Wed, 31 Dec 2014 06:09:35 +0100
Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.
1 // Copyright 2009 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 // This benchmark is based on a JavaScript log processing module used
29 // by the V8 profiler to generate execution time profiles for runs of
30 // JavaScript applications, and it effectively measures how fast the
31 // JavaScript engine is at allocating nodes and reclaiming the memory
32 // used for old nodes. Because of the way splay trees work, the engine
33 // also has to deal with a lot of changes to the large tree object
34 // graph.
36 //var Splay = new BenchmarkSuite('Splay', 126125, [
37 // new Benchmark("Splay", SplayRun, SplaySetup, SplayTearDown)
38 //]);
40 // This is the best random number generator available to mankind ;)
41 var MyMath = {
42 seed: 49734321,
43 random: function() {
44 // Robert Jenkins' 32 bit integer hash function.
45 this.seed = ((this.seed + 0x7ed55d16) + (this.seed << 12)) & 0xffffffff;
46 this.seed = ((this.seed ^ 0xc761c23c) ^ (this.seed >>> 19)) & 0xffffffff;
47 this.seed = ((this.seed + 0x165667b1) + (this.seed << 5)) & 0xffffffff;
48 this.seed = ((this.seed + 0xd3a2646c) ^ (this.seed << 9)) & 0xffffffff;
49 this.seed = ((this.seed + 0xfd7046c5) + (this.seed << 3)) & 0xffffffff;
50 this.seed = ((this.seed ^ 0xb55a4f09) ^ (this.seed >>> 16)) & 0xffffffff;
51 return (this.seed & 0xfffffff) / 0x10000000;
52 },
53 };
55 // Configuration.
56 var kSplayTreeSize = 8000;
57 var kSplayTreeModifications = 80;
58 var kSplayTreePayloadDepth = 5;
60 var splayTree = null;
63 function GeneratePayloadTree(depth, key) {
64 if (depth == 0) {
65 return {
66 array : [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ],
67 string : 'String for key ' + key + ' in leaf node'
68 };
69 } else {
70 return {
71 left: GeneratePayloadTree(depth - 1, key),
72 right: GeneratePayloadTree(depth - 1, key)
73 };
74 }
75 }
78 function GenerateKey() {
79 // The benchmark framework guarantees that Math.random is
80 // deterministic; see base.js.
81 // base.js isn't pulled in for jit-tests
82 return MyMath.random();
83 }
86 function InsertNewNode() {
87 // Insert new node with a unique key.
88 var key;
89 do {
90 key = GenerateKey();
91 } while (splayTree.find(key) != null);
92 splayTree.insert(key, GeneratePayloadTree(kSplayTreePayloadDepth, key));
93 return key;
94 }
97 function SplaySetup() {
98 splayTree = new SplayTree();
99 for (var i = 0; i < kSplayTreeSize; i++) InsertNewNode();
100 }
103 function SplayTearDown() {
104 // Allow the garbage collector to reclaim the memory
105 // used by the splay tree no matter how we exit the
106 // tear down function.
107 var keys = splayTree.exportKeys();
108 splayTree = null;
110 // Verify that the splay tree has the right size.
111 var length = keys.length;
112 assertEq(length, kSplayTreeSize);
114 // Verify that the splay tree has sorted, unique keys.
115 for (var i = 0; i < length - 1; i++) {
116 assertEq(keys[i] < keys[i + 1], true);
117 }
118 }
121 function SplayRun() {
122 // Replace a few nodes in the splay tree.
123 for (var i = 0; i < kSplayTreeModifications; i++) {
124 var key = InsertNewNode();
125 var greatest = splayTree.findGreatestLessThan(key);
126 if (greatest == null) splayTree.remove(key);
127 else splayTree.remove(greatest.key);
128 }
129 }
132 /**
133 * Constructs a Splay tree. A splay tree is a self-balancing binary
134 * search tree with the additional property that recently accessed
135 * elements are quick to access again. It performs basic operations
136 * such as insertion, look-up and removal in O(log(n)) amortized time.
137 *
138 * @constructor
139 */
140 function SplayTree() {
141 };
144 /**
145 * Pointer to the root node of the tree.
146 *
147 * @type {SplayTree.Node}
148 * @private
149 */
150 SplayTree.prototype.root_ = null;
153 /**
154 * @return {boolean} Whether the tree is empty.
155 */
156 SplayTree.prototype.isEmpty = function() {
157 return !this.root_;
158 };
161 /**
162 * Inserts a node into the tree with the specified key and value if
163 * the tree does not already contain a node with the specified key. If
164 * the value is inserted, it becomes the root of the tree.
165 *
166 * @param {number} key Key to insert into the tree.
167 * @param {*} value Value to insert into the tree.
168 */
169 SplayTree.prototype.insert = function(key, value) {
170 if (this.isEmpty()) {
171 this.root_ = new SplayTree.Node(key, value);
172 return;
173 }
174 // Splay on the key to move the last node on the search path for
175 // the key to the root of the tree.
176 this.splay_(key);
177 if (this.root_.key == key) {
178 return;
179 }
180 var node = new SplayTree.Node(key, value);
181 if (key > this.root_.key) {
182 node.left = this.root_;
183 node.right = this.root_.right;
184 this.root_.right = null;
185 } else {
186 node.right = this.root_;
187 node.left = this.root_.left;
188 this.root_.left = null;
189 }
190 this.root_ = node;
191 };
194 /**
195 * Removes a node with the specified key from the tree if the tree
196 * contains a node with this key. The removed node is returned. If the
197 * key is not found, an exception is thrown.
