js/src/v8/crypto.js

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

     1 /*
     2  * Copyright (c) 2003-2005  Tom Wu
     3  * All Rights Reserved.
     4  *
     5  * Permission is hereby granted, free of charge, to any person obtaining
     6  * a copy of this software and associated documentation files (the
     7  * "Software"), to deal in the Software without restriction, including
     8  * without limitation the rights to use, copy, modify, merge, publish,
     9  * distribute, sublicense, and/or sell copies of the Software, and to
    10  * permit persons to whom the Software is furnished to do so, subject to
    11  * the following conditions:
    12  *
    13  * The above copyright notice and this permission notice shall be
    14  * included in all copies or substantial portions of the Software.
    15  *
    16  * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
    17  * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
    18  * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
    19  *
    20  * IN NO EVENT SHALL TOM WU BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
    21  * INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER
    22  * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF
    23  * THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT
    24  * OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
    25  *
    26  * In addition, the following condition applies:
    27  *
    28  * All redistributions must retain an intact copy of this copyright notice
    29  * and disclaimer.
    30  */
    33 // The code has been adapted for use as a benchmark by Google.
    34 var Crypto = new BenchmarkSuite('Crypto', 266181, [
    35   new Benchmark("Encrypt", encrypt),
    36   new Benchmark("Decrypt", decrypt)
    37 ]);
    40 // Basic JavaScript BN library - subset useful for RSA encryption.
    42 // Bits per digit
    43 var dbits;
    44 var BI_DB;
    45 var BI_DM;
    46 var BI_DV;
    48 var BI_FP;
    49 var BI_FV;
    50 var BI_F1;
    51 var BI_F2;
    53 // JavaScript engine analysis
    54 var canary = 0xdeadbeefcafe;
    55 var j_lm = ((canary&0xffffff)==0xefcafe);
    57 // (public) Constructor
    58 function BigInteger(a,b,c) {
    59   this.array = new Array();
    60   if(a != null)
    61     if("number" == typeof a) this.fromNumber(a,b,c);
    62     else if(b == null && "string" != typeof a) this.fromString(a,256);
    63     else this.fromString(a,b);
    64 }
    66 // return new, unset BigInteger
    67 function nbi() { return new BigInteger(null); }
    69 // am: Compute w_j += (x*this_i), propagate carries,
    70 // c is initial carry, returns final carry.
    71 // c < 3*dvalue, x < 2*dvalue, this_i < dvalue
    72 // We need to select the fastest one that works in this environment.
    74 // am1: use a single mult and divide to get the high bits,
    75 // max digit bits should be 26 because
    76 // max internal value = 2*dvalue^2-2*dvalue (< 2^53)
    77 function am1(i,x,w,j,c,n) {
    78   var this_array = this.array;
    79   var w_array    = w.array;
    80   while(--n >= 0) {
    81     var v = x*this_array[i++]+w_array[j]+c;
    82     c = Math.floor(v/0x4000000);
    83     w_array[j++] = v&0x3ffffff;
    84   }
    85   return c;
    86 }
    88 // am2 avoids a big mult-and-extract completely.
    89 // Max digit bits should be <= 30 because we do bitwise ops
    90 // on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)
    91 function am2(i,x,w,j,c,n) {
    92   var this_array = this.array;
    93   var w_array    = w.array;
    94   var xl = x&0x7fff, xh = x>>15;
    95   while(--n >= 0) {
    96     var l = this_array[i]&0x7fff;
    97     var h = this_array[i++]>>15;
    98     var m = xh*l+h*xl;
    99     l = xl*l+((m&0x7fff)<<15)+w_array[j]+(c&0x3fffffff);
   100     c = (l>>>30)+(m>>>15)+xh*h+(c>>>30);
   101     w_array[j++] = l&0x3fffffff;
   102   }
   103   return c;
   104 }
   106 // Alternately, set max digit bits to 28 since some
   107 // browsers slow down when dealing with 32-bit numbers.
   108 function am3(i,x,w,j,c,n) {
   109   var this_array = this.array;
   110   var w_array    = w.array;
   112   var xl = x&0x3fff, xh = x>>14;
   113   while(--n >= 0) {
   114     var l = this_array[i]&0x3fff;
   115     var h = this_array[i++]>>14;
   116     var m = xh*l+h*xl;
   117     l = xl*l+((m&0x3fff)<<14)+w_array[j]+c;
   118     c = (l>>28)+(m>>14)+xh*h;
   119     w_array[j++] = l&0xfffffff;
   120   }
   121   return c;
   122 }
   124 // This is tailored to VMs with 2-bit tagging. It makes sure
   125 // that all the computations stay within the 29 bits available.
   126 function am4(i,x,w,j,c,n) {
   127   var this_array = this.array;
   128   var w_array    = w.array;
   130   var xl = x&0x1fff, xh = x>>13;
   131   while(--n >= 0) {
   132     var l = this_array[i]&0x1fff;
   133     var h = this_array[i++]>>13;
   134     var m = xh*l+h*xl;
   135     l = xl*l+((m&0x1fff)<<13)+w_array[j]+c;
   136     c = (l>>26)+(m>>13)+xh*h;
   137     w_array[j++] = l&0x3ffffff;
   138   }
   139   return c;
   140 }
   142 // am3/28 is best for SM, Rhino, but am4/26 is best for v8.
   143 // Kestrel (Opera 9.5) gets its best result with am4/26.
   144 // IE7 does 9% better with am3/28 than with am4/26.
   145 // Firefox (SM) gets 10% faster with am3/28 than with am4/26.
   147 setupEngine = function(fn, bits) {
   148   BigInteger.prototype.am = fn;
   149   dbits = bits;
   151   BI_DB = dbits;
   152   BI_DM = ((1<<dbits)-1);
   153   BI_DV = (1<<dbits);
   155   BI_FP = 52;
   156   BI_FV = Math.pow(2,BI_FP);
   157   BI_F1 = BI_FP-dbits;
   158   BI_F2 = 2*dbits-BI_FP;
   159 }
   162 // Digit conversions
   163 var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz";
   164 var BI_RC = new Array();
   165 var rr,vv;
   166 rr = "0".charCodeAt(0);
   167 for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv;
   168 rr = "a".charCodeAt(0);
   169 for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
   170 rr = "A".charCodeAt(0);
   171 for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
   173 function int2char(n) { return BI_RM.charAt(n); }
   174 function intAt(s,i) {
   175   var c = BI_RC[s.charCodeAt(i)];
   176   return (c==null)?-1:c;
   177 }
   179 // (protected) copy this to r
   180 function bnpCopyTo(r) {
   181   var this_array = this.array;
   182   var r_array    = r.array;
   184   for(var i = this.t-1; i >= 0; --i) r_array[i] = this_array[i];
   185   r.t = this.t;
   186   r.s = this.s;
   187 }
   189 // (protected) set from integer value x, -DV <= x < DV
   190 function bnpFromInt(x) {
   191   var this_array = this.array;
   192   this.t = 1;
   193   this.s = (x<0)?-1:0;
   194   if(x > 0) this_array[0] = x;
   195   else if(x < -1) this_array[0] = x+DV;
   196   else this.t = 0;
   197 }
   199 // return bigint initialized to value
   200 function nbv(i) { var r = nbi(); r.fromInt(i); return r; }
   202 // (protected) set from string and radix
   203 function bnpFromString(s,b) {
   204   var this_array = this.array;
   205   var k;
   206   if(b == 16) k = 4;
   207   else if(b == 8) k = 3;
   208   else if(b == 256) k = 8; // byte array
   209   else if(b == 2) k = 1;
   210   else if(b == 32) k = 5;
   211   else if(b == 4) k = 2;
   212   else { this.fromRadix(s,b); return; }
   213   this.t = 0;
   214   this.s = 0;
