js/src/jit-test/tests/v8-v5/check-deltablue.js

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

     1 // Copyright 2008 the V8 project authors. All rights reserved.
     2 // Copyright 1996 John Maloney and Mario Wolczko.
     4 // This program is free software; you can redistribute it and/or modify
     5 // it under the terms of the GNU General Public License as published by
     6 // the Free Software Foundation; either version 2 of the License, or
     7 // (at your option) any later version.
     8 //
     9 // This program is distributed in the hope that it will be useful,
    10 // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    12 // GNU General Public License for more details.
    13 //
    14 // You should have received a copy of the GNU General Public License
    15 // along with this program; if not, write to the Free Software
    16 // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
    19 // This implementation of the DeltaBlue benchmark is derived
    20 // from the Smalltalk implementation by John Maloney and Mario
    21 // Wolczko. Some parts have been translated directly, whereas
    22 // others have been modified more aggresively to make it feel
    23 // more like a JavaScript program.
    26 //var DeltaBlue = new BenchmarkSuite('DeltaBlue', 71104, [
    27 //  new Benchmark('DeltaBlue', deltaBlue)
    28 //]);
    31 /**
    32  * A JavaScript implementation of the DeltaBlue constrain-solving
    33  * algorithm, as described in:
    34  *
    35  * "The DeltaBlue Algorithm: An Incremental Constraint Hierarchy Solver"
    36  *   Bjorn N. Freeman-Benson and John Maloney
    37  *   January 1990 Communications of the ACM,
    38  *   also available as University of Washington TR 89-08-06.
    39  *
    40  * Beware: this benchmark is written in a grotesque style where
    41  * the constraint model is built by side-effects from constructors.
    42  * I've kept it this way to avoid deviating too much from the original
    43  * implementation.
    44  */
    46 function alert(msg) {
    47     print(msg);
    48     assertEq(false, true);
    49 }
    51 /* --- O b j e c t   M o d e l --- */
    53 Object.prototype.inheritsFrom = function (shuper) {
    54   function Inheriter() { }
    55   Inheriter.prototype = shuper.prototype;
    56   this.prototype = new Inheriter();
    57   this.superConstructor = shuper;
    58 }
    60 function OrderedCollection() {
    61   this.elms = new Array();
    62 }
    64 OrderedCollection.prototype.add = function (elm) {
    65   this.elms.push(elm);
    66 }
    68 OrderedCollection.prototype.at = function (index) {
    69   return this.elms[index];
    70 }
    72 OrderedCollection.prototype.size = function () {
    73   return this.elms.length;
    74 }
    76 OrderedCollection.prototype.removeFirst = function () {
    77   return this.elms.pop();
    78 }
    80 OrderedCollection.prototype.remove = function (elm) {
    81   var index = 0, skipped = 0;
    82   for (var i = 0; i < this.elms.length; i++) {
    83     var value = this.elms[i];
    84     if (value != elm) {
    85       this.elms[index] = value;
    86       index++;
    87     } else {
    88       skipped++;
    89     }
    90   }
    91   for (var i = 0; i < skipped; i++)
    92     this.elms.pop();
    93 }
    95 /* --- *
    96  * S t r e n g t h
    97  * --- */
    99 /**
   100  * Strengths are used to measure the relative importance of constraints.
   101  * New strengths may be inserted in the strength hierarchy without
   102  * disrupting current constraints.  Strengths cannot be created outside
   103  * this class, so pointer comparison can be used for value comparison.
   104  */
   105 function Strength(strengthValue, name) {
   106   this.strengthValue = strengthValue;
   107   this.name = name;
   108 }
   110 Strength.stronger = function (s1, s2) {
   111   return s1.strengthValue < s2.strengthValue;
   112 }
   114 Strength.weaker = function (s1, s2) {
   115   return s1.strengthValue > s2.strengthValue;
   116 }
   118 Strength.weakestOf = function (s1, s2) {
   119   return this.weaker(s1, s2) ? s1 : s2;
   120 }
   122 Strength.strongest = function (s1, s2) {
   123   return this.stronger(s1, s2) ? s1 : s2;
   124 }
   126 Strength.prototype.nextWeaker = function () {
   127   switch (this.strengthValue) {
   128     case 0: return Strength.WEAKEST;
   129     case 1: return Strength.WEAK_DEFAULT;
   130     case 2: return Strength.NORMAL;
   131     case 3: return Strength.STRONG_DEFAULT;
   132     case 4: return Strength.PREFERRED;
   133     case 5: return Strength.REQUIRED;
   134   }
   135 }
   137 // Strength constants.
