media/libjpeg/jcarith.c

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

     1 /*
     2  * jcarith.c
     3  *
     4  * Developed 1997-2009 by Guido Vollbeding.
     5  * This file is part of the Independent JPEG Group's software.
     6  * For conditions of distribution and use, see the accompanying README file.
     7  *
     8  * This file contains portable arithmetic entropy encoding routines for JPEG
     9  * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
    10  *
    11  * Both sequential and progressive modes are supported in this single module.
    12  *
    13  * Suspension is not currently supported in this module.
    14  */
    16 #define JPEG_INTERNALS
    17 #include "jinclude.h"
    18 #include "jpeglib.h"
    21 /* Expanded entropy encoder object for arithmetic encoding. */
    23 typedef struct {
    24   struct jpeg_entropy_encoder pub; /* public fields */
    26   INT32 c; /* C register, base of coding interval, layout as in sec. D.1.3 */
    27   INT32 a;               /* A register, normalized size of coding interval */
    28   INT32 sc;        /* counter for stacked 0xFF values which might overflow */
    29   INT32 zc;          /* counter for pending 0x00 output values which might *
    30                           * be discarded at the end ("Pacman" termination) */
    31   int ct;  /* bit shift counter, determines when next byte will be written */
    32   int buffer;                /* buffer for most recent output byte != 0xFF */
    34   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
    35   int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
    37   unsigned int restarts_to_go;	/* MCUs left in this restart interval */
    38   int next_restart_num;		/* next restart number to write (0-7) */
    40   /* Pointers to statistics areas (these workspaces have image lifespan) */
    41   unsigned char * dc_stats[NUM_ARITH_TBLS];
    42   unsigned char * ac_stats[NUM_ARITH_TBLS];
    44   /* Statistics bin for coding with fixed probability 0.5 */
    45   unsigned char fixed_bin[4];
    46 } arith_entropy_encoder;
    48 typedef arith_entropy_encoder * arith_entropy_ptr;
    50 /* The following two definitions specify the allocation chunk size
    51  * for the statistics area.
    52  * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
    53  * 49 statistics bins for DC, and 245 statistics bins for AC coding.
    54  *
    55  * We use a compact representation with 1 byte per statistics bin,
    56  * thus the numbers directly represent byte sizes.
    57  * This 1 byte per statistics bin contains the meaning of the MPS
    58  * (more probable symbol) in the highest bit (mask 0x80), and the
    59  * index into the probability estimation state machine table
    60  * in the lower bits (mask 0x7F).
    61  */
    63 #define DC_STAT_BINS 64
    64 #define AC_STAT_BINS 256
    66 /* NOTE: Uncomment the following #define if you want to use the
    67  * given formula for calculating the AC conditioning parameter Kx
    68  * for spectral selection progressive coding in section G.1.3.2
    69  * of the spec (Kx = Kmin + SRL (8 + Se - Kmin) 4).
    70  * Although the spec and P&M authors claim that this "has proven
    71  * to give good results for 8 bit precision samples", I'm not
    72  * convinced yet that this is really beneficial.
    73  * Early tests gave only very marginal compression enhancements
    74  * (a few - around 5 or so - bytes even for very large files),
    75  * which would turn out rather negative if we'd suppress the
    76  * DAC (Define Arithmetic Conditioning) marker segments for
    77  * the default parameters in the future.
    78  * Note that currently the marker writing module emits 12-byte
    79  * DAC segments for a full-component scan in a color image.
    80  * This is not worth worrying about IMHO. However, since the
    81  * spec defines the default values to be used if the tables
    82  * are omitted (unlike Huffman tables, which are required
    83  * anyway), one might optimize this behaviour in the future,
    84  * and then it would be disadvantageous to use custom tables if
    85  * they don't provide sufficient gain to exceed the DAC size.
    86  *
    87  * On the other hand, I'd consider it as a reasonable result
    88  * that the conditioning has no significant influence on the
    89  * compression performance. This means that the basic
    90  * statistical model is already rather stable.
    91  *
    92  * Thus, at the moment, we use the default conditioning values
    93  * anyway, and do not use the custom formula.
    94  *
    95 #define CALCULATE_SPECTRAL_CONDITIONING
    96  */
    98 /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
    99  * We assume that int right shift is unsigned if INT32 right shift is,
   100  * which should be safe.
