Wed, 31 Dec 2014 06:09:35 +0100
Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.
1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
2 * vim: set ts=8 sts=4 et sw=4 tw=99:
3 *
4 * Copyright (C) 2009 Apple Inc. All rights reserved.
5 * Copyright (C) 2010 Peter Varga (pvarga@inf.u-szeged.hu), University of Szeged
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
17 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
20 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
21 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
23 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
24 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
29 #include "yarr/YarrPattern.h"
31 #include "yarr/Yarr.h"
32 #include "yarr/YarrCanonicalizeUCS2.h"
33 #include "yarr/YarrParser.h"
35 using namespace WTF;
37 namespace JSC { namespace Yarr {
39 #include "yarr/RegExpJitTables.h"
41 #if WTF_CPU_SPARC
42 # define BASE_FRAME_SIZE 24
43 #else
44 # define BASE_FRAME_SIZE 0
45 #endif
47 // Thanks, windows.h!
48 #undef min
49 #undef max
51 class CharacterClassConstructor {
52 public:
53 CharacterClassConstructor(bool isCaseInsensitive = false)
54 : m_isCaseInsensitive(isCaseInsensitive)
55 {
56 }
58 void reset()
59 {
60 m_matches.clear();
61 m_ranges.clear();
62 m_matchesUnicode.clear();
63 m_rangesUnicode.clear();
64 }
66 void append(const CharacterClass* other)
67 {
68 for (size_t i = 0; i < other->m_matches.size(); ++i)
69 addSorted(m_matches, other->m_matches[i]);
70 for (size_t i = 0; i < other->m_ranges.size(); ++i)
71 addSortedRange(m_ranges, other->m_ranges[i].begin, other->m_ranges[i].end);
72 for (size_t i = 0; i < other->m_matchesUnicode.size(); ++i)
73 addSorted(m_matchesUnicode, other->m_matchesUnicode[i]);
74 for (size_t i = 0; i < other->m_rangesUnicode.size(); ++i)
75 addSortedRange(m_rangesUnicode, other->m_rangesUnicode[i].begin, other->m_rangesUnicode[i].end);
76 }
78 void putChar(UChar ch)
79 {
80 // Handle ascii cases.
81 if (ch <= 0x7f) {
82 if (m_isCaseInsensitive && isASCIIAlpha(ch)) {
83 addSorted(m_matches, toASCIIUpper(ch));
84 addSorted(m_matches, toASCIILower(ch));
85 } else
86 addSorted(m_matches, ch);
87 return;
88 }
90 // Simple case, not a case-insensitive match.
91 if (!m_isCaseInsensitive) {
92 addSorted(m_matchesUnicode, ch);
93 return;
94 }
96 // Add multiple matches, if necessary.
97 const UCS2CanonicalizationRange* info = rangeInfoFor(ch);
98 if (info->type == CanonicalizeUnique)
99 addSorted(m_matchesUnicode, ch);
100 else
101 putUnicodeIgnoreCase(ch, info);
102 }
104 void putUnicodeIgnoreCase(UChar ch, const UCS2CanonicalizationRange* info)
105 {
106 ASSERT(m_isCaseInsensitive);
107 ASSERT(ch > 0x7f);
108 ASSERT(ch >= info->begin && ch <= info->end);
109 ASSERT(info->type != CanonicalizeUnique);
110 if (info->type == CanonicalizeSet) {
111 for (const uint16_t* set = characterSetInfo[info->value]; (ch = *set); ++set)
112 addSorted(m_matchesUnicode, ch);
113 } else {
114 addSorted(m_matchesUnicode, ch);
115 addSorted(m_matchesUnicode, getCanonicalPair(info, ch));
116 }
117 }
119 void putRange(UChar lo, UChar hi)
120 {
121 if (lo <= 0x7f) {
122 char asciiLo = lo;
123 char asciiHi = std::min(hi, (UChar)0x7f);
124 addSortedRange(m_ranges, lo, asciiHi);
126 if (m_isCaseInsensitive) {
127 if ((asciiLo <= 'Z') && (asciiHi >= 'A'))
128 addSortedRange(m_ranges, std::max(asciiLo, 'A')+('a'-'A'), std::min(asciiHi, 'Z')+('a'-'A'));
129 if ((asciiLo <= 'z') && (asciiHi >= 'a'))
130 addSortedRange(m_ranges, std::max(asciiLo, 'a')+('A'-'a'), std::min(asciiHi, 'z')+('A'-'a'));
131 }
132 }
133 if (hi <= 0x7f)
134 return;
136 lo = std::max(lo, (UChar)0x80);
137 addSortedRange(m_rangesUnicode, lo, hi);
139 if (!m_isCaseInsensitive)
140 return;
142 const UCS2CanonicalizationRange* info = rangeInfoFor(lo);
143 while (true) {
144 // Handle the range [lo .. end]
145 UChar end = std::min<UChar>(info->end, hi);
147 switch (info->type) {
148 case CanonicalizeUnique:
149 // Nothing to do - no canonical equivalents.