   215   var i = s.length, mi = false, sh = 0;
   216   while(--i >= 0) {
   217     var x = (k==8)?s[i]&0xff:intAt(s,i);
   218     if(x < 0) {
   219       if(s.charAt(i) == "-") mi = true;
   220       continue;
   221     }
   222     mi = false;
   223     if(sh == 0)
   224       this_array[this.t++] = x;
   225     else if(sh+k > BI_DB) {
   226       this_array[this.t-1] |= (x&((1<<(BI_DB-sh))-1))<<sh;
   227       this_array[this.t++] = (x>>(BI_DB-sh));
   228     }
   229     else
   230       this_array[this.t-1] |= x<<sh;
   231     sh += k;
   232     if(sh >= BI_DB) sh -= BI_DB;
   233   }
   234   if(k == 8 && (s[0]&0x80) != 0) {
   235     this.s = -1;
   236     if(sh > 0) this_array[this.t-1] |= ((1<<(BI_DB-sh))-1)<<sh;
   237   }
   238   this.clamp();
   239   if(mi) BigInteger.ZERO.subTo(this,this);
   240 }
   242 // (protected) clamp off excess high words
   243 function bnpClamp() {
   244   var this_array = this.array;
   245   var c = this.s&BI_DM;
   246   while(this.t > 0 && this_array[this.t-1] == c) --this.t;
   247 }
   249 // (public) return string representation in given radix
   250 function bnToString(b) {
   251   var this_array = this.array;
   252   if(this.s < 0) return "-"+this.negate().toString(b);
   253   var k;
   254   if(b == 16) k = 4;
   255   else if(b == 8) k = 3;
   256   else if(b == 2) k = 1;
   257   else if(b == 32) k = 5;
   258   else if(b == 4) k = 2;
   259   else return this.toRadix(b);
   260   var km = (1<<k)-1, d, m = false, r = "", i = this.t;
   261   var p = BI_DB-(i*BI_DB)%k;
   262   if(i-- > 0) {
   263     if(p < BI_DB && (d = this_array[i]>>p) > 0) { m = true; r = int2char(d); }
   264     while(i >= 0) {
   265       if(p < k) {
   266         d = (this_array[i]&((1<<p)-1))<<(k-p);
   267         d |= this_array[--i]>>(p+=BI_DB-k);
   268       }
   269       else {
   270         d = (this_array[i]>>(p-=k))&km;
   271         if(p <= 0) { p += BI_DB; --i; }
   272       }
   273       if(d > 0) m = true;
   274       if(m) r += int2char(d);
   275     }
   276   }
   277   return m?r:"0";
   278 }
   280 // (public) -this
   281 function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; }
   283 // (public) |this|
   284 function bnAbs() { return (this.s<0)?this.negate():this; }
   286 // (public) return + if this > a, - if this < a, 0 if equal
   287 function bnCompareTo(a) {
   288   var this_array = this.array;
   289   var a_array = a.array;
   291   var r = this.s-a.s;
   292   if(r != 0) return r;
   293   var i = this.t;
   294   r = i-a.t;
   295   if(r != 0) return r;
   296   while(--i >= 0) if((r=this_array[i]-a_array[i]) != 0) return r;
   297   return 0;
   298 }
   300 // returns bit length of the integer x
   301 function nbits(x) {
   302   var r = 1, t;
   303   if((t=x>>>16) != 0) { x = t; r += 16; }
   304   if((t=x>>8) != 0) { x = t; r += 8; }
   305   if((t=x>>4) != 0) { x = t; r += 4; }
   306   if((t=x>>2) != 0) { x = t; r += 2; }
   307   if((t=x>>1) != 0) { x = t; r += 1; }
   308   return r;
   309 }
   311 // (public) return the number of bits in "this"
   312 function bnBitLength() {
   313   var this_array = this.array;
   314   if(this.t <= 0) return 0;
   315   return BI_DB*(this.t-1)+nbits(this_array[this.t-1]^(this.s&BI_DM));
   316 }
   318 // (protected) r = this << n*DB
   319 function bnpDLShiftTo(n,r) {
   320   var this_array = this.array;
   321   var r_array = r.array;
   322   var i;
   323   for(i = this.t-1; i >= 0; --i) r_array[i+n] = this_array[i];
   324   for(i = n-1; i >= 0; --i) r_array[i] = 0;
   325   r.t = this.t+n;
   326   r.s = this.s;
   327 }
   329 // (protected) r = this >> n*DB
   330 function bnpDRShiftTo(n,r) {
   331   var this_array = this.array;
   332   var r_array = r.array;
   333   for(var i = n; i < this.t; ++i) r_array[i-n] = this_array[i];
   334   r.t = Math.max(this.t-n,0);
   335   r.s = this.s;
   336 }
   338 // (protected) r = this << n
   339 function bnpLShiftTo(n,r) {
   340   var this_array = this.array;
   341   var r_array = r.array;
   342   var bs = n%BI_DB;
   343   var cbs = BI_DB-bs;
   344   var bm = (1<<cbs)-1;
   345   var ds = Math.floor(n/BI_DB), c = (this.s<<bs)&BI_DM, i;
   346   for(i = this.t-1; i >= 0; --i) {
   347     r_array[i+ds+1] = (this_array[i]>>cbs)|c;
   348     c = (this_array[i]&bm)<<bs;
   349   }
   350   for(i = ds-1; i >= 0; --i) r_array[i] = 0;
   351   r_array[ds] = c;
   352   r.t = this.t+ds+1;
   353   r.s = this.s;
   354   r.clamp();
   355 }
   357 // (protected) r = this >> n
   358 function bnpRShiftTo(n,r) {
   359   var this_array = this.array;
   360   var r_array = r.array;
   361   r.s = this.s;
   362   var ds = Math.floor(n/BI_DB);
   363   if(ds >= this.t) { r.t = 0; return; }
   364   var bs = n%BI_DB;
   365   var cbs = BI_DB-bs;
   366   var bm = (1<<bs)-1;
   367   r_array[0] = this_array[ds]>>bs;
   368   for(var i = ds+1; i < this.t; ++i) {
   369     r_array[i-ds-1] |= (this_array[i]&bm)<<cbs;
   370     r_array[i-ds] = this_array[i]>>bs;
   371   }
   372   if(bs > 0) r_array[this.t-ds-1] |= (this.s&bm)<<cbs;
   373   r.t = this.t-ds;
   374   r.clamp();
   375 }
   377 // (protected) r = this - a
   378 function bnpSubTo(a,r) {
   379   var this_array = this.array;
   380   var r_array = r.array;
   381   var a_array = a.array;
   382   var i = 0, c = 0, m = Math.min(a.t,this.t);
   383   while(i < m) {
   384     c += this_array[i]-a_array[i];
   385     r_array[i++] = c&BI_DM;
   386     c >>= BI_DB;
   387   }
   388   if(a.t < this.t) {
   389     c -= a.s;
   390     while(i < this.t) {
   391       c += this_array[i];
   392       r_array[i++] = c&BI_DM;
   393       c >>= BI_DB;
   394     }
   395     c += this.s;
   396   }
   397   else {
   398     c += this.s;
   399     while(i < a.t) {
   400       c -= a_array[i];
   401       r_array[i++] = c&BI_DM;
   402       c >>= BI_DB;
   403     }
   404     c -= a.s;
   405   }
   406   r.s = (c<0)?-1:0;
   407   if(c < -1) r_array[i++] = BI_DV+c;
   408   else if(c > 0) r_array[i++] = c;
   409   r.t = i;
   410   r.clamp();
   411 }
   413 // (protected) r = this * a, r != this,a (HAC 14.12)
   414 // "this" should be the larger one if appropriate.
   415 function bnpMultiplyTo(a,r) {
   416   var this_array = this.array;
   417   var r_array = r.array;
   418   var x = this.abs(), y = a.abs();
   419   var y_array = y.array;
   421   var i = x.t;
   422   r.t = i+y.t;
   423   while(--i >= 0) r_array[i] = 0;
   424   for(i = 0; i < y.t; ++i) r_array[i+x.t] = x.am(0,y_array[i],r,i,0,x.t);
   425   r.s = 0;
   426   r.clamp();
   427   if(this.s != a.s) BigInteger.ZERO.subTo(r,r);
   428 }
   430 // (protected) r = this^2, r != this (HAC 14.16)
   431 function bnpSquareTo(r) {
   432   var x = this.abs();
   433   var x_array = x.array;
   434   var r_array = r.array;
   436   var i = r.t = 2*x.t;
   437   while(--i >= 0) r_array[i] = 0;
   438   for(i = 0; i < x.t-1; ++i) {
   439     var c = x.am(i,x_array[i],r,2*i,0,1);
   440     if((r_array[i+x.t]+=x.am(i+1,2*x_array[i],r,2*i+1,c,x.t-i-1)) >= BI_DV) {
   441       r_array[i+x.t] -= BI_DV;
   442       r_array[i+x.t+1] = 1;
   443     }
   444   }
   445   if(r.t > 0) r_array[r.t-1] += x.am(i,x_array[i],r,2*i,0,1);
   446   r.s = 0;
   447   r.clamp();
   448 }
   450 // (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)
   451 // r != q, this != m.  q or r may be null.