   101  */
   103 #ifdef RIGHT_SHIFT_IS_UNSIGNED
   104 #define ISHIFT_TEMPS	int ishift_temp;
   105 #define IRIGHT_SHIFT(x,shft)  \
   106 	((ishift_temp = (x)) < 0 ? \
   107 	 (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
   108 	 (ishift_temp >> (shft)))
   109 #else
   110 #define ISHIFT_TEMPS
   111 #define IRIGHT_SHIFT(x,shft)	((x) >> (shft))
   112 #endif
   115 LOCAL(void)
   116 emit_byte (int val, j_compress_ptr cinfo)
   117 /* Write next output byte; we do not support suspension in this module. */
   118 {
   119   struct jpeg_destination_mgr * dest = cinfo->dest;
   121   *dest->next_output_byte++ = (JOCTET) val;
   122   if (--dest->free_in_buffer == 0)
   123     if (! (*dest->empty_output_buffer) (cinfo))
   124       ERREXIT(cinfo, JERR_CANT_SUSPEND);
   125 }
   128 /*
   129  * Finish up at the end of an arithmetic-compressed scan.
   130  */
   132 METHODDEF(void)
   133 finish_pass (j_compress_ptr cinfo)
   134 {
   135   arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
   136   INT32 temp;
   138   /* Section D.1.8: Termination of encoding */
   140   /* Find the e->c in the coding interval with the largest
   141    * number of trailing zero bits */
   142   if ((temp = (e->a - 1 + e->c) & 0xFFFF0000L) < e->c)
   143     e->c = temp + 0x8000L;
   144   else
   145     e->c = temp;
   146   /* Send remaining bytes to output */
   147   e->c <<= e->ct;
   148   if (e->c & 0xF8000000L) {
   149     /* One final overflow has to be handled */
   150     if (e->buffer >= 0) {
   151       if (e->zc)
   152 	do emit_byte(0x00, cinfo);
   153 	while (--e->zc);
   154       emit_byte(e->buffer + 1, cinfo);
   155       if (e->buffer + 1 == 0xFF)
   156 	emit_byte(0x00, cinfo);
   157     }
   158     e->zc += e->sc;  /* carry-over converts stacked 0xFF bytes to 0x00 */
   159     e->sc = 0;
   160   } else {
   161     if (e->buffer == 0)
   162       ++e->zc;
   163     else if (e->buffer >= 0) {
   164       if (e->zc)
   165 	do emit_byte(0x00, cinfo);
   166 	while (--e->zc);
   167       emit_byte(e->buffer, cinfo);
   168     }
   169     if (e->sc) {
   170       if (e->zc)
   171 	do emit_byte(0x00, cinfo);
   172 	while (--e->zc);
   173       do {
   174 	emit_byte(0xFF, cinfo);
   175 	emit_byte(0x00, cinfo);
   176       } while (--e->sc);
   177     }
   178   }
   179   /* Output final bytes only if they are not 0x00 */
   180   if (e->c & 0x7FFF800L) {
   181     if (e->zc)  /* output final pending zero bytes */
   182       do emit_byte(0x00, cinfo);
   183       while (--e->zc);
   184     emit_byte((e->c >> 19) & 0xFF, cinfo);
   185     if (((e->c >> 19) & 0xFF) == 0xFF)
   186       emit_byte(0x00, cinfo);
   187     if (e->c & 0x7F800L) {
   188       emit_byte((e->c >> 11) & 0xFF, cinfo);
   189       if (((e->c >> 11) & 0xFF) == 0xFF)
   190 	emit_byte(0x00, cinfo);
   191     }
   192   }
   193 }
   196 /*
   197  * The core arithmetic encoding routine (common in JPEG and JBIG).
   198  * This needs to go as fast as possible.
   199  * Machine-dependent optimization facilities
   200  * are not utilized in this portable implementation.
   201  * However, this code should be fairly efficient and
   202  * may be a good base for further optimizations anyway.
   203  *
   204  * Parameter 'val' to be encoded may be 0 or 1 (binary decision).
   205  *
   206  * Note: I've added full "Pacman" termination support to the
   207  * byte output routines, which is equivalent to the optional
   208  * Discard_final_zeros procedure (Figure D.15) in the spec.