   138 Strength.REQUIRED        = new Strength(0, "required");
   139 Strength.STONG_PREFERRED = new Strength(1, "strongPreferred");
   140 Strength.PREFERRED       = new Strength(2, "preferred");
   141 Strength.STRONG_DEFAULT  = new Strength(3, "strongDefault");
   142 Strength.NORMAL          = new Strength(4, "normal");
   143 Strength.WEAK_DEFAULT    = new Strength(5, "weakDefault");
   144 Strength.WEAKEST         = new Strength(6, "weakest");
   146 /* --- *
   147  * C o n s t r a i n t
   148  * --- */
   150 /**
   151  * An abstract class representing a system-maintainable relationship
   152  * (or "constraint") between a set of variables. A constraint supplies
   153  * a strength instance variable; concrete subclasses provide a means
   154  * of storing the constrained variables and other information required
   155  * to represent a constraint.
   156  */
   157 function Constraint(strength) {
   158   this.strength = strength;
   159 }
   161 /**
   162  * Activate this constraint and attempt to satisfy it.
   163  */
   164 Constraint.prototype.addConstraint = function () {
   165   this.addToGraph();
   166   planner.incrementalAdd(this);
   167 }
   169 /**
   170  * Attempt to find a way to enforce this constraint. If successful,
   171  * record the solution, perhaps modifying the current dataflow
   172  * graph. Answer the constraint that this constraint overrides, if
   173  * there is one, or nil, if there isn't.
   174  * Assume: I am not already satisfied.
   175  */
   176 Constraint.prototype.satisfy = function (mark) {
   177   this.chooseMethod(mark);
   178   if (!this.isSatisfied()) {
   179     if (this.strength == Strength.REQUIRED)
   180       alert("Could not satisfy a required constraint!");
   181     return null;
   182   }
   183   this.markInputs(mark);
   184   var out = this.output();
   185   var overridden = out.determinedBy;
   186   if (overridden != null) overridden.markUnsatisfied();
   187   out.determinedBy = this;
   188   if (!planner.addPropagate(this, mark))
   189     alert("Cycle encountered");
   190   out.mark = mark;
   191   return overridden;
   192 }
   194 Constraint.prototype.destroyConstraint = function () {
   195   if (this.isSatisfied()) planner.incrementalRemove(this);
   196   else this.removeFromGraph();
   197 }
   199 /**
   200  * Normal constraints are not input constraints.  An input constraint
   201  * is one that depends on external state, such as the mouse, the
   202  * keybord, a clock, or some arbitraty piece of imperative code.
   203  */
   204 Constraint.prototype.isInput = function () {
   205   return false;
   206 }
   208 /* --- *
   209  * U n a r y   C o n s t r a i n t
   210  * --- */
   212 /**
   213  * Abstract superclass for constraints having a single possible output
   214  * variable.
   215  */
   216 function UnaryConstraint(v, strength) {
   217   UnaryConstraint.superConstructor.call(this, strength);
   218   this.myOutput = v;
   219   this.satisfied = false;
   220   this.addConstraint();
   221 }
   223 UnaryConstraint.inheritsFrom(Constraint);
   225 /**
   226  * Adds this constraint to the constraint graph
   227  */
   228 UnaryConstraint.prototype.addToGraph = function () {
   229   this.myOutput.addConstraint(this);
   230   this.satisfied = false;
   231 }
   233 /**
   234  * Decides if this constraint can be satisfied and records that
   235  * decision.
   236  */
   237 UnaryConstraint.prototype.chooseMethod = function (mark) {
   238   this.satisfied = (this.myOutput.mark != mark)
   239     && Strength.stronger(this.strength, this.myOutput.walkStrength);
   240 }
   242 /**
   243  * Returns true if this constraint is satisfied in the current solution.
   244  */
   245 UnaryConstraint.prototype.isSatisfied = function () {
   246   return this.satisfied;
   247 }
   249 UnaryConstraint.prototype.markInputs = function (mark) {
   250   // has no inputs
   251 }
   253 /**
   254  * Returns the current output variable.
   255  */
   256 UnaryConstraint.prototype.output = function () {
   257   return this.myOutput;
   258 }
   260 /**
   261  * Calculate the walkabout strength, the stay flag, and, if it is
   262  * 'stay', the value for the current output of this constraint. Assume
   263  * this constraint is satisfied.