   452 function bnpDivRemTo(m,q,r) {
   453   var pm = m.abs();
   454   if(pm.t <= 0) return;
   455   var pt = this.abs();
   456   if(pt.t < pm.t) {
   457     if(q != null) q.fromInt(0);
   458     if(r != null) this.copyTo(r);
   459     return;
   460   }
   461   if(r == null) r = nbi();
   462   var y = nbi(), ts = this.s, ms = m.s;
   463   var pm_array = pm.array;
   464   var nsh = BI_DB-nbits(pm_array[pm.t-1]);	// normalize modulus
   465   if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); }
   466   else { pm.copyTo(y); pt.copyTo(r); }
   467   var ys = y.t;
   469   var y_array = y.array;
   470   var y0 = y_array[ys-1];
   471   if(y0 == 0) return;
   472   var yt = y0*(1<<BI_F1)+((ys>1)?y_array[ys-2]>>BI_F2:0);
   473   var d1 = BI_FV/yt, d2 = (1<<BI_F1)/yt, e = 1<<BI_F2;
   474   var i = r.t, j = i-ys, t = (q==null)?nbi():q;
   475   y.dlShiftTo(j,t);
   477   var r_array = r.array;
   478   if(r.compareTo(t) >= 0) {
   479     r_array[r.t++] = 1;
   480     r.subTo(t,r);
   481   }
   482   BigInteger.ONE.dlShiftTo(ys,t);
   483   t.subTo(y,y);	// "negative" y so we can replace sub with am later
   484   while(y.t < ys) y_array[y.t++] = 0;
   485   while(--j >= 0) {
   486     // Estimate quotient digit
   487     var qd = (r_array[--i]==y0)?BI_DM:Math.floor(r_array[i]*d1+(r_array[i-1]+e)*d2);
   488     if((r_array[i]+=y.am(0,qd,r,j,0,ys)) < qd) {	// Try it out
   489       y.dlShiftTo(j,t);
   490       r.subTo(t,r);
   491       while(r_array[i] < --qd) r.subTo(t,r);
   492     }
   493   }
   494   if(q != null) {
   495     r.drShiftTo(ys,q);
   496     if(ts != ms) BigInteger.ZERO.subTo(q,q);
   497   }
   498   r.t = ys;
   499   r.clamp();
   500   if(nsh > 0) r.rShiftTo(nsh,r);	// Denormalize remainder
   501   if(ts < 0) BigInteger.ZERO.subTo(r,r);
   502 }
   504 // (public) this mod a
   505 function bnMod(a) {
   506   var r = nbi();
   507   this.abs().divRemTo(a,null,r);
   508   if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r);
   509   return r;
   510 }
   512 // Modular reduction using "classic" algorithm
   513 function Classic(m) { this.m = m; }
   514 function cConvert(x) {
   515   if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m);
   516   else return x;
   517 }
   518 function cRevert(x) { return x; }
   519 function cReduce(x) { x.divRemTo(this.m,null,x); }
   520 function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
   521 function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
   523 Classic.prototype.convert = cConvert;
   524 Classic.prototype.revert = cRevert;
   525 Classic.prototype.reduce = cReduce;
   526 Classic.prototype.mulTo = cMulTo;
   527 Classic.prototype.sqrTo = cSqrTo;
   529 // (protected) return "-1/this % 2^DB"; useful for Mont. reduction
   530 // justification:
   531 //         xy == 1 (mod m)
   532 //         xy =  1+km
   533 //   xy(2-xy) = (1+km)(1-km)
   534 // x[y(2-xy)] = 1-k^2m^2
   535 // x[y(2-xy)] == 1 (mod m^2)
   536 // if y is 1/x mod m, then y(2-xy) is 1/x mod m^2
   537 // should reduce x and y(2-xy) by m^2 at each step to keep size bounded.
   538 // JS multiply "overflows" differently from C/C++, so care is needed here.
   539 function bnpInvDigit() {
   540   var this_array = this.array;
   541   if(this.t < 1) return 0;
   542   var x = this_array[0];
   543   if((x&1) == 0) return 0;
   544   var y = x&3;		// y == 1/x mod 2^2
   545   y = (y*(2-(x&0xf)*y))&0xf;	// y == 1/x mod 2^4
   546   y = (y*(2-(x&0xff)*y))&0xff;	// y == 1/x mod 2^8
   547   y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff;	// y == 1/x mod 2^16
   548   // last step - calculate inverse mod DV directly;
   549   // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints
   550   y = (y*(2-x*y%BI_DV))%BI_DV;		// y == 1/x mod 2^dbits
   551   // we really want the negative inverse, and -DV < y < DV
   552   return (y>0)?BI_DV-y:-y;
   553 }
   555 // Montgomery reduction
   556 function Montgomery(m) {
   557   this.m = m;
   558   this.mp = m.invDigit();
   559   this.mpl = this.mp&0x7fff;
   560   this.mph = this.mp>>15;
   561   this.um = (1<<(BI_DB-15))-1;
   562   this.mt2 = 2*m.t;
   563 }
   565 // xR mod m
   566 function montConvert(x) {
   567   var r = nbi();
   568   x.abs().dlShiftTo(this.m.t,r);
   569   r.divRemTo(this.m,null,r);
   570   if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r);
   571   return r;
   572 }
   574 // x/R mod m
   575 function montRevert(x) {
   576   var r = nbi();
   577   x.copyTo(r);
   578   this.reduce(r);
   579   return r;
   580 }
   582 // x = x/R mod m (HAC 14.32)
   583 function montReduce(x) {
   584   var x_array = x.array;
   585   while(x.t <= this.mt2)	// pad x so am has enough room later
   586     x_array[x.t++] = 0;
   587   for(var i = 0; i < this.m.t; ++i) {
   588     // faster way of calculating u0 = x[i]*mp mod DV
   589     var j = x_array[i]&0x7fff;
   590     var u0 = (j*this.mpl+(((j*this.mph+(x_array[i]>>15)*this.mpl)&this.um)<<15))&BI_DM;
   591     // use am to combine the multiply-shift-add into one call
   592     j = i+this.m.t;
   593     x_array[j] += this.m.am(0,u0,x,i,0,this.m.t);
   594     // propagate carry
   595     while(x_array[j] >= BI_DV) { x_array[j] -= BI_DV; x_array[++j]++; }
   596   }
   597   x.clamp();
   598   x.drShiftTo(this.m.t,x);
   599   if(x.compareTo(this.m) >= 0) x.subTo(this.m,x);
   600 }
   602 // r = "x^2/R mod m"; x != r
   603 function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
   605 // r = "xy/R mod m"; x,y != r
   606 function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
   608 Montgomery.prototype.convert = montConvert;
   609 Montgomery.prototype.revert = montRevert;
   610 Montgomery.prototype.reduce = montReduce;
   611 Montgomery.prototype.mulTo = montMulTo;
   612 Montgomery.prototype.sqrTo = montSqrTo;
   614 // (protected) true iff this is even
   615 function bnpIsEven() {
   616   var this_array = this.array;
   617   return ((this.t>0)?(this_array[0]&1):this.s) == 0;
   618 }
   620 // (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)
   621 function bnpExp(e,z) {
   622   if(e > 0xffffffff || e < 1) return BigInteger.ONE;
   623   var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1;
   624   g.copyTo(r);
   625   while(--i >= 0) {
   626     z.sqrTo(r,r2);
   627     if((e&(1<<i)) > 0) z.mulTo(r2,g,r);
   628     else { var t = r; r = r2; r2 = t; }
   629   }
   630   return z.revert(r);
   631 }
   633 // (public) this^e % m, 0 <= e < 2^32
   634 function bnModPowInt(e,m) {
   635   var z;
   636   if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m);
   637   return this.exp(e,z);
   638 }
   640 // protected
   641 BigInteger.prototype.copyTo = bnpCopyTo;
   642 BigInteger.prototype.fromInt = bnpFromInt;
   643 BigInteger.prototype.fromString = bnpFromString;
   644 BigInteger.prototype.clamp = bnpClamp;
   645 BigInteger.prototype.dlShiftTo = bnpDLShiftTo;
   646 BigInteger.prototype.drShiftTo = bnpDRShiftTo;
   647 BigInteger.prototype.lShiftTo = bnpLShiftTo;
   648 BigInteger.prototype.rShiftTo = bnpRShiftTo;
   649 BigInteger.prototype.subTo = bnpSubTo;
   650 BigInteger.prototype.multiplyTo = bnpMultiplyTo;
   651 BigInteger.prototype.squareTo = bnpSquareTo;
   652 BigInteger.prototype.divRemTo = bnpDivRemTo;
   653 BigInteger.prototype.invDigit = bnpInvDigit;
   654 BigInteger.prototype.isEven = bnpIsEven;
   655 BigInteger.prototype.exp = bnpExp;
   657 // public
   658 BigInteger.prototype.toString = bnToString;
   659 BigInteger.prototype.negate = bnNegate;
   660 BigInteger.prototype.abs = bnAbs;
   661 BigInteger.prototype.compareTo = bnCompareTo;
   662 BigInteger.prototype.bitLength = bnBitLength;
   663 BigInteger.prototype.mod = bnMod;
   664 BigInteger.prototype.modPowInt = bnModPowInt;
   666 // "constants"
   667 BigInteger.ZERO = nbv(0);
   668 BigInteger.ONE = nbv(1);
   669 // Copyright (c) 2005  Tom Wu
   670 // All Rights Reserved.