150 break;
151 case CanonicalizeSet: {
152 UChar ch;
153 for (const uint16_t* set = characterSetInfo[info->value]; (ch = *set); ++set)
154 addSorted(m_matchesUnicode, ch);
155 break;
156 }
157 case CanonicalizeRangeLo:
158 addSortedRange(m_rangesUnicode, lo + info->value, end + info->value);
159 break;
160 case CanonicalizeRangeHi:
161 addSortedRange(m_rangesUnicode, lo - info->value, end - info->value);
162 break;
163 case CanonicalizeAlternatingAligned:
164 // Use addSortedRange since there is likely an abutting range to combine with.
165 if (lo & 1)
166 addSortedRange(m_rangesUnicode, lo - 1, lo - 1);
167 if (!(end & 1))
168 addSortedRange(m_rangesUnicode, end + 1, end + 1);
169 break;
170 case CanonicalizeAlternatingUnaligned:
171 // Use addSortedRange since there is likely an abutting range to combine with.
172 if (!(lo & 1))
173 addSortedRange(m_rangesUnicode, lo - 1, lo - 1);
174 if (end & 1)
175 addSortedRange(m_rangesUnicode, end + 1, end + 1);
176 break;
177 }
179 if (hi == end)
180 return;
182 ++info;
183 lo = info->begin;
184 };
186 }
188 CharacterClass* charClass()
189 {
190 CharacterClass* characterClass = newOrCrash<CharacterClass>();
192 characterClass->m_matches.swap(m_matches);
193 characterClass->m_ranges.swap(m_ranges);
194 characterClass->m_matchesUnicode.swap(m_matchesUnicode);
195 characterClass->m_rangesUnicode.swap(m_rangesUnicode);
197 return characterClass;
198 }
200 private:
201 void addSorted(Vector<UChar>& matches, UChar ch)
202 {
203 unsigned pos = 0;
204 unsigned range = matches.size();
206 // binary chop, find position to insert char.
207 while (range) {
208 unsigned index = range >> 1;
210 int val = matches[pos+index] - ch;
211 if (!val)
212 return;
213 else if (val > 0)
214 range = index;
215 else {
216 pos += (index+1);
217 range -= (index+1);
218 }
219 }
221 if (pos == matches.size())
222 matches.append(ch);
223 else
224 matches.insert(pos, ch);
225 }
227 void addSortedRange(Vector<CharacterRange>& ranges, UChar lo, UChar hi)
228 {
229 unsigned end = ranges.size();
231 // Simple linear scan - I doubt there are that many ranges anyway...
232 // feel free to fix this with something faster (eg binary chop).
233 for (unsigned i = 0; i < end; ++i) {
234 // does the new range fall before the current position in the array
235 if (hi < ranges[i].begin) {
236 // optional optimization: concatenate appending ranges? - may not be worthwhile.
237 if (hi == (ranges[i].begin - 1)) {
238 ranges[i].begin = lo;
239 return;
240 }
241 ranges.insert(i, CharacterRange(lo, hi));
242 return;
243 }
244 // Okay, since we didn't hit the last case, the end of the new range is definitely at or after the begining
245 // If the new range start at or before the end of the last range, then the overlap (if it starts one after the
246 // end of the last range they concatenate, which is just as good.
247 if (lo <= (ranges[i].end + 1)) {
248 // found an intersect! we'll replace this entry in the array.
249 ranges[i].begin = std::min(ranges[i].begin, lo);
250 ranges[i].end = std::max(ranges[i].end, hi);
252 // now check if the new range can subsume any subsequent ranges.
253 unsigned next = i+1;
254 // each iteration of the loop we will either remove something from the list, or break the loop.
255 while (next < ranges.size()) {
256 if (ranges[next].begin <= (ranges[i].end + 1)) {
257 // the next entry now overlaps / concatenates this one.
258 ranges[i].end = std::max(ranges[i].end, ranges[next].end);
259 ranges.remove(next);
260 } else
261 break;
262 }
264 return;
265 }
266 }
268 // CharacterRange comes after all existing ranges.