   264  */
   265 UnaryConstraint.prototype.recalculate = function () {
   266   this.myOutput.walkStrength = this.strength;
   267   this.myOutput.stay = !this.isInput();
   268   if (this.myOutput.stay) this.execute(); // Stay optimization
   269 }
   271 /**
   272  * Records that this constraint is unsatisfied
   273  */
   274 UnaryConstraint.prototype.markUnsatisfied = function () {
   275   this.satisfied = false;
   276 }
   278 UnaryConstraint.prototype.inputsKnown = function () {
   279   return true;
   280 }
   282 UnaryConstraint.prototype.removeFromGraph = function () {
   283   if (this.myOutput != null) this.myOutput.removeConstraint(this);
   284   this.satisfied = false;
   285 }
   287 /* --- *
   288  * S t a y   C o n s t r a i n t
   289  * --- */
   291 /**
   292  * Variables that should, with some level of preference, stay the same.
   293  * Planners may exploit the fact that instances, if satisfied, will not
   294  * change their output during plan execution.  This is called "stay
   295  * optimization".
   296  */
   297 function StayConstraint(v, str) {
   298   StayConstraint.superConstructor.call(this, v, str);
   299 }
   301 StayConstraint.inheritsFrom(UnaryConstraint);
   303 StayConstraint.prototype.execute = function () {
   304   // Stay constraints do nothing
   305 }
   307 /* --- *
   308  * E d i t   C o n s t r a i n t
   309  * --- */
   311 /**
   312  * A unary input constraint used to mark a variable that the client
   313  * wishes to change.
   314  */
   315 function EditConstraint(v, str) {
   316   EditConstraint.superConstructor.call(this, v, str);
   317 }
   319 EditConstraint.inheritsFrom(UnaryConstraint);
   321 /**
   322  * Edits indicate that a variable is to be changed by imperative code.
   323  */
   324 EditConstraint.prototype.isInput = function () {
   325   return true;
   326 }
   328 EditConstraint.prototype.execute = function () {
   329   // Edit constraints do nothing
   330 }
   332 /* --- *
   333  * B i n a r y   C o n s t r a i n t
   334  * --- */
   336 var Direction = new Object();
   337 Direction.NONE     = 0;
   338 Direction.FORWARD  = 1;
   339 Direction.BACKWARD = -1;
   341 /**
   342  * Abstract superclass for constraints having two possible output
   343  * variables.
   344  */
   345 function BinaryConstraint(var1, var2, strength) {
   346   BinaryConstraint.superConstructor.call(this, strength);
   347   this.v1 = var1;
   348   this.v2 = var2;
   349   this.direction = Direction.NONE;
   350   this.addConstraint();
   351 }
   353 BinaryConstraint.inheritsFrom(Constraint);
   355 /**
   356  * Decides if this constratint can be satisfied and which way it
   357  * should flow based on the relative strength of the variables related,
   358  * and record that decision.
   359  */
   360 BinaryConstraint.prototype.chooseMethod = function (mark) {
   361   if (this.v1.mark == mark) {
   362     this.direction = (this.v1.mark != mark && Strength.stronger(this.strength, this.v2.walkStrength))
   363       ? Direction.FORWARD
   364       : Direction.NONE;
   365   }
   366   if (this.v2.mark == mark) {
   367     this.direction = (this.v1.mark != mark && Strength.stronger(this.strength, this.v1.walkStrength))
   368       ? Direction.BACKWARD
   369       : Direction.NONE;
   370   }
   371   if (Strength.weaker(this.v1.walkStrength, this.v2.walkStrength)) {
   372     this.direction = Strength.stronger(this.strength, this.v1.walkStrength)
   373       ? Direction.BACKWARD
   374       : Direction.NONE;
   375   } else {
   376     this.direction = Strength.stronger(this.strength, this.v2.walkStrength)
   377       ? Direction.FORWARD
   378       : Direction.BACKWARD
   379   }
   380 }
   382 /**
   383  * Add this constraint to the constraint graph
   384  */
   385 BinaryConstraint.prototype.addToGraph = function () {
   386   this.v1.addConstraint(this);
   387   this.v2.addConstraint(this);
   388   this.direction = Direction.NONE;
   389 }
   391 /**
   392  * Answer true if this constraint is satisfied in the current solution.