   671 // See "LICENSE" for details.
   673 // Extended JavaScript BN functions, required for RSA private ops.
   675 // (public)
   676 function bnClone() { var r = nbi(); this.copyTo(r); return r; }
   678 // (public) return value as integer
   679 function bnIntValue() {
   680   var this_array = this.array;
   681   if(this.s < 0) {
   682     if(this.t == 1) return this_array[0]-BI_DV;
   683     else if(this.t == 0) return -1;
   684   }
   685   else if(this.t == 1) return this_array[0];
   686   else if(this.t == 0) return 0;
   687   // assumes 16 < DB < 32
   688   return ((this_array[1]&((1<<(32-BI_DB))-1))<<BI_DB)|this_array[0];
   689 }
   691 // (public) return value as byte
   692 function bnByteValue() {
   693   var this_array = this.array;
   694   return (this.t==0)?this.s:(this_array[0]<<24)>>24;
   695 }
   697 // (public) return value as short (assumes DB>=16)
   698 function bnShortValue() {
   699   var this_array = this.array;
   700   return (this.t==0)?this.s:(this_array[0]<<16)>>16;
   701 }
   703 // (protected) return x s.t. r^x < DV
   704 function bnpChunkSize(r) { return Math.floor(Math.LN2*BI_DB/Math.log(r)); }
   706 // (public) 0 if this == 0, 1 if this > 0
   707 function bnSigNum() {
   708   var this_array = this.array;
   709   if(this.s < 0) return -1;
   710   else if(this.t <= 0 || (this.t == 1 && this_array[0] <= 0)) return 0;
   711   else return 1;
   712 }
   714 // (protected) convert to radix string
   715 function bnpToRadix(b) {
   716   if(b == null) b = 10;
   717   if(this.signum() == 0 || b < 2 || b > 36) return "0";
   718   var cs = this.chunkSize(b);
   719   var a = Math.pow(b,cs);
   720   var d = nbv(a), y = nbi(), z = nbi(), r = "";
   721   this.divRemTo(d,y,z);
   722   while(y.signum() > 0) {
   723     r = (a+z.intValue()).toString(b).substr(1) + r;
   724     y.divRemTo(d,y,z);
   725   }
   726   return z.intValue().toString(b) + r;
   727 }
   729 // (protected) convert from radix string
   730 function bnpFromRadix(s,b) {
   731   this.fromInt(0);
   732   if(b == null) b = 10;
   733   var cs = this.chunkSize(b);
   734   var d = Math.pow(b,cs), mi = false, j = 0, w = 0;
   735   for(var i = 0; i < s.length; ++i) {
   736     var x = intAt(s,i);
   737     if(x < 0) {
   738       if(s.charAt(i) == "-" && this.signum() == 0) mi = true;
   739       continue;
   740     }
   741     w = b*w+x;
   742     if(++j >= cs) {
   743       this.dMultiply(d);
   744       this.dAddOffset(w,0);
   745       j = 0;
   746       w = 0;
   747     }
   748   }
   749   if(j > 0) {
   750     this.dMultiply(Math.pow(b,j));
   751     this.dAddOffset(w,0);
   752   }
   753   if(mi) BigInteger.ZERO.subTo(this,this);
   754 }
   756 // (protected) alternate constructor
   757 function bnpFromNumber(a,b,c) {
   758   if("number" == typeof b) {
   759     // new BigInteger(int,int,RNG)
   760     if(a < 2) this.fromInt(1);
   761     else {
   762       this.fromNumber(a,c);
   763       if(!this.testBit(a-1))	// force MSB set
   764         this.bitwiseTo(BigInteger.ONE.shiftLeft(a-1),op_or,this);
   765       if(this.isEven()) this.dAddOffset(1,0); // force odd
   766       while(!this.isProbablePrime(b)) {
   767         this.dAddOffset(2,0);
   768         if(this.bitLength() > a) this.subTo(BigInteger.ONE.shiftLeft(a-1),this);
   769       }
   770     }
   771   }
   772   else {
   773     // new BigInteger(int,RNG)
   774     var x = new Array(), t = a&7;
   775     x.length = (a>>3)+1;
   776     b.nextBytes(x);
   777     if(t > 0) x[0] &= ((1<<t)-1); else x[0] = 0;
   778     this.fromString(x,256);
   779   }
   780 }
   782 // (public) convert to bigendian byte array
   783 function bnToByteArray() {
   784   var this_array = this.array;
   785   var i = this.t, r = new Array();
   786   r[0] = this.s;
   787   var p = BI_DB-(i*BI_DB)%8, d, k = 0;
   788   if(i-- > 0) {
   789     if(p < BI_DB && (d = this_array[i]>>p) != (this.s&BI_DM)>>p)
   790       r[k++] = d|(this.s<<(BI_DB-p));
   791     while(i >= 0) {
   792       if(p < 8) {
   793         d = (this_array[i]&((1<<p)-1))<<(8-p);
   794         d |= this_array[--i]>>(p+=BI_DB-8);
   795       }
   796       else {
   797         d = (this_array[i]>>(p-=8))&0xff;
   798         if(p <= 0) { p += BI_DB; --i; }
   799       }
   800       if((d&0x80) != 0) d |= -256;
   801       if(k == 0 && (this.s&0x80) != (d&0x80)) ++k;
   802       if(k > 0 || d != this.s) r[k++] = d;
   803     }
   804   }
   805   return r;
   806 }
   808 function bnEquals(a) { return(this.compareTo(a)==0); }
   809 function bnMin(a) { return(this.compareTo(a)<0)?this:a; }
   810 function bnMax(a) { return(this.compareTo(a)>0)?this:a; }
   812 // (protected) r = this op a (bitwise)
   813 function bnpBitwiseTo(a,op,r) {
   814   var this_array = this.array;
   815   var a_array    = a.array;
   816   var r_array    = r.array;
   817   var i, f, m = Math.min(a.t,this.t);
   818   for(i = 0; i < m; ++i) r_array[i] = op(this_array[i],a_array[i]);
   819   if(a.t < this.t) {
   820     f = a.s&BI_DM;
   821     for(i = m; i < this.t; ++i) r_array[i] = op(this_array[i],f);
   822     r.t = this.t;
   823   }
   824   else {
   825     f = this.s&BI_DM;
   826     for(i = m; i < a.t; ++i) r_array[i] = op(f,a_array[i]);
   827     r.t = a.t;
   828   }
   829   r.s = op(this.s,a.s);
   830   r.clamp();
   831 }
   833 // (public) this & a
   834 function op_and(x,y) { return x&y; }
   835 function bnAnd(a) { var r = nbi(); this.bitwiseTo(a,op_and,r); return r; }
   837 // (public) this | a
   838 function op_or(x,y) { return x|y; }
   839 function bnOr(a) { var r = nbi(); this.bitwiseTo(a,op_or,r); return r; }
   841 // (public) this ^ a
   842 function op_xor(x,y) { return x^y; }
   843 function bnXor(a) { var r = nbi(); this.bitwiseTo(a,op_xor,r); return r; }
   845 // (public) this & ~a
   846 function op_andnot(x,y) { return x&~y; }