269 ranges.append(CharacterRange(lo, hi));
270 }
272 bool m_isCaseInsensitive;
274 Vector<UChar> m_matches;
275 Vector<CharacterRange> m_ranges;
276 Vector<UChar> m_matchesUnicode;
277 Vector<CharacterRange> m_rangesUnicode;
278 };
280 class YarrPatternConstructor {
281 public:
282 YarrPatternConstructor(YarrPattern& pattern)
283 : m_pattern(pattern)
284 , m_stackBase(nullptr)
285 , m_characterClassConstructor(pattern.m_ignoreCase)
286 , m_invertParentheticalAssertion(false)
287 {
288 m_pattern.m_body = newOrCrash<PatternDisjunction>();
289 m_alternative = m_pattern.m_body->addNewAlternative();
290 m_pattern.m_disjunctions.append(m_pattern.m_body);
291 }
293 ~YarrPatternConstructor()
294 {
295 }
297 void reset()
298 {
299 m_pattern.reset();
300 m_characterClassConstructor.reset();
302 m_pattern.m_body = newOrCrash<PatternDisjunction>();
303 m_alternative = m_pattern.m_body->addNewAlternative();
304 m_pattern.m_disjunctions.append(m_pattern.m_body);
305 }
307 void assertionBOL()
308 {
309 if (!m_alternative->m_terms.size() & !m_invertParentheticalAssertion) {
310 m_alternative->m_startsWithBOL = true;
311 m_alternative->m_containsBOL = true;
312 m_pattern.m_containsBOL = true;
313 }
314 m_alternative->m_terms.append(PatternTerm::BOL());
315 }
316 void assertionEOL()
317 {
318 m_alternative->m_terms.append(PatternTerm::EOL());
319 }
320 void assertionWordBoundary(bool invert)
321 {
322 m_alternative->m_terms.append(PatternTerm::WordBoundary(invert));
323 }
325 void atomPatternCharacter(UChar ch)
326 {
327 // We handle case-insensitive checking of unicode characters which do have both
328 // cases by handling them as if they were defined using a CharacterClass.
329 if (!m_pattern.m_ignoreCase || isASCII(ch)) {
330 m_alternative->m_terms.append(PatternTerm(ch));
331 return;
332 }
334 const UCS2CanonicalizationRange* info = rangeInfoFor(ch);
335 if (info->type == CanonicalizeUnique) {
336 m_alternative->m_terms.append(PatternTerm(ch));
337 return;
338 }
340 m_characterClassConstructor.putUnicodeIgnoreCase(ch, info);
341 CharacterClass* newCharacterClass = m_characterClassConstructor.charClass();
342 m_pattern.m_userCharacterClasses.append(newCharacterClass);
343 m_alternative->m_terms.append(PatternTerm(newCharacterClass, false));
344 }
346 void atomBuiltInCharacterClass(BuiltInCharacterClassID classID, bool invert)
347 {
348 switch (classID) {
349 case DigitClassID:
350 m_alternative->m_terms.append(PatternTerm(m_pattern.digitsCharacterClass(), invert));
351 break;
352 case SpaceClassID:
353 m_alternative->m_terms.append(PatternTerm(m_pattern.spacesCharacterClass(), invert));
354 break;
355 case WordClassID:
356 m_alternative->m_terms.append(PatternTerm(m_pattern.wordcharCharacterClass(), invert));
357 break;
358 case NewlineClassID:
359 m_alternative->m_terms.append(PatternTerm(m_pattern.newlineCharacterClass(), invert));
360 break;
361 }
362 }
364 void atomCharacterClassBegin(bool invert = false)
365 {
366 m_invertCharacterClass = invert;
367 }
369 void atomCharacterClassAtom(UChar ch)
370 {
371 m_characterClassConstructor.putChar(ch);
372 }
374 void atomCharacterClassRange(UChar begin, UChar end)
375 {
376 m_characterClassConstructor.putRange(begin, end);
377 }
379 void atomCharacterClassBuiltIn(BuiltInCharacterClassID classID, bool invert)
380 {
381 ASSERT(classID != NewlineClassID);
383 switch (classID) {
384 case DigitClassID:
385 m_characterClassConstructor.append(invert ? m_pattern.nondigitsCharacterClass() : m_pattern.digitsCharacterClass());
386 break;
388 case SpaceClassID:
389 m_characterClassConstructor.append(invert ? m_pattern.nonspacesCharacterClass() : m_pattern.spacesCharacterClass());
390 break;
392 case WordClassID:
393 m_characterClassConstructor.append(invert ? m_pattern.nonwordcharCharacterClass() : m_pattern.wordcharCharacterClass());
394 break;
396 default:
397 ASSERT_NOT_REACHED();
398 }
399 }
401 void atomCharacterClassEnd()
402 {
403 CharacterClass* newCharacterClass = m_characterClassConstructor.charClass();
404 m_pattern.m_userCharacterClasses.append(newCharacterClass);
405 m_alternative->m_terms.append(PatternTerm(newCharacterClass, m_invertCharacterClass));
406 }
408 void atomParenthesesSubpatternBegin(bool capture = true)
409 {
410 unsigned subpatternId = m_pattern.m_numSubpatterns + 1;
411 if (capture)
412 m_pattern.m_numSubpatterns++;
414 PatternDisjunction* parenthesesDisjunction = newOrCrash<PatternDisjunction>(m_alternative);
415 m_pattern.m_disjunctions.append(parenthesesDisjunction);
416 m_alternative->m_terms.append(PatternTerm(PatternTerm::TypeParenthesesSubpattern, subpatternId, parenthesesDisjunction, capture, false));
417 m_alternative = parenthesesDisjunction->addNewAlternative();
418 }
420 void atomParentheticalAssertionBegin(bool invert = false)
421 {
422 PatternDisjunction* parenthesesDisjunction = newOrCrash<PatternDisjunction>(m_alternative);
423 m_pattern.m_disjunctions.append(parenthesesDisjunction);
424 m_alternative->m_terms.append(PatternTerm(PatternTerm::TypeParentheticalAssertion, m_pattern.m_numSubpatterns + 1, parenthesesDisjunction, false, invert));
425 m_alternative = parenthesesDisjunction->addNewAlternative();
426 m_invertParentheticalAssertion = invert;
427 }
429 void atomParenthesesEnd()
430 {
431 ASSERT(m_alternative->m_parent);
432 ASSERT(m_alternative->m_parent->m_parent);
434 PatternDisjunction* parenthesesDisjunction = m_alternative->m_parent;
435 m_alternative = m_alternative->m_parent->m_parent;
437 PatternTerm& lastTerm = m_alternative->lastTerm();
439 unsigned numParenAlternatives = parenthesesDisjunction->m_alternatives.size();
440 unsigned numBOLAnchoredAlts = 0;
442 for (unsigned i = 0; i < numParenAlternatives; i++) {
443 // Bubble up BOL flags
444 if (parenthesesDisjunction->m_alternatives[i]->m_startsWithBOL)
445 numBOLAnchoredAlts++;
446 }
448 if (numBOLAnchoredAlts) {
449 m_alternative->m_containsBOL = true;
450 // If all the alternatives in parens start with BOL, then so does this one
451 if (numBOLAnchoredAlts == numParenAlternatives)
452 m_alternative->m_startsWithBOL = true;
453 }
455 lastTerm.parentheses.lastSubpatternId = m_pattern.m_numSubpatterns;
456 m_invertParentheticalAssertion = false;
457 }
459 void atomBackReference(unsigned subpatternId)
460 {
461 ASSERT(subpatternId);
462 m_pattern.m_containsBackreferences = true;
463 m_pattern.m_maxBackReference = std::max(m_pattern.m_maxBackReference, subpatternId);
465 if (subpatternId > m_pattern.m_numSubpatterns) {
466 m_alternative->m_terms.append(PatternTerm::ForwardReference());
467 return;
468 }
470 PatternAlternative* currentAlternative = m_alternative;
471 ASSERT(currentAlternative);
473 // Note to self: if we waited until the AST was baked, we could also remove forwards refs
474 while ((currentAlternative = currentAlternative->m_parent->m_parent)) {
475 PatternTerm& term = currentAlternative->lastTerm();
476 ASSERT((term.type == PatternTerm::TypeParenthesesSubpattern) || (term.type == PatternTerm::TypeParentheticalAssertion));
478 if ((term.type == PatternTerm::TypeParenthesesSubpattern) && term.capture() && (subpatternId == term.parentheses.subpatternId)) {
479 m_alternative->m_terms.append(PatternTerm::ForwardReference());
480 return;
481 }
482 }
484 m_alternative->m_terms.append(PatternTerm(subpatternId));
485 }
487 // deep copy the argument disjunction. If filterStartsWithBOL is true,
488 // skip alternatives with m_startsWithBOL set true.