   393  */
   394 BinaryConstraint.prototype.isSatisfied = function () {
   395   return this.direction != Direction.NONE;
   396 }
   398 /**
   399  * Mark the input variable with the given mark.
   400  */
   401 BinaryConstraint.prototype.markInputs = function (mark) {
   402   this.input().mark = mark;
   403 }
   405 /**
   406  * Returns the current input variable
   407  */
   408 BinaryConstraint.prototype.input = function () {
   409   return (this.direction == Direction.FORWARD) ? this.v1 : this.v2;
   410 }
   412 /**
   413  * Returns the current output variable
   414  */
   415 BinaryConstraint.prototype.output = function () {
   416   return (this.direction == Direction.FORWARD) ? this.v2 : this.v1;
   417 }
   419 /**
   420  * Calculate the walkabout strength, the stay flag, and, if it is
   421  * 'stay', the value for the current output of this
   422  * constraint. Assume this constraint is satisfied.
   423  */
   424 BinaryConstraint.prototype.recalculate = function () {
   425   var ihn = this.input(), out = this.output();
   426   out.walkStrength = Strength.weakestOf(this.strength, ihn.walkStrength);
   427   out.stay = ihn.stay;
   428   if (out.stay) this.execute();
   429 }
   431 /**
   432  * Record the fact that this constraint is unsatisfied.
   433  */
   434 BinaryConstraint.prototype.markUnsatisfied = function () {
   435   this.direction = Direction.NONE;
   436 }
   438 BinaryConstraint.prototype.inputsKnown = function (mark) {
   439   var i = this.input();
   440   return i.mark == mark || i.stay || i.determinedBy == null;
   441 }
   443 BinaryConstraint.prototype.removeFromGraph = function () {
   444   if (this.v1 != null) this.v1.removeConstraint(this);
   445   if (this.v2 != null) this.v2.removeConstraint(this);
   446   this.direction = Direction.NONE;
   447 }
   449 /* --- *
   450  * S c a l e   C o n s t r a i n t
   451  * --- */
   453 /**
   454  * Relates two variables by the linear scaling relationship: "v2 =
   455  * (v1 * scale) + offset". Either v1 or v2 may be changed to maintain
   456  * this relationship but the scale factor and offset are considered
   457  * read-only.
   458  */
   459 function ScaleConstraint(src, scale, offset, dest, strength) {
   460   this.direction = Direction.NONE;
   461   this.scale = scale;
   462   this.offset = offset;
   463   ScaleConstraint.superConstructor.call(this, src, dest, strength);
   464 }
   466 ScaleConstraint.inheritsFrom(BinaryConstraint);
   468 /**
   469  * Adds this constraint to the constraint graph.
   470  */
   471 ScaleConstraint.prototype.addToGraph = function () {
   472   ScaleConstraint.superConstructor.prototype.addToGraph.call(this);
   473   this.scale.addConstraint(this);
   474   this.offset.addConstraint(this);
   475 }
   477 ScaleConstraint.prototype.removeFromGraph = function () {
   478   ScaleConstraint.superConstructor.prototype.removeFromGraph.call(this);
   479   if (this.scale != null) this.scale.removeConstraint(this);
   480   if (this.offset != null) this.offset.removeConstraint(this);
   481 }
   483 ScaleConstraint.prototype.markInputs = function (mark) {
   484   ScaleConstraint.superConstructor.prototype.markInputs.call(this, mark);
   485   this.scale.mark = this.offset.mark = mark;
   486 }
   488 /**
   489  * Enforce this constraint. Assume that it is satisfied.
   490  */
   491 ScaleConstraint.prototype.execute = function () {
   492   if (this.direction == Direction.FORWARD) {
   493     this.v2.value = this.v1.value * this.scale.value + this.offset.value;
   494   } else {
   495     this.v1.value = (this.v2.value - this.offset.value) / this.scale.value;
   496   }
   497 }
   499 /**
   500  * Calculate the walkabout strength, the stay flag, and, if it is
   501  * 'stay', the value for the current output of this constraint. Assume
   502  * this constraint is satisfied.
   503  */
   504 ScaleConstraint.prototype.recalculate = function () {
   505   var ihn = this.input(), out = this.output();
   506   out.walkStrength = Strength.weakestOf(this.strength, ihn.walkStrength);
   507   out.stay = ihn.stay && this.scale.stay && this.offset.stay;
   508   if (out.stay) this.execute();
   509 }
   511 /* --- *
   512  * E q u a l i t  y   C o n s t r a i n t
   513  * --- */
   515 /**
   516  * Constrains two variables to have the same value.
