKey.prototype.encrypt = RSAEncrypt;
1561 //RSAKey.prototype.encrypt_b64 = RSAEncryptB64;
1562 // Depends on rsa.js and jsbn2.js
1564 // Undo PKCS#1 (type 2, random) padding and, if valid, return the plaintext
1565 function pkcs1unpad2(d,n) {
1566 var b = d.toByteArray();
1567 var i = 0;
1568 while(i < b.length && b[i] == 0) ++i;
1569 if(b.length-i != n-1 || b[i] != 2)
1570 return null;
1571 ++i;
1572 while(b[i] != 0)
1573 if(++i >= b.length) return null;
1574 var ret = "";
1575 while(++i < b.length)
1576 ret += String.fromCharCode(b[i]);
1577 return ret;
1578 }
1580 // Set the private key fields N, e, and d from hex strings
1581 function RSASetPrivate(N,E,D) {
1582 if(N != null && E != null && N.length > 0 && E.length > 0) {
1583 this.n = parseBigInt(N,16);
1584 this.e = parseInt(E,16);
1585 this.d = parseBigInt(D,16);
1586 }
1587 else
1588 alert("Invalid RSA private key");
1589 }
1591 // Set the private key fields N, e, d and CRT params from hex strings
1592 function RSASetPrivateEx(N,E,D,P,Q,DP,DQ,C) {
1593 if(N != null && E != null && N.length > 0 && E.length > 0) {
1594 this.n = parseBigInt(N,16);
1595 this.e = parseInt(E,16);
1596 this.d = parseBigInt(D,16);
1597 this.p = parseBigInt(P,16);
1598 this.q = parseBigInt(Q,16);
1599 this.dmp1 = parseBigInt(DP,16);
1600 this.dmq1 = parseBigInt(DQ,16);
1601 this.coeff = parseBigInt(C,16);
1602 }
1603 else
1604 alert("Invalid RSA private key");
1605 }
1607 // Generate a new random private key B bits long, using public expt E
1608 function RSAGenerate(B,E) {
1609 var rng = new SecureRandom();
1610 var qs = B>>1;
1611 this.e = parseInt(E,16);
1612 var ee = new BigInteger(E,16);
1613 for(;;) {
1614 for(;;) {
1615 this.p = new BigInteger(B-qs,1,rng);
1616 if(this.p.subtract(BigInteger.ONE).gcd(ee).compareTo(BigInteger.ONE) == 0 && this.p.isProbablePrime(10)) break;
1617 }
1618 for(;;) {
1619 this.q = new BigInteger(qs,1,rng);
1620 if(this.q.subtract(BigInteger.ONE).gcd(ee).compareTo(BigInteger.ONE) == 0 && this.q.isProbablePrime(10)) break;
1621 }
1622 if(this.p.compareTo(this.q) <= 0) {
1623 var t = this.p;
1624 this.p = this.q;
1625 this.q = t;
1626 }
1627 var p1 = this.p.subtract(BigInteger.ONE);
1628 var q1 = this.q.subtract(BigInteger.ONE);
1629 var phi = p1.multiply(q1);
1630 if(phi.gcd(ee).compareTo(BigInteger.ONE) == 0) {
1631 this.n = this.p.multiply(this.q);
1632 this.d = ee.modInverse(phi);
1633 this.dmp1 = this.d.mod(p1);
1634 this.dmq1 = this.d.mod(q1);
1635 this.coeff = this.q.modInverse(this.p);
1636 break;
1637 }
1638 }
1639 }
1641 // Perform raw private operation on "x": return x^d (mod n)
1642 function RSADoPrivate(x) {
1643 if(this.p == null || this.q == null)
1644 return x.modPow(this.d, this.n);
1646 // TODO: re-calculate any missing CRT params
1647 var xp = x.mod(this.p).modPow(this.dmp1, this.p);
1648 var xq = x.mod(this.q).modPow(this.dmq1, this.q);
1650 while(xp.compareTo(xq) < 0)
1651 xp = xp.add(this.p);
1652 return xp.subtract(xq).multiply(this.coeff).mod(this.p).multiply(this.q).add(xq);
1653 }
1655 // Return the PKCS#1 RSA decryption of "ctext".
1656 // "ctext" is an even-length hex string and the output is a plain string.
1657 function RSADecrypt(ctext) {
1658 var c = parseBigInt(ctext, 16);
1659 var m = this.doPrivate(c);
1660 if(m == null) return null;
1661 return pkcs1unpad2(m, (this.n.bitLength()+7)>>3);
1662 }
1664 // Return the PKCS#1 RSA decryption of "ctext".
1665 // "ctext" is a Base64-encoded string and the output is a plain string.