489 PatternDisjunction* copyDisjunction(PatternDisjunction* disjunction, bool filterStartsWithBOL = false)
490 {
491 PatternDisjunction* newDisjunction = 0;
492 for (unsigned alt = 0; alt < disjunction->m_alternatives.size(); ++alt) {
493 PatternAlternative* alternative = disjunction->m_alternatives[alt];
494 if (!filterStartsWithBOL || !alternative->m_startsWithBOL) {
495 if (!newDisjunction) {
496 newDisjunction = newOrCrash<PatternDisjunction>();
497 newDisjunction->m_parent = disjunction->m_parent;
498 }
499 PatternAlternative* newAlternative = newDisjunction->addNewAlternative();
500 newAlternative->m_terms.reserve(alternative->m_terms.size());
501 for (unsigned i = 0; i < alternative->m_terms.size(); ++i)
502 newAlternative->m_terms.append(copyTerm(alternative->m_terms[i], filterStartsWithBOL));
503 }
504 }
506 if (newDisjunction)
507 m_pattern.m_disjunctions.append(newDisjunction);
508 return newDisjunction;
509 }
511 PatternTerm copyTerm(PatternTerm& term, bool filterStartsWithBOL = false)
512 {
513 if ((term.type != PatternTerm::TypeParenthesesSubpattern) && (term.type != PatternTerm::TypeParentheticalAssertion))
514 return PatternTerm(term);
516 PatternTerm termCopy = term;
517 termCopy.parentheses.disjunction = copyDisjunction(termCopy.parentheses.disjunction, filterStartsWithBOL);
518 return termCopy;
519 }
521 void quantifyAtom(unsigned min, unsigned max, bool greedy)
522 {
523 ASSERT(min <= max);
524 ASSERT(m_alternative->m_terms.size());
526 if (!max) {
527 m_alternative->removeLastTerm();
528 return;
529 }
531 PatternTerm& term = m_alternative->lastTerm();
532 ASSERT(term.type > PatternTerm::TypeAssertionWordBoundary);
533 ASSERT((term.quantityCount == 1) && (term.quantityType == QuantifierFixedCount));
535 if (term.type == PatternTerm::TypeParentheticalAssertion) {
536 // If an assertion is quantified with a minimum count of zero, it can simply be removed.
537 // This arises from the RepeatMatcher behaviour in the spec. Matching an assertion never
538 // results in any input being consumed, however the continuation passed to the assertion
539 // (called in steps, 8c and 9 of the RepeatMatcher definition, ES5.1 15.10.2.5) will
540 // reject all zero length matches (see step 2.1). A match from the continuation of the
541 // expression will still be accepted regardless (via steps 8a and 11) - the upshot of all
542 // this is that matches from the assertion are not required, and won't be accepted anyway,
543 // so no need to ever run it.
544 if (!min)
545 m_alternative->removeLastTerm();
546 // We never need to run an assertion more than once. Subsequent interations will be run
547 // with the same start index (since assertions are non-capturing) and the same captures
548 // (per step 4 of RepeatMatcher in ES5.1 15.10.2.5), and as such will always produce the
549 // same result and captures. If the first match succeeds then the subsequent (min - 1)
550 // matches will too. Any additional optional matches will fail (on the same basis as the
551 // minimum zero quantified assertions, above), but this will still result in a match.
552 return;
553 }
555 if (min == 0)
556 term.quantify(max, greedy ? QuantifierGreedy : QuantifierNonGreedy);
557 else if (min == max)
558 term.quantify(min, QuantifierFixedCount);
559 else {
560 term.quantify(min, QuantifierFixedCount);
561 m_alternative->m_terms.append(copyTerm(term));
562 // NOTE: this term is interesting from an analysis perspective, in that it can be ignored.....
563 m_alternative->lastTerm().quantify((max == quantifyInfinite) ? max : max - min, greedy ? QuantifierGreedy : QuantifierNonGreedy);
564 if (m_alternative->lastTerm().type == PatternTerm::TypeParenthesesSubpattern)
565 m_alternative->lastTerm().parentheses.isCopy = true;
566 }
567 }
569 void disjunction()
570 {
571 m_alternative = m_alternative->m_parent->addNewAlternative();
572 }
574 ErrorCode setupAlternativeOffsets(PatternAlternative* alternative, unsigned currentCallFrameSize, unsigned initialInputPosition,
575 unsigned *callFrameSizeOut)
576 {
577 /*
578 * Attempt detection of over-recursion:
579 * "1MB should be enough stack for anyone."
580 */
581 uint8_t stackDummy_;
582 if (m_stackBase - &stackDummy_ > 1024*1024)
583 return PatternTooLarge;
585 alternative->m_hasFixedSize = true;
586 Checked<unsigned> currentInputPosition = initialInputPosition;
588 for (unsigned i = 0; i < alternative->m_terms.size(); ++i) {
589 PatternTerm& term = alternative->m_terms[i];
591 switch (term.type) {
592 case PatternTerm::TypeAssertionBOL:
593 case PatternTerm::TypeAssertionEOL:
594 case PatternTerm::TypeAssertionWordBoundary:
595 if (Checked<int>(currentInputPosition).safeGet(term.inputPosition))
596 return RuntimeError;
597 break;
599 case PatternTerm::TypeBackReference:
600 if (Checked<int>(currentInputPosition).safeGet(term.inputPosition))
601 return RuntimeError;
602 term.frameLocation = currentCallFrameSize;
603 currentCallFrameSize += YarrStackSpaceForBackTrackInfoBackReference;
604 alternative->m_hasFixedSize = false;
605 break;
607 case PatternTerm::TypeForwardReference:
608 break;
610 case PatternTerm::TypePatternCharacter:
611 if (Checked<int>(currentInputPosition).safeGet(term.inputPosition))
612 return RuntimeError;
613 if (term.quantityType != QuantifierFixedCount) {
614 term.frameLocation = currentCallFrameSize;
615 currentCallFrameSize += YarrStackSpaceForBackTrackInfoPatternCharacter;
616 alternative->m_hasFixedSize = false;
617 } else
618 currentInputPosition += term.quantityCount;
619 break;
621 case PatternTerm::TypeCharacterClass:
622 if (Checked<int>(currentInputPosition).safeGet(term.inputPosition))
623 return RuntimeError;
624 if (term.quantityType != QuantifierFixedCount) {
625 term.frameLocation = currentCallFrameSize;
626 currentCallFrameSize += YarrStackSpaceForBackTrackInfoCharacterClass;
627 alternative->m_hasFixedSize = false;
628 } else
629 currentInputPosition += term.quantityCount;
630 break;
632 case PatternTerm::TypeParenthesesSubpattern:
633 // Note: for fixed once parentheses we will ensure at least the minimum is available; others are on their own.