   847 function bnAndNot(a) { var r = nbi(); this.bitwiseTo(a,op_andnot,r); return r; }
   849 // (public) ~this
   850 function bnNot() {
   851   var this_array = this.array;
   852   var r = nbi();
   853   var r_array = r.array;
   855   for(var i = 0; i < this.t; ++i) r_array[i] = BI_DM&~this_array[i];
   856   r.t = this.t;
   857   r.s = ~this.s;
   858   return r;
   859 }
   861 // (public) this << n
   862 function bnShiftLeft(n) {
   863   var r = nbi();
   864   if(n < 0) this.rShiftTo(-n,r); else this.lShiftTo(n,r);
   865   return r;
   866 }
   868 // (public) this >> n
   869 function bnShiftRight(n) {
   870   var r = nbi();
   871   if(n < 0) this.lShiftTo(-n,r); else this.rShiftTo(n,r);
   872   return r;
   873 }
   875 // return index of lowest 1-bit in x, x < 2^31
   876 function lbit(x) {
   877   if(x == 0) return -1;
   878   var r = 0;
   879   if((x&0xffff) == 0) { x >>= 16; r += 16; }
   880   if((x&0xff) == 0) { x >>= 8; r += 8; }
   881   if((x&0xf) == 0) { x >>= 4; r += 4; }
   882   if((x&3) == 0) { x >>= 2; r += 2; }
   883   if((x&1) == 0) ++r;
   884   return r;
   885 }
   887 // (public) returns index of lowest 1-bit (or -1 if none)
   888 function bnGetLowestSetBit() {
   889   var this_array = this.array;
   890   for(var i = 0; i < this.t; ++i)
   891     if(this_array[i] != 0) return i*BI_DB+lbit(this_array[i]);
   892   if(this.s < 0) return this.t*BI_DB;
   893   return -1;
   894 }
   896 // return number of 1 bits in x
   897 function cbit(x) {
   898   var r = 0;
   899   while(x != 0) { x &= x-1; ++r; }
   900   return r;
   901 }
   903 // (public) return number of set bits
   904 function bnBitCount() {
   905   var r = 0, x = this.s&BI_DM;
   906   for(var i = 0; i < this.t; ++i) r += cbit(this_array[i]^x);
   907   return r;
   908 }
   910 // (public) true iff nth bit is set
   911 function bnTestBit(n) {
   912   var this_array = this.array;
   913   var j = Math.floor(n/BI_DB);
   914   if(j >= this.t) return(this.s!=0);
   915   return((this_array[j]&(1<<(n%BI_DB)))!=0);
   916 }
   918 // (protected) this op (1<<n)
   919 function bnpChangeBit(n,op) {
   920   var r = BigInteger.ONE.shiftLeft(n);
   921   this.bitwiseTo(r,op,r);
   922   return r;
   923 }
   925 // (public) this | (1<<n)
   926 function bnSetBit(n) { return this.changeBit(n,op_or); }
   928 // (public) this & ~(1<<n)
   929 function bnClearBit(n) { return this.changeBit(n,op_andnot); }
   931 // (public) this ^ (1<<n)
   932 function bnFlipBit(n) { return this.changeBit(n,op_xor); }
   934 // (protected) r = this + a
   935 function bnpAddTo(a,r) {
   936   var this_array = this.array;
   937   var a_array = a.array;
   938   var r_array = r.array;
   939   var i = 0, c = 0, m = Math.min(a.t,this.t);
   940   while(i < m) {
   941     c += this_array[i]+a_array[i];
   942     r_array[i++] = c&BI_DM;
   943     c >>= BI_DB;
   944   }
   945   if(a.t < this.t) {
   946     c += a.s;
   947     while(i < this.t) {
   948       c += this_array[i];
   949       r_array[i++] = c&BI_DM;
   950       c >>= BI_DB;
   951     }
   952     c += this.s;
   953   }
   954   else {
   955     c += this.s;
   956     while(i < a.t) {
   957       c += a_array[i];
   958       r_array[i++] = c&BI_DM;
   959       c >>= BI_DB;
   960     }
   961     c += a.s;
   962   }
   963   r.s = (c<0)?-1:0;
   964   if(c > 0) r_array[i++] = c;
   965   else if(c < -1) r_array[i++] = BI_DV+c;
   966   r.t = i;
   967   r.clamp();
   968 }
   970 // (public) this + a
   971 function bnAdd(a) { var r = nbi(); this.addTo(a,r); return r; }
   973 // (public) this - a
   974 function bnSubtract(a) { var r = nbi(); this.subTo(a,r); return r; }
   976 // (public) this * a
   977 function bnMultiply(a) { var r = nbi(); this.multiplyTo(a,r); return r; }
   979 // (public) this / a
   980 function bnDivide(a) { var r = nbi(); this.divRemTo(a,r,null); return r; }
   982 // (public) this % a
   983 function bnRemainder(a) { var r = nbi(); this.divRemTo(a,null,r); return r; }
   985 // (public) [this/a,this%a]
   986 function bnDivideAndRemainder(a) {
   987   var q = nbi(), r = nbi();
   988   this.divRemTo(a,q,r);
   989   return new Array(q,r);
   990 }
   992 // (protected) this *= n, this >= 0, 1 < n < DV
   993 function bnpDMultiply(n) {
   994   var this_array = this.array;
   995   this_array[this.t] = this.am(0,n-1,this,0,0,this.t);
   996   ++this.t;
   997   this.clamp();
   998 }
  1000 // (protected) this += n << w words, this >= 0
  1001 function bnpDAddOffset(n,w) {
  1002   var this_array = this.array;
  1003   while(this.t <= w) this_array[this.t++] = 0;
  1004   this_array[w] += n;
  1005   while(this_array[w] >= BI_DV) {
  1006     this_array[w] -= BI_DV;
  1007     if(++w >= this.t) this_array[this.t++] = 0;
  1008     ++this_array[w];
  1012 // A "null" reducer
  1013 function NullExp() {}
  1014 function nNop(x) { return x; }
  1015 function nMulTo(x,y,r) { x.multiplyTo(y,r); }
  1016 function nSqrTo(x,r) { x.squareTo(r); }
  1018 NullExp.prototype.convert = nNop;
  1019 NullExp.prototype.revert = nNop;
  1020 NullExp.prototype.mulTo = nMulTo;
  1021 NullExp.prototype.sqrTo = nSqrTo;
  1023 // (public) this^e
  1024 function bnPow(e) { return this.exp(e,new NullExp()); }
  1026 // (protected) r = lower n words of "this * a", a.t <= n
  1027 // "this" should be the larger one if appropriate.
  1028 function bnpMultiplyLowerTo(a,n,r) {
  1029   var r_array = r.array;
  1030   var a_array = a.array;
  1031   var i = Math.min(this.t+a.t,n);
  1032   r.s = 0; // assumes a,this >= 0
  1033   r.t = i;
  1034   while(i > 0) r_array[--i] = 0;
  1035   var j;
  1036   for(j = r.t-this.t; i < j; ++i) r_array[i+this.t] = this.am(0,a_array[i],r,i,0,this.t);
  1037   for(j = Math.min(a.t,n); i < j; ++i) this.am(0,a_array[i],r,i,0,n-i);
  1038   r.clamp();
  1041 // (protected) r = "this * a" without lower n words, n > 0
  1042 // "this" should be the larger one if appropriate.