   517  */
   518 function EqualityConstraint(var1, var2, strength) {
   519   EqualityConstraint.superConstructor.call(this, var1, var2, strength);
   520 }
   522 EqualityConstraint.inheritsFrom(BinaryConstraint);
   524 /**
   525  * Enforce this constraint. Assume that it is satisfied.
   526  */
   527 EqualityConstraint.prototype.execute = function () {
   528   this.output().value = this.input().value;
   529 }
   531 /* --- *
   532  * V a r i a b l e
   533  * --- */
   535 /**
   536  * A constrained variable. In addition to its value, it maintain the
   537  * structure of the constraint graph, the current dataflow graph, and
   538  * various parameters of interest to the DeltaBlue incremental
   539  * constraint solver.
   540  **/
   541 function Variable(name, initialValue) {
   542   this.value = initialValue || 0;
   543   this.constraints = new OrderedCollection();
   544   this.determinedBy = null;
   545   this.mark = 0;
   546   this.walkStrength = Strength.WEAKEST;
   547   this.stay = true;
   548   this.name = name;
   549 }
   551 /**
   552  * Add the given constraint to the set of all constraints that refer
   553  * this variable.
   554  */
   555 Variable.prototype.addConstraint = function (c) {
   556   this.constraints.add(c);
   557 }
   559 /**
   560  * Removes all traces of c from this variable.
   561  */
   562 Variable.prototype.removeConstraint = function (c) {
   563   this.constraints.remove(c);
   564   if (this.determinedBy == c) this.determinedBy = null;
   565 }
   567 /* --- *
   568  * P l a n n e r
   569  * --- */
   571 /**
   572  * The DeltaBlue planner
   573  */
   574 function Planner() {
   575   this.currentMark = 0;
   576 }
   578 /**
   579  * Attempt to satisfy the given constraint and, if successful,
   580  * incrementally update the dataflow graph.  Details: If satifying
   581  * the constraint is successful, it may override a weaker constraint
   582  * on its output. The algorithm attempts to resatisfy that
   583  * constraint using some other method. This process is repeated
   584  * until either a) it reaches a variable that was not previously
   585  * determined by any constraint or b) it reaches a constraint that
   586  * is too weak to be satisfied using any of its methods. The
   587  * variables of constraints that have been processed are marked with
   588  * a unique mark value so that we know where we've been. This allows
   589  * the algorithm to avoid getting into an infinite loop even if the
   590  * constraint graph has an inadvertent cycle.
   591  */
   592 Planner.prototype.incrementalAdd = function (c) {
   593   var mark = this.newMark();
   594   var overridden = c.satisfy(mark);
   595   while (overridden != null)
   596     overridden = overridden.satisfy(mark);
   597 }
   599 /**
   600  * Entry point for retracting a constraint. Remove the given
   601  * constraint and incrementally update the dataflow graph.
   602  * Details: Retracting the given constraint may allow some currently
   603  * unsatisfiable downstream constraint to be satisfied. We therefore collect
   604  * a list of unsatisfied downstream constraints and attempt to
   605  * satisfy each one in turn. This list is traversed by constraint
   606  * strength, strongest first, as a heuristic for avoiding
   607  * unnecessarily adding and then overriding weak constraints.
   608  * Assume: c is satisfied.
   609  */
   610 Planner.prototype.incrementalRemove = function (c) {
   611   var out = c.output();
   612   c.markUnsatisfied();
   613   c.removeFromGraph();
   614   var unsatisfied = this.removePropagateFrom(out);
   615   var strength = Strength.REQUIRED;
   616   do {
   617     for (var i = 0; i < unsatisfied.size(); i++) {
   618       var u = unsatisfied.at(i);
   619       if (u.strength == strength)
   620         this.incrementalAdd(u);
   621     }
   622     strength = strength.nextWeaker();
   623   } while (strength != Strength.WEAKEST);
   624 }
   626 /**
   627  * Select a previously unused mark value.
   628  */
   629 Planner.prototype.newMark = function () {
   630   return ++this.currentMark;
   631 }
   633 /**
   634  * Extract a plan for resatisfaction starting from the given source
   635  * constraints, usually a set of input constraints. This method
   636  * assumes that stay optimization is desired; the plan will contain
   637  * only constraints whose output variables are not stay. Constraints
   638  * that do no computation, such as stay and edit constraints, are
   639  * not included in the plan.
