js/src/v8/deltablue.js

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

     1 // Copyright 2008 the V8 project authors. All rights reserved.
     2 // Copyright 1996 John Maloney and Mario Wolczko.
     4 // This program is free software; you can redistribute it and/or modify
     5 // it under the terms of the GNU General Public License as published by
     6 // the Free Software Foundation; either version 2 of the License, or
     7 // (at your option) any later version.
     8 //
     9 // This program is distributed in the hope that it will be useful,
    10 // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    12 // GNU General Public License for more details.
    13 //
    14 // You should have received a copy of the GNU General Public License
    15 // along with this program; if not, write to the Free Software
    16 // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
    19 // This implementation of the DeltaBlue benchmark is derived
    20 // from the Smalltalk implementation by John Maloney and Mario
    21 // Wolczko. Some parts have been translated directly, whereas
    22 // others have been modified more aggresively to make it feel
    23 // more like a JavaScript program.
    26 var DeltaBlue = new BenchmarkSuite('DeltaBlue', 66118, [
    27   new Benchmark('DeltaBlue', deltaBlue)
    28 ]);
    31 /**
    32  * A JavaScript implementation of the DeltaBlue constraint-solving
    33  * algorithm, as described in:
    34  *
    35  * "The DeltaBlue Algorithm: An Incremental Constraint Hierarchy Solver"
    36  *   Bjorn N. Freeman-Benson and John Maloney
    37  *   January 1990 Communications of the ACM,
    38  *   also available as University of Washington TR 89-08-06.
    39  *
    40  * Beware: this benchmark is written in a grotesque style where
    41  * the constraint model is built by side-effects from constructors.
    42  * I've kept it this way to avoid deviating too much from the original
    43  * implementation.
    44  */
    47 /* --- O b j e c t   M o d e l --- */
    49 Object.prototype.inheritsFrom = function (shuper) {
    50   function Inheriter() { }
    51   Inheriter.prototype = shuper.prototype;
    52   this.prototype = new Inheriter();
    53   this.superConstructor = shuper;
    54 }
    56 function OrderedCollection() {
    57   this.elms = new Array();
    58 }
    60 OrderedCollection.prototype.add = function (elm) {
    61   this.elms.push(elm);
    62 }
    64 OrderedCollection.prototype.at = function (index) {
    65   return this.elms[index];
    66 }
    68 OrderedCollection.prototype.size = function () {
    69   return this.elms.length;
    70 }
    72 OrderedCollection.prototype.removeFirst = function () {
    73   return this.elms.pop();
    74 }
    76 OrderedCollection.prototype.remove = function (elm) {
    77   var index = 0, skipped = 0;
    78   for (var i = 0; i < this.elms.length; i++) {
    79     var value = this.elms[i];
    80     if (value != elm) {
    81       this.elms[index] = value;
    82       index++;
    83     } else {
    84       skipped++;
    85     }
    86   }
    87   for (var i = 0; i < skipped; i++)
    88     this.elms.pop();
    89 }
    91 /* --- *
    92  * S t r e n g t h
    93  * --- */
    95 /**
    96  * Strengths are used to measure the relative importance of constraints.
    97  * New strengths may be inserted in the strength hierarchy without
    98  * disrupting current constraints.  Strengths cannot be created outside
    99  * this class, so pointer comparison can be used for value comparison.
   100  */
   101 function Strength(strengthValue, name) {
   102   this.strengthValue = strengthValue;
   103   this.name = name;
   104 }
   106 Strength.stronger = function (s1, s2) {
   107   return s1.strengthValue < s2.strengthValue;
   108 }
   110 Strength.weaker = function (s1, s2) {
   111   return s1.strengthValue > s2.strengthValue;
   112 }
   114 Strength.weakestOf = function (s1, s2) {
   115   return this.weaker(s1, s2) ? s1 : s2;
   116 }
   118 Strength.strongest = function (s1, s2) {
   119   return this.stronger(s1, s2) ? s1 : s2;
   120 }
   122 Strength.prototype.nextWeaker = function () {
   123   switch (this.strengthValue) {
   124     case 0: return Strength.WEAKEST;
   125     case 1: return Strength.WEAK_DEFAULT;
   126     case 2: return Strength.NORMAL;
   127     case 3: return Strength.STRONG_DEFAULT;
   128     case 4: return Strength.PREFERRED;
   129     case 5: return Strength.REQUIRED;
   130   }
   131 }
   133 // Strength constants.