   209  * Thus, we always produce the shortest possible output
   210  * stream compliant to the spec (no trailing zero bytes,
   211  * except for FF stuffing).
   212  *
   213  * I've also introduced a new scheme for accessing
   214  * the probability estimation state machine table,
   215  * derived from Markus Kuhn's JBIG implementation.
   216  */
   218 LOCAL(void)
   219 arith_encode (j_compress_ptr cinfo, unsigned char *st, int val) 
   220 {
   221   register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
   222   register unsigned char nl, nm;
   223   register INT32 qe, temp;
   224   register int sv;
   226   /* Fetch values from our compact representation of Table D.2:
   227    * Qe values and probability estimation state machine
   228    */
   229   sv = *st;
   230   qe = jpeg_aritab[sv & 0x7F];	/* => Qe_Value */
   231   nl = qe & 0xFF; qe >>= 8;	/* Next_Index_LPS + Switch_MPS */
   232   nm = qe & 0xFF; qe >>= 8;	/* Next_Index_MPS */
   234   /* Encode & estimation procedures per sections D.1.4 & D.1.5 */
   235   e->a -= qe;
   236   if (val != (sv >> 7)) {
   237     /* Encode the less probable symbol */
   238     if (e->a >= qe) {
   239       /* If the interval size (qe) for the less probable symbol (LPS)
   240        * is larger than the interval size for the MPS, then exchange
   241        * the two symbols for coding efficiency, otherwise code the LPS
   242        * as usual: */
   243       e->c += e->a;
   244       e->a = qe;
   245     }
   246     *st = (sv & 0x80) ^ nl;	/* Estimate_after_LPS */
   247   } else {
   248     /* Encode the more probable symbol */
   249     if (e->a >= 0x8000L)
   250       return;  /* A >= 0x8000 -> ready, no renormalization required */
   251     if (e->a < qe) {
   252       /* If the interval size (qe) for the less probable symbol (LPS)
   253        * is larger than the interval size for the MPS, then exchange
   254        * the two symbols for coding efficiency: */
   255       e->c += e->a;
   256       e->a = qe;
   257     }
   258     *st = (sv & 0x80) ^ nm;	/* Estimate_after_MPS */
   259   }
   261   /* Renormalization & data output per section D.1.6 */
   262   do {
   263     e->a <<= 1;
   264     e->c <<= 1;
   265     if (--e->ct == 0) {
   266       /* Another byte is ready for output */
   267       temp = e->c >> 19;
   268       if (temp > 0xFF) {
   269 	/* Handle overflow over all stacked 0xFF bytes */
   270 	if (e->buffer >= 0) {
   271 	  if (e->zc)
   272 	    do emit_byte(0x00, cinfo);
   273 	    while (--e->zc);
   274 	  emit_byte(e->buffer + 1, cinfo);
   275 	  if (e->buffer + 1 == 0xFF)
   276 	    emit_byte(0x00, cinfo);
   277 	}
   278 	e->zc += e->sc;  /* carry-over converts stacked 0xFF bytes to 0x00 */
   279 	e->sc = 0;
   280 	/* Note: The 3 spacer bits in the C register guarantee
   281 	 * that the new buffer byte can't be 0xFF here
   282 	 * (see page 160 in the P&M JPEG book). */
   283 	e->buffer = temp & 0xFF;  /* new output byte, might overflow later */
   284       } else if (temp == 0xFF) {
   285 	++e->sc;  /* stack 0xFF byte (which might overflow later) */
   286       } else {
   287 	/* Output all stacked 0xFF bytes, they will not overflow any more */
   288 	if (e->buffer == 0)
   289 	  ++e->zc;
   290 	else if (e->buffer >= 0) {
   291 	  if (e->zc)
   292 	    do emit_byte(0x00, cinfo);
   293 	    while (--e->zc);
   294 	  emit_byte(e->buffer, cinfo);
   295 	}
   296 	if (e->sc) {
   297 	  if (e->zc)
   298 	    do emit_byte(0x00, cinfo);
   299 	    while (--e->zc);
   300 	  do {
   301 	    emit_byte(0xFF, cinfo);
   302 	    emit_byte(0x00, cinfo);
   303 	  } while (--e->sc);
   304 	}
   305 	e->buffer = temp & 0xFF;  /* new output byte (can still overflow) */
   306       }
   307       e->c &= 0x7FFFFL;
   308       e->ct += 8;
   309     }
   310   } while (e->a < 0x8000L);
   311 }
   314 /*
   315  * Emit a restart marker & resynchronize predictions.