  1043 function bnpMultiplyUpperTo(a,n,r) {
  1044   var r_array = r.array;
  1045   var a_array = a.array;
  1046   --n;
  1047   var i = r.t = this.t+a.t-n;
  1048   r.s = 0; // assumes a,this >= 0
  1049   while(--i >= 0) r_array[i] = 0;
  1050   for(i = Math.max(n-this.t,0); i < a.t; ++i)
  1051     r_array[this.t+i-n] = this.am(n-i,a_array[i],r,0,0,this.t+i-n);
  1052   r.clamp();
  1053   r.drShiftTo(1,r);
  1056 // Barrett modular reduction
  1057 function Barrett(m) {
  1058   // setup Barrett
  1059   this.r2 = nbi();
  1060   this.q3 = nbi();
  1061   BigInteger.ONE.dlShiftTo(2*m.t,this.r2);
  1062   this.mu = this.r2.divide(m);
  1063   this.m = m;
  1066 function barrettConvert(x) {
  1067   if(x.s < 0 || x.t > 2*this.m.t) return x.mod(this.m);
  1068   else if(x.compareTo(this.m) < 0) return x;
  1069   else { var r = nbi(); x.copyTo(r); this.reduce(r); return r; }
  1072 function barrettRevert(x) { return x; }
  1074 // x = x mod m (HAC 14.42)
  1075 function barrettReduce(x) {
  1076   x.drShiftTo(this.m.t-1,this.r2);
  1077   if(x.t > this.m.t+1) { x.t = this.m.t+1; x.clamp(); }
  1078   this.mu.multiplyUpperTo(this.r2,this.m.t+1,this.q3);
  1079   this.m.multiplyLowerTo(this.q3,this.m.t+1,this.r2);
  1080   while(x.compareTo(this.r2) < 0) x.dAddOffset(1,this.m.t+1);
  1081   x.subTo(this.r2,x);
  1082   while(x.compareTo(this.m) >= 0) x.subTo(this.m,x);
  1085 // r = x^2 mod m; x != r
  1086 function barrettSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
  1088 // r = x*y mod m; x,y != r
  1089 function barrettMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
  1091 Barrett.prototype.convert = barrettConvert;
  1092 Barrett.prototype.revert = barrettRevert;
  1093 Barrett.prototype.reduce = barrettReduce;
  1094 Barrett.prototype.mulTo = barrettMulTo;
  1095 Barrett.prototype.sqrTo = barrettSqrTo;
  1097 // (public) this^e % m (HAC 14.85)
  1098 function bnModPow(e,m) {
  1099   var e_array = e.array;
  1100   var i = e.bitLength(), k, r = nbv(1), z;
  1101   if(i <= 0) return r;
  1102   else if(i < 18) k = 1;
  1103   else if(i < 48) k = 3;
  1104   else if(i < 144) k = 4;
  1105   else if(i < 768) k = 5;
  1106   else k = 6;
  1107   if(i < 8)
  1108     z = new Classic(m);
  1109   else if(m.isEven())
  1110     z = new Barrett(m);
  1111   else
  1112     z = new Montgomery(m);
  1114   // precomputation
  1115   var g = new Array(), n = 3, k1 = k-1, km = (1<<k)-1;
  1116   g[1] = z.convert(this);
  1117   if(k > 1) {
  1118     var g2 = nbi();
  1119     z.sqrTo(g[1],g2);
  1120     while(n <= km) {
  1121       g[n] = nbi();
  1122       z.mulTo(g2,g[n-2],g[n]);
  1123       n += 2;
  1127   var j = e.t-1, w, is1 = true, r2 = nbi(), t;
  1128   i = nbits(e_array[j])-1;
  1129   while(j >= 0) {
  1130     if(i >= k1) w = (e_array[j]>>(i-k1))&km;
  1131     else {
  1132       w = (e_array[j]&((1<<(i+1))-1))<<(k1-i);
  1133       if(j > 0) w |= e_array[j-1]>>(BI_DB+i-k1);
  1136     n = k;
  1137     while((w&1) == 0) { w >>= 1; --n; }
  1138     if((i -= n) < 0) { i += BI_DB; --j; }
  1139     if(is1) {	// ret == 1, don't bother squaring or multiplying it
  1140       g[w].copyTo(r);
  1141       is1 = false;
  1143     else {
  1144       while(n > 1) { z.sqrTo(r,r2); z.sqrTo(r2,r); n -= 2; }
  1145       if(n > 0) z.sqrTo(r,r2); else { t = r; r = r2; r2 = t; }
  1146       z.mulTo(r2,g[w],r);
  1149     while(j >= 0 && (e_array[j]&(1<<i)) == 0) {
  1150       z.sqrTo(r,r2); t = r; r = r2; r2 = t;
  1151       if(--i < 0) { i = BI_DB-1; --j; }
  1154   return z.revert(r);
  1157 // (public) gcd(this,a) (HAC 14.54)
  1158 function bnGCD(a) {
  1159   var x = (this.s<0)?this.negate():this.clone();
  1160   var y = (a.s<0)?a.negate():a.clone();
  1161   if(x.compareTo(y) < 0) { var t = x; x = y; y = t; }
  1162   var i = x.getLowestSetBit(), g = y.getLowestSetBit();
  1163   if(g < 0) return x;
  1164   if(i < g) g = i;
  1165   if(g > 0) {
  1166     x.rShiftTo(g,x);
  1167     y.rShiftTo(g,y);
  1169   while(x.signum() > 0) {
  1170     if((i = x.getLowestSetBit()) > 0) x.rShiftTo(i,x);
  1171     if((i = y.getLowestSetBit()) > 0) y.rShiftTo(i,y);
  1172     if(x.compareTo(y) >= 0) {
  1173       x.subTo(y,x);
  1174       x.rShiftTo(1,x);
  1176     else {
  1177       y.subTo(x,y);
  1178       y.rShiftTo(1,y);
  1181   if(g > 0) y.lShiftTo(g,y);
  1182   return y;
  1185 // (protected) this % n, n < 2^26
  1186 function bnpModInt(n) {
  1187   var this_array = this.array;
  1188   if(n <= 0) return 0;
  1189   var d = BI_DV%n, r = (this.s<0)?n-1:0;
  1190   if(this.t > 0)
  1191     if(d == 0) r = this_array[0]%n;
  1192     else for(var i = this.t-1; i >= 0; --i) r = (d*r+this_array[i])%n;
  1193   return r;
  1196 // (public) 1/this % m (HAC 14.61)
  1197 function bnModInverse(m) {
  1198   var ac = m.isEven();
  1199   if((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO;
  1200   var u = m.clone(), v = this.clone();
  1201   var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1);
  1202   while(u.signum() != 0) {
  1203     while(u.isEven()) {
  1204       u.rShiftTo(1,u);
  1205       if(ac) {
  1206         if(!a.isEven() || !b.isEven()) { a.addTo(this,a); b.subTo(m,b); }
  1207         a.rShiftTo(1,a);
  1209       else if(!b.isEven()) b.subTo(m,b);
  1210       b.rShiftTo(1,b);
  1212     while(v.isEven()) {
  1213       v.rShiftTo(1,v);
  1214       if(ac) {
  1215         if(!c.isEven() || !d.isEven()) { c.addTo(this,c); d.subTo(m,d); }
  1216         c.rShiftTo(1,c);
  1218       else if(!d.isEven()) d.subTo(m,d);
  1219       d.rShiftTo(1,d);
  1221     if(u.compareTo(v) >= 0) {
  1222       u.subTo(v,u);
  1223       if(ac) a.subTo(c,a);
  1224       b.subTo(d,b);
  1226     else {
  1227       v.subTo(u,v);
  1228       if(ac) c.subTo(a,c);
  1229       d.subTo(b,d);
  1232   if(v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO;
  1233   if(d.compareTo(m) >= 0) return d.subtract(m);
  1234   if(d.signum() < 0) d.addTo(m,d); else return d;
  1235   if(d.signum() < 0) return d.add(m); else return d;
  1238 var lowprimes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509];
  1239 var lplim = (1<<26)/lowprimes[lowprimes.length-1];
  1241 // (public) test primality with certainty >= 1-.5^t
  1242 function bnIsProbablePrime(t) {
  1243   var i, x = this.abs();
  1244   var x_array = x.array;
  1245   if(x.t == 1 && x_array[0] <= lowprimes[lowprimes.length-1]) {
  1246     for(i = 0; i < lowprimes.length; ++i)
  1247       if(x_array[0] == lowprimes[i]) return true;
  1248     return false;
  1250   if(x.isEven()) return false;
  1251   i = 1;
  1252   while(i < lowprimes.length) {
  1253     var m = lowprimes[i], j = i+1;
  1254     while(j < lowprimes.length && m < lplim) m *= lowprimes[j++];
  1255     m = x.modInt(m);
  1256     while(i < j) if(m%lowprimes[i++] == 0) return false;
  1258   return x.millerRabin(t);
  1261 // (protected) true if probably prime (HAC 4.24, Miller-Rabin)
  1262 function bnpMillerRabin(t) {
  1263   var n1 = this.subtract(BigInteger.ONE);
  1264   var k = n1.getLowestSetBit();
  1265   if(k <= 0) return false;
  1266   var r = n1.shiftRight(k);
  1267   t = (t+1)>>1;
  1268   if(t > lowprimes.length) t = lowprimes.length;
  1269   var a = nbi();
  1270   for(var i = 0; i < t; ++i) {
  1271     a.fromInt(lowprimes[i]);
  1272     var y = a.modPow(r,this);
  1273     if(y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) {
  1274       var j = 1;
  1275       while(j++ < k && y.compareTo(n1) != 0) {