   134 Strength.REQUIRED        = new Strength(0, "required");
   135 Strength.STONG_PREFERRED = new Strength(1, "strongPreferred");
   136 Strength.PREFERRED       = new Strength(2, "preferred");
   137 Strength.STRONG_DEFAULT  = new Strength(3, "strongDefault");
   138 Strength.NORMAL          = new Strength(4, "normal");
   139 Strength.WEAK_DEFAULT    = new Strength(5, "weakDefault");
   140 Strength.WEAKEST         = new Strength(6, "weakest");
   142 /* --- *
   143  * C o n s t r a i n t
   144  * --- */
   146 /**
   147  * An abstract class representing a system-maintainable relationship
   148  * (or "constraint") between a set of variables. A constraint supplies
   149  * a strength instance variable; concrete subclasses provide a means
   150  * of storing the constrained variables and other information required
   151  * to represent a constraint.
   152  */
   153 function Constraint(strength) {
   154   this.strength = strength;
   155 }
   157 /**
   158  * Activate this constraint and attempt to satisfy it.
   159  */
   160 Constraint.prototype.addConstraint = function () {
   161   this.addToGraph();
   162   planner.incrementalAdd(this);
   163 }
   165 /**
   166  * Attempt to find a way to enforce this constraint. If successful,
   167  * record the solution, perhaps modifying the current dataflow
   168  * graph. Answer the constraint that this constraint overrides, if
   169  * there is one, or nil, if there isn't.
   170  * Assume: I am not already satisfied.
   171  */
   172 Constraint.prototype.satisfy = function (mark) {
   173   this.chooseMethod(mark);
   174   if (!this.isSatisfied()) {
   175     if (this.strength == Strength.REQUIRED)
   176       alert("Could not satisfy a required constraint!");
   177     return null;
   178   }
   179   this.markInputs(mark);
   180   var out = this.output();
   181   var overridden = out.determinedBy;
   182   if (overridden != null) overridden.markUnsatisfied();
   183   out.determinedBy = this;
   184   if (!planner.addPropagate(this, mark))
   185     alert("Cycle encountered");
   186   out.mark = mark;
   187   return overridden;
   188 }
   190 Constraint.prototype.destroyConstraint = function () {
   191   if (this.isSatisfied()) planner.incrementalRemove(this);
   192   else this.removeFromGraph();
   193 }
   195 /**
   196  * Normal constraints are not input constraints.  An input constraint
   197  * is one that depends on external state, such as the mouse, the
   198  * keybord, a clock, or some arbitraty piece of imperative code.
   199  */
   200 Constraint.prototype.isInput = function () {
   201   return false;
   202 }
   204 /* --- *
   205  * U n a r y   C o n s t r a i n t
   206  * --- */
   208 /**
   209  * Abstract superclass for constraints having a single possible output
   210  * variable.
   211  */
   212 function UnaryConstraint(v, strength) {
   213   UnaryConstraint.superConstructor.call(this, strength);
   214   this.myOutput = v;
   215   this.satisfied = false;
   216   this.addConstraint();
   217 }
   219 UnaryConstraint.inheritsFrom(Constraint);
   221 /**
   222  * Adds this constraint to the constraint graph
   223  */
   224 UnaryConstraint.prototype.addToGraph = function () {
   225   this.myOutput.addConstraint(this);
   226   this.satisfied = false;
   227 }
   229 /**
   230  * Decides if this constraint can be satisfied and records that
   231  * decision.
   232  */
   233 UnaryConstraint.prototype.chooseMethod = function (mark) {
   234   this.satisfied = (this.myOutput.mark != mark)
   235     && Strength.stronger(this.strength, this.myOutput.walkStrength);
   236 }
   238 /**
   239  * Returns true if this constraint is satisfied in the current solution.
   240  */
   241 UnaryConstraint.prototype.isSatisfied = function () {
   242   return this.satisfied;
   243 }
   245 UnaryConstraint.prototype.markInputs = function (mark) {
   246   // has no inputs
   247 }
   249 /**
   250  * Returns the current output variable.
   251  */
   252 UnaryConstraint.prototype.output = function () {
   253   return this.myOutput;
   254 }
   256 /**
   257  * Calculate the walkabout strength, the stay flag, and, if it is
   258  * 'stay', the value for the current output of this constraint. Assume
   259  * this constraint is satisfied.