198 *
199 * @param {number} key Key to find and remove from the tree.
200 * @return {SplayTree.Node} The removed node.
201 */
202 SplayTree.prototype.remove = function(key) {
203 if (this.isEmpty()) {
204 throw Error('Key not found: ' + key);
205 }
206 this.splay_(key);
207 if (this.root_.key != key) {
208 throw Error('Key not found: ' + key);
209 }
210 var removed = this.root_;
211 if (!this.root_.left) {
212 this.root_ = this.root_.right;
213 } else {
214 var right = this.root_.right;
215 this.root_ = this.root_.left;
216 // Splay to make sure that the new root has an empty right child.
217 this.splay_(key);
218 // Insert the original right child as the right child of the new
219 // root.
220 this.root_.right = right;
221 }
222 return removed;
223 };
226 /**
227 * Returns the node having the specified key or null if the tree doesn't contain
228 * a node with the specified key.
229 *
230 * @param {number} key Key to find in the tree.
231 * @return {SplayTree.Node} Node having the specified key.
232 */
233 SplayTree.prototype.find = function(key) {
234 if (this.isEmpty()) {
235 return null;
236 }
237 this.splay_(key);
238 return this.root_.key == key ? this.root_ : null;
239 };
242 /**
243 * @return {SplayTree.Node} Node having the maximum key value that
244 * is less or equal to the specified key value.
245 */
246 SplayTree.prototype.findGreatestLessThan = function(key) {
247 if (this.isEmpty()) {
248 return null;
249 }
250 // Splay on the key to move the node with the given key or the last
251 // node on the search path to the top of the tree.
252 this.splay_(key);
253 // Now the result is either the root node or the greatest node in
254 // the left subtree.
255 if (this.root_.key <= key) {
256 return this.root_;
257 } else if (this.root_.left) {
258 return this.findMax(this.root_.left);
259 } else {
260 return null;
261 }
262 };
265 /**
266 * @return {Array<*>} An array containing all the keys of tree's nodes.
267 */
268 SplayTree.prototype.exportKeys = function() {
269 var result = [];
270 if (!this.isEmpty()) {
271 this.root_.traverse_(function(node) { result.push(node.key); });
272 }
273 return result;
274 };
277 /**
278 * Perform the splay operation for the given key. Moves the node with
279 * the given key to the top of the tree. If no node has the given
280 * key, the last node on the search path is moved to the top of the
281 * tree. This is the simplified top-down splaying algorithm from:
282 * "Self-adjusting Binary Search Trees" by Sleator and Tarjan
283 *
284 * @param {number} key Key to splay the tree on.
285 * @private
286 */
287 SplayTree.prototype.splay_ = function(key) {
288 if (this.isEmpty()) {
289 return;
290 }
291 // Create a dummy node. The use of the dummy node is a bit
292 // counter-intuitive: The right child of the dummy node will hold
293 // the L tree of the algorithm. The left child of the dummy node
294 // will hold the R tree of the algorithm. Using a dummy node, left
295 // and right will always be nodes and we avoid special cases.
296 var dummy, left, right;
297 dummy = left = right = new SplayTree.Node(null, null);
298 var current = this.root_;
299 while (true) {
300 if (key < current.key) {
301 if (!current.left) {
302 break;
303 }
304 if (key < current.left.key) {
305 // Rotate right.
306 var tmp = current.left;
307 current.left = tmp.right;
308 tmp.right = current;
309 current = tmp;
310 if (!current.left) {
311 break;
312 }
313 }
314 // Link right.
315 right.left = current;
316 right = current;
317 current = current.left;
318 } else if (key > current.key) {
319 if (!current.right) {
320 break;
321 }
322 if (key > current.right.key) {
323 // Rotate left.
324 var tmp = current.right;
325 current.right = tmp.left;
326 tmp.left = current;
327 current = tmp;
328 if (!current.right) {
329 break;
330 }
331 }
332 // Link left.
333 left.right = current;
334 left = current;
335 current = current.right;
336 } else {
337 break;
338 }
339 }
340 // Assemble.
341 left.right = current.left;
342 right.left = current.right;
343 current.left = dummy.right;
344 current.right = dummy.left;
345 this.root_ = current;
346 };
349 /**
350 * Constructs a Splay tree node.
351 *
352 * @param {number} key Key.
353 * @param {*} value Value.
354 */
355 SplayTree.Node = function(key, value) {
356 this.key = key;
357 this.value = value;
358 };
361 /**
362 * @type {SplayTree.Node}
363 */
364 SplayTree.Node.prototype.left = null;
367 /**
368 * @type {SplayTree.Node}
369 */
370 SplayTree.Node.prototype.right = null;
373 /**
374 * Performs an ordered traversal of the subtree starting at
375 * this SplayTree.Node.
376 *
377 * @param {function(SplayTree.Node)} f Visitor function.
378 * @private
379 */
380 SplayTree.Node.prototype.traverse_ = function(f) {
381 var current = this;
382 while (current) {
383 var left = current.left;
384 if (left) left.traverse_(f);
385 f(current);
386 current = current.right;
387 }
388 };
390 SplaySetup();
391 SplayRun();
392 SplayTearDown();