   640  * Details: The outputs of a constraint are marked when it is added
   641  * to the plan under construction. A constraint may be appended to
   642  * the plan when all its input variables are known. A variable is
   643  * known if either a) the variable is marked (indicating that has
   644  * been computed by a constraint appearing earlier in the plan), b)
   645  * the variable is 'stay' (i.e. it is a constant at plan execution
   646  * time), or c) the variable is not determined by any
   647  * constraint. The last provision is for past states of history
   648  * variables, which are not stay but which are also not computed by
   649  * any constraint.
   650  * Assume: sources are all satisfied.
   651  */
   652 Planner.prototype.makePlan = function (sources) {
   653   var mark = this.newMark();
   654   var plan = new Plan();
   655   var todo = sources;
   656   while (todo.size() > 0) {
   657     var c = todo.removeFirst();
   658     if (c.output().mark != mark && c.inputsKnown(mark)) {
   659       plan.addConstraint(c);
   660       c.output().mark = mark;
   661       this.addConstraintsConsumingTo(c.output(), todo);
   662     }
   663   }
   664   return plan;
   665 }
   667 /**
   668  * Extract a plan for resatisfying starting from the output of the
   669  * given constraints, usually a set of input constraints.
   670  */
   671 Planner.prototype.extractPlanFromConstraints = function (constraints) {
   672   var sources = new OrderedCollection();
   673   for (var i = 0; i < constraints.size(); i++) {
   674     var c = constraints.at(i);
   675     if (c.isInput() && c.isSatisfied())
   676       // not in plan already and eligible for inclusion
   677       sources.add(c);
   678   }
   679   return this.makePlan(sources);
   680 }
   682 /**
   683  * Recompute the walkabout strengths and stay flags of all variables
   684  * downstream of the given constraint and recompute the actual
   685  * values of all variables whose stay flag is true. If a cycle is
   686  * detected, remove the given constraint and answer
   687  * false. Otherwise, answer true.
   688  * Details: Cycles are detected when a marked variable is
   689  * encountered downstream of the given constraint. The sender is
   690  * assumed to have marked the inputs of the given constraint with
   691  * the given mark. Thus, encountering a marked node downstream of
   692  * the output constraint means that there is a path from the
   693  * constraint's output to one of its inputs.
   694  */
   695 Planner.prototype.addPropagate = function (c, mark) {
   696   var todo = new OrderedCollection();
   697   todo.add(c);
   698   while (todo.size() > 0) {
   699     var d = todo.removeFirst();
   700     if (d.output().mark == mark) {
   701       this.incrementalRemove(c);
   702       return false;
   703     }
   704     d.recalculate();
   705     this.addConstraintsConsumingTo(d.output(), todo);
   706   }
   707   return true;
   708 }
   711 /**
   712  * Update the walkabout strengths and stay flags of all variables
   713  * downstream of the given constraint. Answer a collection of
   714  * unsatisfied constraints sorted in order of decreasing strength.
   715  */
   716 Planner.prototype.removePropagateFrom = function (out) {
   717   out.determinedBy = null;
   718   out.walkStrength = Strength.WEAKEST;
   719   out.stay = true;
   720   var unsatisfied = new OrderedCollection();
   721   var todo = new OrderedCollection();
   722   todo.add(out);
   723   while (todo.size() > 0) {
   724     var v = todo.removeFirst();
   725     for (var i = 0; i < v.constraints.size(); i++) {
   726       var c = v.constraints.at(i);
   727       if (!c.isSatisfied())
   728         unsatisfied.add(c);
   729     }
   730     var determining = v.determinedBy;
   731     for (var i = 0; i < v.constraints.size(); i++) {
   732       var next = v.constraints.at(i);
   733       if (next != determining && next.isSatisfied()) {
   734         next.recalculate();
   735         todo.add(next.output());
   736       }
   737     }
   738   }
   739   return unsatisfied;
   740 }
   742 Planner.prototype.addConstraintsConsumingTo = function (v, coll) {
   743   var determining = v.determinedBy;
   744   var cc = v.constraints;
   745   for (var i = 0; i < cc.size(); i++) {
   746     var c = cc.at(i);
   747     if (c != determining && c.isSatisfied())
   748       coll.add(c);
   749   }
   750 }
   752 /* --- *
   753  * P l a n
   754  * --- */
   756 /**
   757  * A Plan is an ordered list of constraints to be executed in sequence
   758  * to resatisfy all currently satisfiable constraints in the face of
   759  * one or more changing inputs.