   260  */
   261 UnaryConstraint.prototype.recalculate = function () {
   262   this.myOutput.walkStrength = this.strength;
   263   this.myOutput.stay = !this.isInput();
   264   if (this.myOutput.stay) this.execute(); // Stay optimization
   265 }
   267 /**
   268  * Records that this constraint is unsatisfied
   269  */
   270 UnaryConstraint.prototype.markUnsatisfied = function () {
   271   this.satisfied = false;
   272 }
   274 UnaryConstraint.prototype.inputsKnown = function () {
   275   return true;
   276 }
   278 UnaryConstraint.prototype.removeFromGraph = function () {
   279   if (this.myOutput != null) this.myOutput.removeConstraint(this);
   280   this.satisfied = false;
   281 }
   283 /* --- *
   284  * S t a y   C o n s t r a i n t
   285  * --- */
   287 /**
   288  * Variables that should, with some level of preference, stay the same.
   289  * Planners may exploit the fact that instances, if satisfied, will not
   290  * change their output during plan execution.  This is called "stay
   291  * optimization".
   292  */
   293 function StayConstraint(v, str) {
   294   StayConstraint.superConstructor.call(this, v, str);
   295 }
   297 StayConstraint.inheritsFrom(UnaryConstraint);
   299 StayConstraint.prototype.execute = function () {
   300   // Stay constraints do nothing
   301 }
   303 /* --- *
   304  * E d i t   C o n s t r a i n t
   305  * --- */
   307 /**
   308  * A unary input constraint used to mark a variable that the client
   309  * wishes to change.
   310  */
   311 function EditConstraint(v, str) {
   312   EditConstraint.superConstructor.call(this, v, str);
   313 }
   315 EditConstraint.inheritsFrom(UnaryConstraint);
   317 /**
   318  * Edits indicate that a variable is to be changed by imperative code.
   319  */
   320 EditConstraint.prototype.isInput = function () {
   321   return true;
   322 }
   324 EditConstraint.prototype.execute = function () {
   325   // Edit constraints do nothing
   326 }
   328 /* --- *
   329  * B i n a r y   C o n s t r a i n t
   330  * --- */
   332 var Direction = new Object();
   333 Direction.NONE     = 0;
   334 Direction.FORWARD  = 1;
   335 Direction.BACKWARD = -1;
   337 /**
   338  * Abstract superclass for constraints having two possible output
   339  * variables.
   340  */
   341 function BinaryConstraint(var1, var2, strength) {
   342   BinaryConstraint.superConstructor.call(this, strength);
   343   this.v1 = var1;
   344   this.v2 = var2;
   345   this.direction = Direction.NONE;
   346   this.addConstraint();
   347 }
   349 BinaryConstraint.inheritsFrom(Constraint);
   351 /**
   352  * Decides if this constraint can be satisfied and which way it
   353  * should flow based on the relative strength of the variables related,
   354  * and record that decision.
   355  */
   356 BinaryConstraint.prototype.chooseMethod = function (mark) {
   357   if (this.v1.mark == mark) {
   358     this.direction = (this.v2.mark != mark && Strength.stronger(this.strength, this.v2.walkStrength))
   359       ? Direction.FORWARD
   360       : Direction.NONE;
   361   }
   362   if (this.v2.mark == mark) {
   363     this.direction = (this.v1.mark != mark && Strength.stronger(this.strength, this.v1.walkStrength))
   364       ? Direction.BACKWARD
   365       : Direction.NONE;
   366   }
   367   if (Strength.weaker(this.v1.walkStrength, this.v2.walkStrength)) {
   368     this.direction = Strength.stronger(this.strength, this.v1.walkStrength)
   369       ? Direction.BACKWARD
   370       : Direction.NONE;
   371   } else {
   372     this.direction = Strength.stronger(this.strength, this.v2.walkStrength)
   373       ? Direction.FORWARD
   374       : Direction.BACKWARD
   375   }
   376 }
   378 /**
   379  * Add this constraint to the constraint graph
   380  */
   381 BinaryConstraint.prototype.addToGraph = function () {
   382   this.v1.addConstraint(this);
   383   this.v2.addConstraint(this);
   384   this.direction = Direction.NONE;
   385 }
   387 /**
   388  * Answer true if this constraint is satisfied in the current solution.
   389  */
   390 BinaryConstraint.prototype.isSatisfied = function () {
   391   return this.direction != Direction.NONE;
   392 }
   394 /**
   395  * Mark the input variable with the given mark.