  1276         y = y.modPowInt(2,this);
  1277         if(y.compareTo(BigInteger.ONE) == 0) return false;
  1279       if(y.compareTo(n1) != 0) return false;
  1282   return true;
  1285 // protected
  1286 BigInteger.prototype.chunkSize = bnpChunkSize;
  1287 BigInteger.prototype.toRadix = bnpToRadix;
  1288 BigInteger.prototype.fromRadix = bnpFromRadix;
  1289 BigInteger.prototype.fromNumber = bnpFromNumber;
  1290 BigInteger.prototype.bitwiseTo = bnpBitwiseTo;
  1291 BigInteger.prototype.changeBit = bnpChangeBit;
  1292 BigInteger.prototype.addTo = bnpAddTo;
  1293 BigInteger.prototype.dMultiply = bnpDMultiply;
  1294 BigInteger.prototype.dAddOffset = bnpDAddOffset;
  1295 BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo;
  1296 BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo;
  1297 BigInteger.prototype.modInt = bnpModInt;
  1298 BigInteger.prototype.millerRabin = bnpMillerRabin;
  1300 // public
  1301 BigInteger.prototype.clone = bnClone;
  1302 BigInteger.prototype.intValue = bnIntValue;
  1303 BigInteger.prototype.byteValue = bnByteValue;
  1304 BigInteger.prototype.shortValue = bnShortValue;
  1305 BigInteger.prototype.signum = bnSigNum;
  1306 BigInteger.prototype.toByteArray = bnToByteArray;
  1307 BigInteger.prototype.equals = bnEquals;
  1308 BigInteger.prototype.min = bnMin;
  1309 BigInteger.prototype.max = bnMax;
  1310 BigInteger.prototype.and = bnAnd;
  1311 BigInteger.prototype.or = bnOr;
  1312 BigInteger.prototype.xor = bnXor;
  1313 BigInteger.prototype.andNot = bnAndNot;
  1314 BigInteger.prototype.not = bnNot;
  1315 BigInteger.prototype.shiftLeft = bnShiftLeft;
  1316 BigInteger.prototype.shiftRight = bnShiftRight;
  1317 BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit;
  1318 BigInteger.prototype.bitCount = bnBitCount;
  1319 BigInteger.prototype.testBit = bnTestBit;
  1320 BigInteger.prototype.setBit = bnSetBit;
  1321 BigInteger.prototype.clearBit = bnClearBit;
  1322 BigInteger.prototype.flipBit = bnFlipBit;
  1323 BigInteger.prototype.add = bnAdd;
  1324 BigInteger.prototype.subtract = bnSubtract;
  1325 BigInteger.prototype.multiply = bnMultiply;
  1326 BigInteger.prototype.divide = bnDivide;
  1327 BigInteger.prototype.remainder = bnRemainder;
  1328 BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder;
  1329 BigInteger.prototype.modPow = bnModPow;
  1330 BigInteger.prototype.modInverse = bnModInverse;
  1331 BigInteger.prototype.pow = bnPow;
  1332 BigInteger.prototype.gcd = bnGCD;
  1333 BigInteger.prototype.isProbablePrime = bnIsProbablePrime;
  1335 // BigInteger interfaces not implemented in jsbn:
  1337 // BigInteger(int signum, byte[] magnitude)
  1338 // double doubleValue()
  1339 // float floatValue()
  1340 // int hashCode()
  1341 // long longValue()
  1342 // static BigInteger valueOf(long val)
  1343 // prng4.js - uses Arcfour as a PRNG
  1345 function Arcfour() {
  1346   this.i = 0;
  1347   this.j = 0;
  1348   this.S = new Array();
  1351 // Initialize arcfour context from key, an array of ints, each from [0..255]
  1352 function ARC4init(key) {
  1353   var i, j, t;
  1354   for(i = 0; i < 256; ++i)
  1355     this.S[i] = i;
  1356   j = 0;
  1357   for(i = 0; i < 256; ++i) {
  1358     j = (j + this.S[i] + key[i % key.length]) & 255;
  1359     t = this.S[i];
  1360     this.S[i] = this.S[j];
  1361     this.S[j] = t;
  1363   this.i = 0;
  1364   this.j = 0;
  1367 function ARC4next() {
  1368   var t;
  1369   this.i = (this.i + 1) & 255;
  1370   this.j = (this.j + this.S[this.i]) & 255;
  1371   t = this.S[this.i];
  1372   this.S[this.i] = this.S[this.j];
  1373   this.S[this.j] = t;
  1374   return this.S[(t + this.S[this.i]) & 255];
  1377 Arcfour.prototype.init = ARC4init;
  1378 Arcfour.prototype.next = ARC4next;
  1380 // Plug in your RNG constructor here
  1381 function prng_newstate() {
  1382   return new Arcfour();
  1385 // Pool size must be a multiple of 4 and greater than 32.
  1386 // An array of bytes the size of the pool will be passed to init()
  1387 var rng_psize = 256;
  1388 // Random number generator - requires a PRNG backend, e.g. prng4.js
  1390 // For best results, put code like
  1391 // <body onClick='rng_seed_time();' onKeyPress='rng_seed_time();'>
  1392 // in your main HTML document.
  1394 var rng_state;
  1395 var rng_pool;
  1396 var rng_pptr;
  1398 // Mix in a 32-bit integer into the pool
  1399 function rng_seed_int(x) {
  1400   rng_pool[rng_pptr++] ^= x & 255;
  1401   rng_pool[rng_pptr++] ^= (x >> 8) & 255;
  1402   rng_pool[rng_pptr++] ^= (x >> 16) & 255;
  1403   rng_pool[rng_pptr++] ^= (x >> 24) & 255;
  1404   if(rng_pptr >= rng_psize) rng_pptr -= rng_psize;
  1407 // Mix in the current time (w/milliseconds) into the pool
  1408 function rng_seed_time() {
  1409   // Use pre-computed date to avoid making the benchmark
  1410   // results dependent on the current date.
  1411   rng_seed_int(1122926989487);
  1414 // Initialize the pool with junk if needed.
  1415 if(rng_pool == null) {
  1416   rng_pool = new Array();
  1417   rng_pptr = 0;
  1418   var t;
  1419   while(rng_pptr < rng_psize) {  // extract some randomness from Math.random()
  1420     t = Math.floor(65536 * Math.random());
  1421     rng_pool[rng_pptr++] = t >>> 8;
  1422     rng_pool[rng_pptr++] = t & 255;
  1424   rng_pptr = 0;
  1425   rng_seed_time();
  1426   //rng_seed_int(window.screenX);
  1427   //rng_seed_int(window.screenY);
  1430 function rng_get_byte() {
  1431   if(rng_state == null) {
  1432     rng_seed_time();
  1433     rng_state = prng_newstate();
  1434     rng_state.init(rng_pool);
  1435     for(rng_pptr = 0; rng_pptr < rng_pool.length; ++rng_pptr)
  1436       rng_pool[rng_pptr] = 0;
  1437     rng_pptr = 0;
  1438     //rng_pool = null;
  1440   // TODO: allow reseeding after first request
  1441   return rng_state.next();
  1444 function rng_get_bytes(ba) {
  1445   var i;
  1446   for(i = 0; i < ba.length; ++i) ba[i] = rng_get_byte();
  1449 function SecureRandom() {}
  1451 SecureRandom.prototype.nextBytes = rng_get_bytes;
  1452 // Depends on jsbn.js and rng.js
  1454 // convert a (hex) string to a bignum object
  1455 function parseBigInt(str,r) {
  1456   return new BigInteger(str,r);
  1459 function linebrk(s,n) {
  1460   var ret = "";
  1461   var i = 0;
  1462   while(i + n < s.length) {
  1463     ret += s.substring(i,i+n) + "\n";
  1464     i += n;
  1466   return ret + s.substring(i,s.length);
  1469 function byte2Hex(b) {
  1470   if(b < 0x10)
  1471     return "0" + b.toString(16);
  1472   else
  1473     return b.toString(16);
  1476 // PKCS#1 (type 2, random) pad input string s to n bytes, and return a bigint
  1477 function pkcs1pad2(s,n) {
  1478   if(n < s.length + 11) {
  1479     alert("Message too long for RSA");
  1480     return null;
  1482   var ba = new Array();
  1483   var i = s.length - 1;
  1484   while(i >= 0 && n > 0) ba[--n] = s.charCodeAt(i--);
  1485   ba[--n] = 0;
  1486   var rng = new SecureRandom();
  1487   var x = new Array();
  1488   while(n > 2) { // random non-zero pad
  1489     x[0] = 0;
  1490     while(x[0] == 0) rng.nextBytes(x);
  1491     ba[--n] = x[0];
  1493   ba[--n] = 2;
  1494   ba[--n] = 0;
  1495   return new BigInteger(ba);
  1498 // "empty" RSA key constructor
  1499 function RSAKey() {
  1500   this.n = null;
  1501   this.e = 0;
  1502   this.d = null;
  1503   this.p = null;
  1504   this.q = null;
  1505   this.dmp1 = null;
  1506   this.dmq1 = null;
  1507   this.coeff = null;
  1510 // Set the public key fields N and e from hex strings