634 term.frameLocation = currentCallFrameSize;
635 unsigned position;
636 if (currentInputPosition.safeGet(position))
637 return RuntimeError;
638 if (term.quantityCount == 1 && !term.parentheses.isCopy) {
639 if (term.quantityType != QuantifierFixedCount)
640 currentCallFrameSize += YarrStackSpaceForBackTrackInfoParenthesesOnce;
641 if (ErrorCode error = setupDisjunctionOffsets(term.parentheses.disjunction, currentCallFrameSize, position, ¤tCallFrameSize))
642 return error;
643 // If quantity is fixed, then pre-check its minimum size.
644 if (term.quantityType == QuantifierFixedCount)
645 currentInputPosition += term.parentheses.disjunction->m_minimumSize;
646 if (Checked<int>(currentInputPosition).safeGet(term.inputPosition))
647 return RuntimeError;
648 } else if (term.parentheses.isTerminal) {
649 currentCallFrameSize += YarrStackSpaceForBackTrackInfoParenthesesTerminal;
650 if (ErrorCode error = setupDisjunctionOffsets(term.parentheses.disjunction, currentCallFrameSize, position, ¤tCallFrameSize))
651 return error;
652 if (Checked<int>(currentInputPosition).safeGet(term.inputPosition))
653 return RuntimeError;
654 } else {
655 if (Checked<int>(currentInputPosition).safeGet(term.inputPosition))
656 return RuntimeError;
657 unsigned dummy;
658 if (ErrorCode error = setupDisjunctionOffsets(term.parentheses.disjunction, BASE_FRAME_SIZE, position, &dummy))
659 return error;
660 currentCallFrameSize += YarrStackSpaceForBackTrackInfoParentheses;
661 }
662 // Fixed count of 1 could be accepted, if they have a fixed size *AND* if all alternatives are of the same length.
663 alternative->m_hasFixedSize = false;
664 break;
666 case PatternTerm::TypeParentheticalAssertion:
667 if (Checked<int>(currentInputPosition).safeGet(term.inputPosition))
668 return RuntimeError;
669 term.frameLocation = currentCallFrameSize;
670 if (ErrorCode error = setupDisjunctionOffsets(term.parentheses.disjunction, currentCallFrameSize + YarrStackSpaceForBackTrackInfoParentheticalAssertion, term.inputPosition, ¤tCallFrameSize))
671 return error;
672 break;
674 case PatternTerm::TypeDotStarEnclosure:
675 alternative->m_hasFixedSize = false;
676 term.inputPosition = initialInputPosition;
677 break;
678 }
679 }
681 if ((currentInputPosition - initialInputPosition).safeGet(alternative->m_minimumSize))
682 return RuntimeError;
683 *callFrameSizeOut = currentCallFrameSize;
684 return NoError;
685 }
687 ErrorCode setupDisjunctionOffsets(PatternDisjunction* disjunction, unsigned initialCallFrameSize, unsigned initialInputPosition, unsigned *maximumCallFrameSizeOut)
688 {
689 if ((disjunction != m_pattern.m_body) && (disjunction->m_alternatives.size() > 1))
690 initialCallFrameSize += YarrStackSpaceForBackTrackInfoAlternative;
692 unsigned minimumInputSize = UINT_MAX;
693 unsigned maximumCallFrameSize = 0;
694 bool hasFixedSize = true;
696 for (unsigned alt = 0; alt < disjunction->m_alternatives.size(); ++alt) {
697 PatternAlternative* alternative = disjunction->m_alternatives[alt];
698 unsigned currentAlternativeCallFrameSize;
699 if (ErrorCode error = setupAlternativeOffsets(alternative, initialCallFrameSize, initialInputPosition, ¤tAlternativeCallFrameSize))
700 return error;
701 minimumInputSize = std::min(minimumInputSize, alternative->m_minimumSize);
702 maximumCallFrameSize = std::max(maximumCallFrameSize, currentAlternativeCallFrameSize);
703 hasFixedSize &= alternative->m_hasFixedSize;
704 }
706 ASSERT(minimumInputSize != UINT_MAX);
707 if (minimumInputSize == UINT_MAX)
708 return PatternTooLarge;
710 ASSERT(minimumInputSize != UINT_MAX);
711 ASSERT(maximumCallFrameSize >= initialCallFrameSize);
713 disjunction->m_hasFixedSize = hasFixedSize;
714 disjunction->m_minimumSize = minimumInputSize;
715 disjunction->m_callFrameSize = maximumCallFrameSize;
716 *maximumCallFrameSizeOut = maximumCallFrameSize;
717 return NoError;
718 }
720 ErrorCode setupOffsets()
721 {
722 unsigned dummy;
723 return setupDisjunctionOffsets(m_pattern.m_body, BASE_FRAME_SIZE, 0, &dummy);
724 }
726 // This optimization identifies sets of parentheses that we will never need to backtrack.