1666 //function RSAB64Decrypt(ctext) {
1667 // var h = b64tohex(ctext);
1668 // if(h) return this.decrypt(h); else return null;
1669 //}
1671 // protected
1672 RSAKey.prototype.doPrivate = RSADoPrivate;
1674 // public
1675 RSAKey.prototype.setPrivate = RSASetPrivate;
1676 RSAKey.prototype.setPrivateEx = RSASetPrivateEx;
1677 RSAKey.prototype.generate = RSAGenerate;
1678 RSAKey.prototype.decrypt = RSADecrypt;
1679 //RSAKey.prototype.b64_decrypt = RSAB64Decrypt;
1682 nValue="a5261939975948bb7a58dffe5ff54e65f0498f9175f5a09288810b8975871e99af3b5dd94057b0fc07535f5f97444504fa35169d461d0d30cf0192e307727c065168c788771c561a9400fb49175e9e6aa4e23fe11af69e9412dd23b0cb6684c4c2429bce139e848ab26d0829073351f4acd36074eafd036a5eb83359d2a698d3";
1683 eValue="10001";
1684 dValue="8e9912f6d3645894e8d38cb58c0db81ff516cf4c7e5a14c7f1eddb1459d2cded4d8d293fc97aee6aefb861859c8b6a3d1dfe710463e1f9ddc72048c09751971c4a580aa51eb523357a3cc48d31cfad1d4a165066ed92d4748fb6571211da5cb14bc11b6e2df7c1a559e6d5ac1cd5c94703a22891464fba23d0d965086277a161";
1685 pValue="d090ce58a92c75233a6486cb0a9209bf3583b64f540c76f5294bb97d285eed33aec220bde14b2417951178ac152ceab6da7090905b478195498b352048f15e7d";
1686 qValue="cab575dc652bb66df15a0359609d51d1db184750c00c6698b90ef3465c99655103edbf0d54c56aec0ce3c4d22592338092a126a0cc49f65a4a30d222b411e58f";
1687 dmp1Value="1a24bca8e273df2f0e47c199bbf678604e7df7215480c77c8db39f49b000ce2cf7500038acfff5433b7d582a01f1826e6f4d42e1c57f5e1fef7b12aabc59fd25";
1688 dmq1Value="3d06982efbbe47339e1f6d36b1216b8a741d410b0c662f54f7118b27b9a4ec9d914337eb39841d8666f3034408cf94f5b62f11c402fc994fe15a05493150d9fd";
1689 coeffValue="3a3e731acd8960b7ff9eb81a7ff93bd1cfa74cbd56987db58b4594fb09c09084db1734c8143f98b602b981aaa9243ca28deb69b5b280ee8dcee0fd2625e53250";
1691 setupEngine(am3, 28);
1693 // So that v8 understands assertEq()
1694 if (assertEq == undefined)
1695 {
1696 function assertEq(to_check, expected) {
1697 if ( to_check !== expected )
1698 {
1699 print( "Error: Assertion failed: got \"" + to_check + "\", expected \"" + expected + "\"" );
1700 }
1701 }
1702 }
1704 function check_correctness(text, hash) {
1705 var RSA = new RSAKey();
1706 RSA.setPublic(nValue, eValue);
1707 RSA.setPrivateEx(nValue, eValue, dValue, pValue, qValue, dmp1Value, dmq1Value, coeffValue);
1708 var encrypted = RSA.encrypt(text);
1709 var decrypted = RSA.decrypt(encrypted);
1710 assertEq( encrypted, hash );
1711 assertEq( decrypted, text );
1712 }
1714 // All 'correct' hashes here come from v8's javascript shell built off of tag 2.3.4
1715 check_correctness("Hello! I am some text.", "142b19b40fee712ab9468be296447d38c7dfe81a7850f11ae6aa21e49396a4e90bd6ba4aa385105e15960a59f95447dfad89671da6e08ed42229939583753be84d07558abb4feee4d46a92fd31d962679a1a5f4bf0fb7af414b9a756e18df7e6d1e96971cc66769f3b27d61ad932f2211373e0de388dc040557d4c3c3fe74320");
1716 check_correctness("PLEASE ENCRYPT ME. I AM TEXT. I AM DIEING TO BE ENCRYPTED. OH WHY WONT YOU ENCRYPT ME!?", "490c1fae87d7046296e4b34b357912a72cb7c38c0da3198f1ac3aad3489662ce02663ec5ea1be58ae73a275f3096b16c491f3520ebf822df6c65cc95e28be1cc0a4454dfba3fdd402c3a9de0db2f308989bfc1a7fada0dd680db76d24b2d96bd6b7e7d7e7f962deb953038bae06092f7bb9bcb40bba4ec92e040df32f98e035e");
1717 check_correctness("x","46c1b7cf202171b1b588e9ecf250e768dcf3b300490e859d508f708e702ef799bc496b9fac7634d60a82644653c5fd25b808393b234567116b8890d5f119c7c74dae7c97c8e40ba78ca2dc3e3d78ce859a7fa3815f42c27d0607eafc3940896abb6019cc28b2ff875531ed581a6351728a8df0d607b7c2c26265bf3dddbe4f84");