   760  */
   761 function Plan() {
   762   this.v = new OrderedCollection();
   763 }
   765 Plan.prototype.addConstraint = function (c) {
   766   this.v.add(c);
   767 }
   769 Plan.prototype.size = function () {
   770   return this.v.size();
   771 }
   773 Plan.prototype.constraintAt = function (index) {
   774   return this.v.at(index);
   775 }
   777 Plan.prototype.execute = function () {
   778   for (var i = 0; i < this.size(); i++) {
   779     var c = this.constraintAt(i);
   780     c.execute();
   781   }
   782 }
   784 /* --- *
   785  * M a i n
   786  * --- */
   788 /**
   789  * This is the standard DeltaBlue benchmark. A long chain of equality
   790  * constraints is constructed with a stay constraint on one end. An
   791  * edit constraint is then added to the opposite end and the time is
   792  * measured for adding and removing this constraint, and extracting
   793  * and executing a constraint satisfaction plan. There are two cases.
   794  * In case 1, the added constraint is stronger than the stay
   795  * constraint and values must propagate down the entire length of the
   796  * chain. In case 2, the added constraint is weaker than the stay
   797  * constraint so it cannot be accomodated. The cost in this case is,
   798  * of course, very low. Typical situations lie somewhere between these
   799  * two extremes.
   800  */
   801 function chainTest(n) {
   802   planner = new Planner();
   803   var prev = null, first = null, last = null;
   805   // Build chain of n equality constraints
   806   for (var i = 0; i <= n; i++) {
   807     var name = "v" + i;
   808     var v = new Variable(name);
   809     if (prev != null)
   810       new EqualityConstraint(prev, v, Strength.REQUIRED);
   811     if (i == 0) first = v;
   812     if (i == n) last = v;
   813     prev = v;
   814   }
   816   new StayConstraint(last, Strength.STRONG_DEFAULT);
   817   var edit = new EditConstraint(first, Strength.PREFERRED);
   818   var edits = new OrderedCollection();
   819   edits.add(edit);
   820   var plan = planner.extractPlanFromConstraints(edits);
   821   for (var i = 0; i < 100; i++) {
   822     first.value = i;
   823     plan.execute();
   824     assertEq(last.value, i);
   825   }
   826 }
   828 /**
   829  * This test constructs a two sets of variables related to each
   830  * other by a simple linear transformation (scale and offset). The
   831  * time is measured to change a variable on either side of the
   832  * mapping and to change the scale and offset factors.
   833  */
   834 function projectionTest(n) {
   835   planner = new Planner();
   836   var scale = new Variable("scale", 10);
   837   var offset = new Variable("offset", 1000);
   838   var src = null, dst = null;
   840   var dests = new OrderedCollection();
   841   for (var i = 0; i < n; i++) {
   842     src = new Variable("src" + i, i);
   843     dst = new Variable("dst" + i, i);
   844     dests.add(dst);
   845     new StayConstraint(src, Strength.NORMAL);
   846     new ScaleConstraint(src, scale, offset, dst, Strength.REQUIRED);
   847   }
   849   change(src, 17);
   850   assertEq(dst.value, 1170);
   851   change(dst, 1050);
   852   assertEq(src.value, 5);
   853   change(scale, 5);
   854   for (var i = 0; i < n - 1; i++) {
   855     assertEq(dests.at(i).value, i * 5 + 1000);
   856   }
   857   change(offset, 2000);
   858   for (var i = 0; i < n - 1; i++) {
   859     assertEq(dests.at(i).value, i * 5 + 2000);
   860   }
   861 }
   863 function change(v, newValue) {
   864   var edit = new EditConstraint(v, Strength.PREFERRED);
   865   var edits = new OrderedCollection();
   866   edits.add(edit);
   867   var plan = planner.extractPlanFromConstraints(edits);
   868   for (var i = 0; i < 10; i++) {
   869     v.value = newValue;
   870     plan.execute();
   871   }
   872   edit.destroyConstraint();
   873 }
   875 // Global variable holding the current planner.
   876 var planner = null;
   878 function deltaBlue() {
   879   chainTest(100);
   880   projectionTest(100);
   881 }
   883 deltaBlue();

mercurial