  1511 function RSASetPublic(N,E) {
  1512   if(N != null && E != null && N.length > 0 && E.length > 0) {
  1513     this.n = parseBigInt(N,16);
  1514     this.e = parseInt(E,16);
  1516   else
  1517     alert("Invalid RSA public key");
  1520 // Perform raw public operation on "x": return x^e (mod n)
  1521 function RSADoPublic(x) {
  1522   return x.modPowInt(this.e, this.n);
  1525 // Return the PKCS#1 RSA encryption of "text" as an even-length hex string
  1526 function RSAEncrypt(text) {
  1527   var m = pkcs1pad2(text,(this.n.bitLength()+7)>>3);
  1528   if(m == null) return null;
  1529   var c = this.doPublic(m);
  1530   if(c == null) return null;
  1531   var h = c.toString(16);
  1532   if((h.length & 1) == 0) return h; else return "0" + h;
  1535 // Return the PKCS#1 RSA encryption of "text" as a Base64-encoded string
  1536 //function RSAEncryptB64(text) {
  1537 //  var h = this.encrypt(text);
  1538 //  if(h) return hex2b64(h); else return null;
  1539 //}
  1541 // protected
  1542 RSAKey.prototype.doPublic = RSADoPublic;
  1544 // public
  1545 RSAKey.prototype.setPublic = RSASetPublic;
  1546 RSAKey.prototype.encrypt = RSAEncrypt;
  1547 //RSAKey.prototype.encrypt_b64 = RSAEncryptB64;
  1548 // Depends on rsa.js and jsbn2.js
  1550 // Undo PKCS#1 (type 2, random) padding and, if valid, return the plaintext
  1551 function pkcs1unpad2(d,n) {
  1552   var b = d.toByteArray();
  1553   var i = 0;
  1554   while(i < b.length && b[i] == 0) ++i;
  1555   if(b.length-i != n-1 || b[i] != 2)
  1556     return null;
  1557   ++i;
  1558   while(b[i] != 0)
  1559     if(++i >= b.length) return null;
  1560   var ret = "";
  1561   while(++i < b.length)
  1562     ret += String.fromCharCode(b[i]);
  1563   return ret;
  1566 // Set the private key fields N, e, and d from hex strings
  1567 function RSASetPrivate(N,E,D) {
  1568   if(N != null && E != null && N.length > 0 && E.length > 0) {
  1569     this.n = parseBigInt(N,16);
  1570     this.e = parseInt(E,16);
  1571     this.d = parseBigInt(D,16);
  1573   else
  1574     alert("Invalid RSA private key");
  1577 // Set the private key fields N, e, d and CRT params from hex strings
  1578 function RSASetPrivateEx(N,E,D,P,Q,DP,DQ,C) {
  1579   if(N != null && E != null && N.length > 0 && E.length > 0) {
  1580     this.n = parseBigInt(N,16);
  1581     this.e = parseInt(E,16);
  1582     this.d = parseBigInt(D,16);
  1583     this.p = parseBigInt(P,16);
  1584     this.q = parseBigInt(Q,16);
  1585     this.dmp1 = parseBigInt(DP,16);
  1586     this.dmq1 = parseBigInt(DQ,16);
  1587     this.coeff = parseBigInt(C,16);
  1589   else
  1590     alert("Invalid RSA private key");
  1593 // Generate a new random private key B bits long, using public expt E
  1594 function RSAGenerate(B,E) {
  1595   var rng = new SecureRandom();
  1596   var qs = B>>1;
  1597   this.e = parseInt(E,16);
  1598   var ee = new BigInteger(E,16);
  1599   for(;;) {
  1600     for(;;) {
  1601       this.p = new BigInteger(B-qs,1,rng);
  1602       if(this.p.subtract(BigInteger.ONE).gcd(ee).compareTo(BigInteger.ONE) == 0 && this.p.isProbablePrime(10)) break;
  1604     for(;;) {
  1605       this.q = new BigInteger(qs,1,rng);
  1606       if(this.q.subtract(BigInteger.ONE).gcd(ee).compareTo(BigInteger.ONE) == 0 && this.q.isProbablePrime(10)) break;
  1608     if(this.p.compareTo(this.q) <= 0) {
  1609       var t = this.p;
  1610       this.p = this.q;
  1611       this.q = t;
  1613     var p1 = this.p.subtract(BigInteger.ONE);
  1614     var q1 = this.q.subtract(BigInteger.ONE);
  1615     var phi = p1.multiply(q1);
  1616     if(phi.gcd(ee).compareTo(BigInteger.ONE) == 0) {
  1617       this.n = this.p.multiply(this.q);
  1618       this.d = ee.modInverse(phi);
  1619       this.dmp1 = this.d.mod(p1);
  1620       this.dmq1 = this.d.mod(q1);
  1621       this.coeff = this.q.modInverse(this.p);
  1622       break;
  1627 // Perform raw private operation on "x": return x^d (mod n)
  1628 function RSADoPrivate(x) {
  1629   if(this.p == null || this.q == null)
  1630     return x.modPow(this.d, this.n);
  1632   // TODO: re-calculate any missing CRT params
  1633   var xp = x.mod(this.p).modPow(this.dmp1, this.p);
  1634   var xq = x.mod(this.q).modPow(this.dmq1, this.q);
  1636   while(xp.compareTo(xq) < 0)
  1637     xp = xp.add(this.p);
  1638   return xp.subtract(xq).multiply(this.coeff).mod(this.p).multiply(this.q).add(xq);
  1641 // Return the PKCS#1 RSA decryption of "ctext".
  1642 // "ctext" is an even-length hex string and the output is a plain string.
  1643 function RSADecrypt(ctext) {
  1644   var c = parseBigInt(ctext, 16);
  1645   var m = this.doPrivate(c);
  1646   if(m == null) return null;
  1647   return pkcs1unpad2(m, (this.n.bitLength()+7)>>3);
  1650 // Return the PKCS#1 RSA decryption of "ctext".
  1651 // "ctext" is a Base64-encoded string and the output is a plain string.
  1652 //function RSAB64Decrypt(ctext) {
  1653 //  var h = b64tohex(ctext);
  1654 //  if(h) return this.decrypt(h); else return null;
  1655 //}
  1657 // protected
  1658 RSAKey.prototype.doPrivate = RSADoPrivate;
  1660 // public
  1661 RSAKey.prototype.setPrivate = RSASetPrivate;
  1662 RSAKey.prototype.setPrivateEx = RSASetPrivateEx;
  1663 RSAKey.prototype.generate = RSAGenerate;
  1664 RSAKey.prototype.decrypt = RSADecrypt;
  1665 //RSAKey.prototype.b64_decrypt = RSAB64Decrypt;
  1668 nValue="a5261939975948bb7a58dffe5ff54e65f0498f9175f5a09288810b8975871e99af3b5dd94057b0fc07535f5f97444504fa35169d461d0d30cf0192e307727c065168c788771c561a9400fb49175e9e6aa4e23fe11af69e9412dd23b0cb6684c4c2429bce139e848ab26d0829073351f4acd36074eafd036a5eb83359d2a698d3";
  1669 eValue="10001";
  1670 dValue="8e9912f6d3645894e8d38cb58c0db81ff516cf4c7e5a14c7f1eddb1459d2cded4d8d293fc97aee6aefb861859c8b6a3d1dfe710463e1f9ddc72048c09751971c4a580aa51eb523357a3cc48d31cfad1d4a165066ed92d4748fb6571211da5cb14bc11b6e2df7c1a559e6d5ac1cd5c94703a22891464fba23d0d965086277a161";
  1671 pValue="d090ce58a92c75233a6486cb0a9209bf3583b64f540c76f5294bb97d285eed33aec220bde14b2417951178ac152ceab6da7090905b478195498b352048f15e7d";
  1672 qValue="cab575dc652bb66df15a0359609d51d1db184750c00c6698b90ef3465c99655103edbf0d54c56aec0ce3c4d22592338092a126a0cc49f65a4a30d222b411e58f";
  1673 dmp1Value="1a24bca8e273df2f0e47c199bbf678604e7df7215480c77c8db39f49b000ce2cf7500038acfff5433b7d582a01f1826e6f4d42e1c57f5e1fef7b12aabc59fd25";
  1674 dmq1Value="3d06982efbbe47339e1f6d36b1216b8a741d410b0c662f54f7118b27b9a4ec9d914337eb39841d8666f3034408cf94f5b62f11c402fc994fe15a05493150d9fd";
  1675 coeffValue="3a3e731acd8960b7ff9eb81a7ff93bd1cfa74cbd56987db58b4594fb09c09084db1734c8143f98b602b981aaa9243ca28deb69b5b280ee8dcee0fd2625e53250";
  1677 setupEngine(am3, 28);
  1679 var TEXT = "The quick brown fox jumped over the extremely lazy frog! " +
  1680     "Now is the time for all good men to come to the party.";
  1681 var encrypted;
  1683 function encrypt() {
  1684   var RSA = new RSAKey();
  1685   RSA.setPublic(nValue, eValue);
  1686   RSA.setPrivateEx(nValue, eValue, dValue, pValue, qValue, dmp1Value, dmq1Value, coeffValue);
  1687   encrypted = RSA.encrypt(TEXT);
  1690 function decrypt() {
  1691   var RSA = new RSAKey();
  1692   RSA.setPublic(nValue, eValue);
  1693   RSA.setPrivateEx(nValue, eValue, dValue, pValue, qValue, dmp1Value, dmq1Value, coeffValue);
  1694   var decrypted = RSA.decrypt(encrypted);
  1695   if (decrypted != TEXT) {
  1696     throw new Error("Crypto operation failed");

mercurial