   396  */
   397 BinaryConstraint.prototype.markInputs = function (mark) {
   398   this.input().mark = mark;
   399 }
   401 /**
   402  * Returns the current input variable
   403  */
   404 BinaryConstraint.prototype.input = function () {
   405   return (this.direction == Direction.FORWARD) ? this.v1 : this.v2;
   406 }
   408 /**
   409  * Returns the current output variable
   410  */
   411 BinaryConstraint.prototype.output = function () {
   412   return (this.direction == Direction.FORWARD) ? this.v2 : this.v1;
   413 }
   415 /**
   416  * Calculate the walkabout strength, the stay flag, and, if it is
   417  * 'stay', the value for the current output of this
   418  * constraint. Assume this constraint is satisfied.
   419  */
   420 BinaryConstraint.prototype.recalculate = function () {
   421   var ihn = this.input(), out = this.output();
   422   out.walkStrength = Strength.weakestOf(this.strength, ihn.walkStrength);
   423   out.stay = ihn.stay;
   424   if (out.stay) this.execute();
   425 }
   427 /**
   428  * Record the fact that this constraint is unsatisfied.
   429  */
   430 BinaryConstraint.prototype.markUnsatisfied = function () {
   431   this.direction = Direction.NONE;
   432 }
   434 BinaryConstraint.prototype.inputsKnown = function (mark) {
   435   var i = this.input();
   436   return i.mark == mark || i.stay || i.determinedBy == null;
   437 }
   439 BinaryConstraint.prototype.removeFromGraph = function () {
   440   if (this.v1 != null) this.v1.removeConstraint(this);
   441   if (this.v2 != null) this.v2.removeConstraint(this);
   442   this.direction = Direction.NONE;
   443 }
   445 /* --- *
   446  * S c a l e   C o n s t r a i n t
   447  * --- */
   449 /**
   450  * Relates two variables by the linear scaling relationship: "v2 =
   451  * (v1 * scale) + offset". Either v1 or v2 may be changed to maintain
   452  * this relationship but the scale factor and offset are considered
   453  * read-only.
   454  */
   455 function ScaleConstraint(src, scale, offset, dest, strength) {
   456   this.direction = Direction.NONE;
   457   this.scale = scale;
   458   this.offset = offset;
   459   ScaleConstraint.superConstructor.call(this, src, dest, strength);
   460 }
   462 ScaleConstraint.inheritsFrom(BinaryConstraint);
   464 /**
   465  * Adds this constraint to the constraint graph.
   466  */
   467 ScaleConstraint.prototype.addToGraph = function () {
   468   ScaleConstraint.superConstructor.prototype.addToGraph.call(this);
   469   this.scale.addConstraint(this);
   470   this.offset.addConstraint(this);
   471 }
   473 ScaleConstraint.prototype.removeFromGraph = function () {
   474   ScaleConstraint.superConstructor.prototype.removeFromGraph.call(this);
   475   if (this.scale != null) this.scale.removeConstraint(this);
   476   if (this.offset != null) this.offset.removeConstraint(this);
   477 }
   479 ScaleConstraint.prototype.markInputs = function (mark) {
   480   ScaleConstraint.superConstructor.prototype.markInputs.call(this, mark);
   481   this.scale.mark = this.offset.mark = mark;
   482 }
   484 /**
   485  * Enforce this constraint. Assume that it is satisfied.
   486  */
   487 ScaleConstraint.prototype.execute = function () {
   488   if (this.direction == Direction.FORWARD) {
   489     this.v2.value = this.v1.value * this.scale.value + this.offset.value;
   490   } else {
   491     this.v1.value = (this.v2.value - this.offset.value) / this.scale.value;
   492   }
   493 }
   495 /**
   496  * Calculate the walkabout strength, the stay flag, and, if it is
   497  * 'stay', the value for the current output of this constraint. Assume
   498  * this constraint is satisfied.
   499  */
   500 ScaleConstraint.prototype.recalculate = function () {
   501   var ihn = this.input(), out = this.output();
   502   out.walkStrength = Strength.weakestOf(this.strength, ihn.walkStrength);
   503   out.stay = ihn.stay && this.scale.stay && this.offset.stay;
   504   if (out.stay) this.execute();
   505 }
   507 /* --- *
   508  * E q u a l i t  y   C o n s t r a i n t
   509  * --- */
   511 /**
   512  * Constrains two variables to have the same value.