727 // In these cases we do not need to store state from prior iterations.
728 // We can presently avoid backtracking for:
729 // * where the parens are at the end of the regular expression (last term in any of the
730 // alternatives of the main body disjunction).
731 // * where the parens are non-capturing, and quantified unbounded greedy (*).
732 // * where the parens do not contain any capturing subpatterns.
733 void checkForTerminalParentheses()
734 {
735 // This check is much too crude; should be just checking whether the candidate
736 // node contains nested capturing subpatterns, not the whole expression!
737 if (m_pattern.m_numSubpatterns)
738 return;
740 Vector<PatternAlternative*>& alternatives = m_pattern.m_body->m_alternatives;
741 for (size_t i = 0; i < alternatives.size(); ++i) {
742 Vector<PatternTerm>& terms = alternatives[i]->m_terms;
743 if (terms.size()) {
744 PatternTerm& term = terms.last();
745 if (term.type == PatternTerm::TypeParenthesesSubpattern
746 && term.quantityType == QuantifierGreedy
747 && term.quantityCount == quantifyInfinite
748 && !term.capture())
749 term.parentheses.isTerminal = true;
750 }
751 }
752 }
754 void optimizeBOL()
755 {
756 // Look for expressions containing beginning of line (^) anchoring and unroll them.
757 // e.g. /^a|^b|c/ becomes /^a|^b|c/ which is executed once followed by /c/ which loops
758 // This code relies on the parsing code tagging alternatives with m_containsBOL and
759 // m_startsWithBOL and rolling those up to containing alternatives.
760 // At this point, this is only valid for non-multiline expressions.
761 PatternDisjunction* disjunction = m_pattern.m_body;
763 if (!m_pattern.m_containsBOL || m_pattern.m_multiline)
764 return;
766 PatternDisjunction* loopDisjunction = copyDisjunction(disjunction, true);
768 // Set alternatives in disjunction to "onceThrough"
769 for (unsigned alt = 0; alt < disjunction->m_alternatives.size(); ++alt)
770 disjunction->m_alternatives[alt]->setOnceThrough();
772 if (loopDisjunction) {
773 // Move alternatives from loopDisjunction to disjunction
774 for (unsigned alt = 0; alt < loopDisjunction->m_alternatives.size(); ++alt)
775 disjunction->m_alternatives.append(loopDisjunction->m_alternatives[alt]);
777 loopDisjunction->m_alternatives.clear();
778 }
779 }
781 bool containsCapturingTerms(PatternAlternative* alternative, size_t firstTermIndex, size_t lastTermIndex)
782 {
783 Vector<PatternTerm>& terms = alternative->m_terms;
785 for (size_t termIndex = firstTermIndex; termIndex <= lastTermIndex; ++termIndex) {
786 PatternTerm& term = terms[termIndex];
788 if (term.m_capture)
789 return true;
791 if (term.type == PatternTerm::TypeParenthesesSubpattern) {
792 PatternDisjunction* nestedDisjunction = term.parentheses.disjunction;
793 for (unsigned alt = 0; alt < nestedDisjunction->m_alternatives.size(); ++alt) {
794 PatternAlternative *pattern = nestedDisjunction->m_alternatives[alt];
795 if (pattern->m_terms.size() == 0)
796 continue;
797 if (containsCapturingTerms(pattern, 0, pattern->m_terms.size() - 1))
798 return true;
799 }
800 }
801 }
803 return false;
804 }
806 // This optimization identifies alternatives in the form of
807 // [^].*[?]<expression>.*[$] for expressions that don't have any
808 // capturing terms. The alternative is changed to <expression>
809 // followed by processing of the dot stars to find and adjust the
810 // beginning and the end of the match.
