js/src/tests/ecma/Expressions/11.5.1.js

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

     1 /* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
     2 /* This Source Code Form is subject to the terms of the Mozilla Public
     3  * License, v. 2.0. If a copy of the MPL was not distributed with this
     4  * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
     7 /**
     8    File Name:          11.5.1.js
     9    ECMA Section:       11.5.1 Applying the * operator
    10    Description:
    12    11.5.1 Applying the * operator
    14    The * operator performs multiplication, producing the product of its
    15    operands. Multiplication is commutative. Multiplication is not always
    16    associative in ECMAScript, because of finite precision.
    18    The result of a floating-point multiplication is governed by the rules
    19    of IEEE 754 double-precision arithmetic:
    21    If either operand is NaN, the result is NaN.
    22    The sign of the result is positive if both operands have the same sign,
    23    negative if the operands have different signs.
    24    Multiplication of an infinity by a zero results in NaN.
    25    Multiplication of an infinity by an infinity results in an infinity.
    26    The sign is determined by the rule already stated above.
    27    Multiplication of an infinity by a finite non-zero value results in a
    28    signed infinity. The sign is determined by the rule already stated above.
    29    In the remaining cases, where neither an infinity or NaN is involved, the
    30    product is computed and rounded to the nearest representable value using IEEE
    31    754 round-to-nearest mode. If the magnitude is too large to represent,
    32    the result is then an infinity of appropriate sign. If the magnitude is
    33    oo small to represent, the result is then a zero
    34    of appropriate sign. The ECMAScript language requires support of gradual
    35    underflow as defined by IEEE 754.
    37    Author:             christine@netscape.com
    38    Date:               12 november 1997
    39 */
    40 var SECTION = "11.5.1";
    41 var VERSION = "ECMA_1";
    42 startTest();
    44 writeHeaderToLog( SECTION + " Applying the * operator");
    46 new TestCase( SECTION,    "Number.NaN * Number.NaN",    Number.NaN,     Number.NaN * Number.NaN );
    47 new TestCase( SECTION,    "Number.NaN * 1",             Number.NaN,     Number.NaN * 1 );
    48 new TestCase( SECTION,    "1 * Number.NaN",             Number.NaN,     1 * Number.NaN );
    50 new TestCase( SECTION,    "Number.POSITIVE_INFINITY * 0",   Number.NaN, Number.POSITIVE_INFINITY * 0 );
    51 new TestCase( SECTION,    "Number.NEGATIVE_INFINITY * 0",   Number.NaN, Number.NEGATIVE_INFINITY * 0 );
    52 new TestCase( SECTION,    "0 * Number.POSITIVE_INFINITY",   Number.NaN, 0 * Number.POSITIVE_INFINITY );
    53 new TestCase( SECTION,    "0 * Number.NEGATIVE_INFINITY",   Number.NaN, 0 * Number.NEGATIVE_INFINITY );
    55 new TestCase( SECTION,    "-0 * Number.POSITIVE_INFINITY",  Number.NaN,   -0 * Number.POSITIVE_INFINITY );
    56 new TestCase( SECTION,    "-0 * Number.NEGATIVE_INFINITY",  Number.NaN,   -0 * Number.NEGATIVE_INFINITY );
    57 new TestCase( SECTION,    "Number.POSITIVE_INFINITY * -0",  Number.NaN,   Number.POSITIVE_INFINITY * -0 );
    58 new TestCase( SECTION,    "Number.NEGATIVE_INFINITY * -0",  Number.NaN,   Number.NEGATIVE_INFINITY * -0 );
    60 new TestCase( SECTION,    "0 * -0",                         -0,         0 * -0 );
    61 new TestCase( SECTION,    "-0 * 0",                         -0,         -0 * 0 );
    62 new TestCase( SECTION,    "-0 * -0",                        0,          -0 * -0 );
    63 new TestCase( SECTION,    "0 * 0",                          0,          0 * 0 );
    65 new TestCase( SECTION,    "Number.NEGATIVE_INFINITY * Number.NEGATIVE_INFINITY",    Number.POSITIVE_INFINITY,   Number.NEGATIVE_INFINITY * Number.NEGATIVE_INFINITY );
    66 new TestCase( SECTION,    "Number.POSITIVE_INFINITY * Number.NEGATIVE_INFINITY",    Number.NEGATIVE_INFINITY,   Number.POSITIVE_INFINITY * Number.NEGATIVE_INFINITY );
    67 new TestCase( SECTION,    "Number.NEGATIVE_INFINITY * Number.POSITIVE_INFINITY",    Number.NEGATIVE_INFINITY,   Number.NEGATIVE_INFINITY * Number.POSITIVE_INFINITY );
    68 new TestCase( SECTION,    "Number.POSITIVE_INFINITY * Number.POSITIVE_INFINITY",    Number.POSITIVE_INFINITY,   Number.POSITIVE_INFINITY * Number.POSITIVE_INFINITY );
    70 new TestCase( SECTION,    "Number.NEGATIVE_INFINITY * 1 ",                          Number.NEGATIVE_INFINITY,   Number.NEGATIVE_INFINITY * 1 );
    71 new TestCase( SECTION,    "Number.NEGATIVE_INFINITY * -1 ",                         Number.POSITIVE_INFINITY,   Number.NEGATIVE_INFINITY * -1 );
    72 new TestCase( SECTION,    "1 * Number.NEGATIVE_INFINITY",                           Number.NEGATIVE_INFINITY,   1 * Number.NEGATIVE_INFINITY );
    73 new TestCase( SECTION,    "-1 * Number.NEGATIVE_INFINITY",                          Number.POSITIVE_INFINITY,   -1 * Number.NEGATIVE_INFINITY );
    75 new TestCase( SECTION,    "Number.POSITIVE_INFINITY * 1 ",                          Number.POSITIVE_INFINITY,   Number.POSITIVE_INFINITY * 1 );
    76 new TestCase( SECTION,    "Number.POSITIVE_INFINITY * -1 ",                         Number.NEGATIVE_INFINITY,   Number.POSITIVE_INFINITY * -1 );
    77 new TestCase( SECTION,    "1 * Number.POSITIVE_INFINITY",                           Number.POSITIVE_INFINITY,   1 * Number.POSITIVE_INFINITY );
    78 new TestCase( SECTION,    "-1 * Number.POSITIVE_INFINITY",                          Number.NEGATIVE_INFINITY,   -1 * Number.POSITIVE_INFINITY );
    80 test();

mercurial