   513  */
   514 function EqualityConstraint(var1, var2, strength) {
   515   EqualityConstraint.superConstructor.call(this, var1, var2, strength);
   516 }
   518 EqualityConstraint.inheritsFrom(BinaryConstraint);
   520 /**
   521  * Enforce this constraint. Assume that it is satisfied.
   522  */
   523 EqualityConstraint.prototype.execute = function () {
   524   this.output().value = this.input().value;
   525 }
   527 /* --- *
   528  * V a r i a b l e
   529  * --- */
   531 /**
   532  * A constrained variable. In addition to its value, it maintain the
   533  * structure of the constraint graph, the current dataflow graph, and
   534  * various parameters of interest to the DeltaBlue incremental
   535  * constraint solver.
   536  **/
   537 function Variable(name, initialValue) {
   538   this.value = initialValue || 0;
   539   this.constraints = new OrderedCollection();
   540   this.determinedBy = null;
   541   this.mark = 0;
   542   this.walkStrength = Strength.WEAKEST;
   543   this.stay = true;
   544   this.name = name;
   545 }
   547 /**
   548  * Add the given constraint to the set of all constraints that refer
   549  * this variable.
   550  */
   551 Variable.prototype.addConstraint = function (c) {
   552   this.constraints.add(c);
   553 }
   555 /**
   556  * Removes all traces of c from this variable.
   557  */
   558 Variable.prototype.removeConstraint = function (c) {
   559   this.constraints.remove(c);
   560   if (this.determinedBy == c) this.determinedBy = null;
   561 }
   563 /* --- *
   564  * P l a n n e r
   565  * --- */
   567 /**
   568  * The DeltaBlue planner
   569  */
   570 function Planner() {
   571   this.currentMark = 0;
   572 }
   574 /**
   575  * Attempt to satisfy the given constraint and, if successful,
   576  * incrementally update the dataflow graph.  Details: If satifying
   577  * the constraint is successful, it may override a weaker constraint
   578  * on its output. The algorithm attempts to resatisfy that
   579  * constraint using some other method. This process is repeated
   580  * until either a) it reaches a variable that was not previously
   581  * determined by any constraint or b) it reaches a constraint that
   582  * is too weak to be satisfied using any of its methods. The
   583  * variables of constraints that have been processed are marked with
   584  * a unique mark value so that we know where we've been. This allows
   585  * the algorithm to avoid getting into an infinite loop even if the
   586  * constraint graph has an inadvertent cycle.
   587  */
   588 Planner.prototype.incrementalAdd = function (c) {
   589   var mark = this.newMark();
   590   var overridden = c.satisfy(mark);
   591   while (overridden != null)
   592     overridden = overridden.satisfy(mark);
   593 }
   595 /**
   596  * Entry point for retracting a constraint. Remove the given
   597  * constraint and incrementally update the dataflow graph.
   598  * Details: Retracting the given constraint may allow some currently
   599  * unsatisfiable downstream constraint to be satisfied. We therefore collect
   600  * a list of unsatisfied downstream constraints and attempt to
   601  * satisfy each one in turn. This list is traversed by constraint
   602  * strength, strongest first, as a heuristic for avoiding
   603  * unnecessarily adding and then overriding weak constraints.
   604  * Assume: c is satisfied.
   605  */
   606 Planner.prototype.incrementalRemove = function (c) {
   607   var out = c.output();
   608   c.markUnsatisfied();
   609   c.removeFromGraph();
   610   var unsatisfied = this.removePropagateFrom(out);
   611   var strength = Strength.REQUIRED;
   612   do {
   613     for (var i = 0; i < unsatisfied.size(); i++) {
   614       var u = unsatisfied.at(i);
   615       if (u.strength == strength)
   616         this.incrementalAdd(u);
   617     }
   618     strength = strength.nextWeaker();
   619   } while (strength != Strength.WEAKEST);
   620 }
   622 /**
   623  * Select a previously unused mark value.
   624  */
   625 Planner.prototype.newMark = function () {
   626   return ++this.currentMark;
   627 }
   629 /**
   630  * Extract a plan for resatisfaction starting from the given source
   631  * constraints, usually a set of input constraints. This method
   632  * assumes that stay optimization is desired; the plan will contain
   633  * only constraints whose output variables are not stay. Constraints
   634  * that do no computation, such as stay and edit constraints, are
   635  * not included in the plan.