811 void optimizeDotStarWrappedExpressions()
812 {
813 Vector<PatternAlternative*>& alternatives = m_pattern.m_body->m_alternatives;
814 if (alternatives.size() != 1)
815 return;
817 PatternAlternative* alternative = alternatives[0];
818 Vector<PatternTerm>& terms = alternative->m_terms;
819 if (terms.size() >= 3) {
820 bool startsWithBOL = false;
821 bool endsWithEOL = false;
822 size_t termIndex, firstExpressionTerm, lastExpressionTerm;
824 termIndex = 0;
825 if (terms[termIndex].type == PatternTerm::TypeAssertionBOL) {
826 startsWithBOL = true;
827 ++termIndex;
828 }
830 PatternTerm& firstNonAnchorTerm = terms[termIndex];
831 if ((firstNonAnchorTerm.type != PatternTerm::TypeCharacterClass) || (firstNonAnchorTerm.characterClass != m_pattern.newlineCharacterClass()) || !((firstNonAnchorTerm.quantityType == QuantifierGreedy) || (firstNonAnchorTerm.quantityType == QuantifierNonGreedy)))
832 return;
834 firstExpressionTerm = termIndex + 1;
836 termIndex = terms.size() - 1;
837 if (terms[termIndex].type == PatternTerm::TypeAssertionEOL) {
838 endsWithEOL = true;
839 --termIndex;
840 }
842 PatternTerm& lastNonAnchorTerm = terms[termIndex];
843 if ((lastNonAnchorTerm.type != PatternTerm::TypeCharacterClass) || (lastNonAnchorTerm.characterClass != m_pattern.newlineCharacterClass()) || (lastNonAnchorTerm.quantityType != QuantifierGreedy))
844 return;
846 lastExpressionTerm = termIndex - 1;
848 if (firstExpressionTerm > lastExpressionTerm)
849 return;
851 if (!containsCapturingTerms(alternative, firstExpressionTerm, lastExpressionTerm)) {
852 for (termIndex = terms.size() - 1; termIndex > lastExpressionTerm; --termIndex)
853 terms.remove(termIndex);
855 for (termIndex = firstExpressionTerm; termIndex > 0; --termIndex)
856 terms.remove(termIndex - 1);
858 terms.append(PatternTerm(startsWithBOL, endsWithEOL));
860 m_pattern.m_containsBOL = false;
861 }
862 }
863 }
865 void setStackBase(uint8_t *stackBase) {
866 m_stackBase = stackBase;
867 }
869 private:
870 YarrPattern& m_pattern;
871 uint8_t * m_stackBase;
872 PatternAlternative* m_alternative;
873 CharacterClassConstructor m_characterClassConstructor;
874 bool m_invertCharacterClass;
875 bool m_invertParentheticalAssertion;
876 };
878 ErrorCode YarrPattern::compile(const String& patternString)
879 {
880 YarrPatternConstructor constructor(*this);
882 if (ErrorCode error = parse(constructor, patternString))
883 return error;
885 // If the pattern contains illegal backreferences reset & reparse.
886 // Quoting Netscape's "What's new in JavaScript 1.2",
887 // "Note: if the number of left parentheses is less than the number specified
888 // in \#, the \# is taken as an octal escape as described in the next row."
889 if (containsIllegalBackReference()) {
890 unsigned numSubpatterns = m_numSubpatterns;
892 constructor.reset();
893 #if !ASSERT_DISABLED
894 ErrorCode error =
895 #endif
896 parse(constructor, patternString, numSubpatterns);
898 ASSERT(!error);
899 ASSERT(numSubpatterns == m_numSubpatterns);
900 }
902 uint8_t stackDummy_;
903 constructor.setStackBase(&stackDummy_);
905 constructor.checkForTerminalParentheses();
906 constructor.optimizeDotStarWrappedExpressions();
907 constructor.optimizeBOL();
909 if (ErrorCode error = constructor.setupOffsets())
910 return error;
912 return NoError;
913 }
915 YarrPattern::YarrPattern(const String& pattern, bool ignoreCase, bool multiline, ErrorCode* error)
916 : m_ignoreCase(ignoreCase)
917 , m_multiline(multiline)
918 , m_containsBackreferences(false)
919 , m_containsBOL(false)
920 , m_numSubpatterns(0)
921 , m_maxBackReference(0)
922 , newlineCached(0)
923 , digitsCached(0)
924 , spacesCached(0)
925 , wordcharCached(0)
926 , nondigitsCached(0)
927 , nonspacesCached(0)
928 , nonwordcharCached(0)
929 {
930 *error = compile(pattern);
931 }
933 } }