   636  * Details: The outputs of a constraint are marked when it is added
   637  * to the plan under construction. A constraint may be appended to
   638  * the plan when all its input variables are known. A variable is
   639  * known if either a) the variable is marked (indicating that has
   640  * been computed by a constraint appearing earlier in the plan), b)
   641  * the variable is 'stay' (i.e. it is a constant at plan execution
   642  * time), or c) the variable is not determined by any
   643  * constraint. The last provision is for past states of history
   644  * variables, which are not stay but which are also not computed by
   645  * any constraint.
   646  * Assume: sources are all satisfied.
   647  */
   648 Planner.prototype.makePlan = function (sources) {
   649   var mark = this.newMark();
   650   var plan = new Plan();
   651   var todo = sources;
   652   while (todo.size() > 0) {
   653     var c = todo.removeFirst();
   654     if (c.output().mark != mark && c.inputsKnown(mark)) {
   655       plan.addConstraint(c);
   656       c.output().mark = mark;
   657       this.addConstraintsConsumingTo(c.output(), todo);
   658     }
   659   }
   660   return plan;
   661 }
   663 /**
   664  * Extract a plan for resatisfying starting from the output of the
   665  * given constraints, usually a set of input constraints.
   666  */
   667 Planner.prototype.extractPlanFromConstraints = function (constraints) {
   668   var sources = new OrderedCollection();
   669   for (var i = 0; i < constraints.size(); i++) {
   670     var c = constraints.at(i);
   671     if (c.isInput() && c.isSatisfied())
   672       // not in plan already and eligible for inclusion
   673       sources.add(c);
   674   }
   675   return this.makePlan(sources);
   676 }
   678 /**
   679  * Recompute the walkabout strengths and stay flags of all variables
   680  * downstream of the given constraint and recompute the actual
   681  * values of all variables whose stay flag is true. If a cycle is
   682  * detected, remove the given constraint and answer
   683  * false. Otherwise, answer true.
   684  * Details: Cycles are detected when a marked variable is
   685  * encountered downstream of the given constraint. The sender is
   686  * assumed to have marked the inputs of the given constraint with
   687  * the given mark. Thus, encountering a marked node downstream of
   688  * the output constraint means that there is a path from the
   689  * constraint's output to one of its inputs.
   690  */
   691 Planner.prototype.addPropagate = function (c, mark) {
   692   var todo = new OrderedCollection();
   693   todo.add(c);
   694   while (todo.size() > 0) {
   695     var d = todo.removeFirst();
   696     if (d.output().mark == mark) {
   697       this.incrementalRemove(c);
   698       return false;
   699     }
   700     d.recalculate();
   701     this.addConstraintsConsumingTo(d.output(), todo);
   702   }
   703   return true;
   704 }
   707 /**
   708  * Update the walkabout strengths and stay flags of all variables
   709  * downstream of the given constraint. Answer a collection of
   710  * unsatisfied constraints sorted in order of decreasing strength.
   711  */
   712 Planner.prototype.removePropagateFrom = function (out) {
   713   out.determinedBy = null;
   714   out.walkStrength = Strength.WEAKEST;
   715   out.stay = true;
   716   var unsatisfied = new OrderedCollection();
   717   var todo = new OrderedCollection();
   718   todo.add(out);
   719   while (todo.size() > 0) {
   720     var v = todo.removeFirst();
   721     for (var i = 0; i < v.constraints.size(); i++) {
   722       var c = v.constraints.at(i);
   723       if (!c.isSatisfied())
   724         unsatisfied.add(c);
   725     }
   726     var determining = v.determinedBy;
   727     for (var i = 0; i < v.constraints.size(); i++) {
   728       var next = v.constraints.at(i);
   729       if (next != determining && next.isSatisfied()) {
   730         next.recalculate();
   731         todo.add(next.output());
   732       }
   733     }
   734   }
   735   return unsatisfied;
   736 }
   738 Planner.prototype.addConstraintsConsumingTo = function (v, coll) {
   739   var determining = v.determinedBy;
   740   var cc = v.constraints;
   741   for (var i = 0; i < cc.size(); i++) {
   742     var c = cc.at(i);
   743     if (c != determining && c.isSatisfied())
   744       coll.add(c);
   745   }
   746 }
   748 /* --- *
   749  * P l a n
   750  * --- */
   752 /**
   753  * A Plan is an ordered list of constraints to be executed in sequence
   754  * to resatisfy all currently satisfiable constraints in the face of
   755  * one or more changing inputs.
   756  */
   757 function Plan() {
   758   this.v = new OrderedCollection();
   759 }
   761 Plan.prototype.addConstraint = function (c) {
   762   this.v.add(c);
   763 }
   765 Plan.prototype.size = function () {
   766   return this.v.size();
   767 }
   769 Plan.prototype.constraintAt = function (index) {
   770   return this.v.at(index);
   771 }
   773 Plan.prototype.execute = function () {
   774   for (var i = 0; i < this.size(); i++) {
   775     var c = this.constraintAt(i);
   776     c.execute();
   777   }
   778 }
   780 /* --- *
   781  * M a i n
   782  * --- */
   784 /**
   785  * This is the standard DeltaBlue benchmark. A long chain of equality
   786  * constraints is constructed with a stay constraint on one end. An
   787  * edit constraint is then added to the opposite end and the time is
   788  * measured for adding and removing this constraint, and extracting
   789  * and executing a constraint satisfaction plan. There are two cases.
   790  * In case 1, the added constraint is stronger than the stay
   791  * constraint and values must propagate down the entire length of the
   792  * chain. In case 2, the added constraint is weaker than the stay
   793  * constraint so it cannot be accomodated. The cost in this case is,
   794  * of course, very low. Typical situations lie somewhere between these
   795  * two extremes.
   796  */
   797 function chainTest(n) {
   798   planner = new Planner();
   799   var prev = null, first = null, last = null;
   801   // Build chain of n equality constraints
   802   for (var i = 0; i <= n; i++) {
   803     var name = "v" + i;
   804     var v = new Variable(name);
   805     if (prev != null)
   806       new EqualityConstraint(prev, v, Strength.REQUIRED);
   807     if (i == 0) first = v;
   808     if (i == n) last = v;
   809     prev = v;
   810   }
   812   new StayConstraint(last, Strength.STRONG_DEFAULT);
   813   var edit = new EditConstraint(first, Strength.PREFERRED);
   814   var edits = new OrderedCollection();
   815   edits.add(edit);
   816   var plan = planner.extractPlanFromConstraints(edits);
   817   for (var i = 0; i < 100; i++) {
   818     first.value = i;
   819     plan.execute();
   820     if (last.value != i)
   821       alert("Chain test failed.");
   822   }
   823 }
   825 /**
   826  * This test constructs a two sets of variables related to each
   827  * other by a simple linear transformation (scale and offset). The
   828  * time is measured to change a variable on either side of the
   829  * mapping and to change the scale and offset factors.
   830  */
   831 function projectionTest(n) {
   832   planner = new Planner();
   833   var scale = new Variable("scale", 10);
   834   var offset = new Variable("offset", 1000);
   835   var src = null, dst = null;
   837   var dests = new OrderedCollection();
   838   for (var i = 0; i < n; i++) {
   839     src = new Variable("src" + i, i);
   840     dst = new Variable("dst" + i, i);
   841     dests.add(dst);
   842     new StayConstraint(src, Strength.NORMAL);
   843     new ScaleConstraint(src, scale, offset, dst, Strength.REQUIRED);
   844   }
   846   change(src, 17);
   847   if (dst.value != 1170) alert("Projection 1 failed");
   848   change(dst, 1050);
   849   if (src.value != 5) alert("Projection 2 failed");
   850   change(scale, 5);
   851   for (var i = 0; i < n - 1; i++) {
   852     if (dests.at(i).value != i * 5 + 1000)
   853       alert("Projection 3 failed");
   854   }
   855   change(offset, 2000);
   856   for (var i = 0; i < n - 1; i++) {
   857     if (dests.at(i).value != i * 5 + 2000)
   858       alert("Projection 4 failed");
   859   }
   860 }
   862 function change(v, newValue) {
   863   var edit = new EditConstraint(v, Strength.PREFERRED);
   864   var edits = new OrderedCollection();
   865   edits.add(edit);
   866   var plan = planner.extractPlanFromConstraints(edits);
   867   for (var i = 0; i < 10; i++) {
   868     v.value = newValue;
   869     plan.execute();
   870   }
   871   edit.destroyConstraint();
   872 }
   874 // Global variable holding the current planner.
   875 var planner = null;
   877 function deltaBlue() {
   878   chainTest(100);
   879   projectionTest(100);
   880 }

mercurial