   316  */
   318 LOCAL(void)
   319 emit_restart (j_compress_ptr cinfo, int restart_num)
   320 {
   321   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
   322   int ci;
   323   jpeg_component_info * compptr;
   325   finish_pass(cinfo);
   327   emit_byte(0xFF, cinfo);
   328   emit_byte(JPEG_RST0 + restart_num, cinfo);
   330   /* Re-initialize statistics areas */
   331   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
   332     compptr = cinfo->cur_comp_info[ci];
   333     /* DC needs no table for refinement scan */
   334     if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
   335       MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS);
   336       /* Reset DC predictions to 0 */
   337       entropy->last_dc_val[ci] = 0;
   338       entropy->dc_context[ci] = 0;
   339     }
   340     /* AC needs no table when not present */
   341     if (cinfo->progressive_mode == 0 || cinfo->Se) {
   342       MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS);
   343     }
   344   }
   346   /* Reset arithmetic encoding variables */
   347   entropy->c = 0;
   348   entropy->a = 0x10000L;
   349   entropy->sc = 0;
   350   entropy->zc = 0;
   351   entropy->ct = 11;
   352   entropy->buffer = -1;  /* empty */
   353 }
   356 /*
   357  * MCU encoding for DC initial scan (either spectral selection,
   358  * or first pass of successive approximation).
   359  */
   361 METHODDEF(boolean)
   362 encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
   363 {
   364   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
   365   JBLOCKROW block;
   366   unsigned char *st;
   367   int blkn, ci, tbl;
   368   int v, v2, m;
   369   ISHIFT_TEMPS
   371   /* Emit restart marker if needed */
   372   if (cinfo->restart_interval) {
   373     if (entropy->restarts_to_go == 0) {
   374       emit_restart(cinfo, entropy->next_restart_num);
   375       entropy->restarts_to_go = cinfo->restart_interval;
   376       entropy->next_restart_num++;
   377       entropy->next_restart_num &= 7;
   378     }
   379     entropy->restarts_to_go--;
   380   }
   382   /* Encode the MCU data blocks */
   383   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
   384     block = MCU_data[blkn];
   385     ci = cinfo->MCU_membership[blkn];
   386     tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
   388     /* Compute the DC value after the required point transform by Al.
   389      * This is simply an arithmetic right shift.
   390      */
   391     m = IRIGHT_SHIFT((int) ((*block)[0]), cinfo->Al);
   393     /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
   395     /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
   396     st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
   398     /* Figure F.4: Encode_DC_DIFF */
   399     if ((v = m - entropy->last_dc_val[ci]) == 0) {
   400       arith_encode(cinfo, st, 0);
   401       entropy->dc_context[ci] = 0;	/* zero diff category */
   402     } else {
   403       entropy->last_dc_val[ci] = m;
   404       arith_encode(cinfo, st, 1);
   405       /* Figure F.6: Encoding nonzero value v */
   406       /* Figure F.7: Encoding the sign of v */
   407       if (v > 0) {
   408 	arith_encode(cinfo, st + 1, 0);	/* Table F.4: SS = S0 + 1 */
   409 	st += 2;			/* Table F.4: SP = S0 + 2 */
   410 	entropy->dc_context[ci] = 4;	/* small positive diff category */
   411       } else {
   412 	v = -v;
   413 	arith_encode(cinfo, st + 1, 1);	/* Table F.4: SS = S0 + 1 */
   414 	st += 3;			/* Table F.4: SN = S0 + 3 */
   415 	entropy->dc_context[ci] = 8;	/* small negative diff category */
   416       }
   417       /* Figure F.8: Encoding the magnitude category of v */
   418       m = 0;
   419       if (v -= 1) {
   420 	arith_encode(cinfo, st, 1);
   421 	m = 1;
   422 	v2 = v;
   423 	st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
   424 	while (v2 >>= 1) {
   425 	  arith_encode(cinfo, st, 1);
   426 	  m <<= 1;
   427 	  st += 1;
   428 	}
   429       }
   430       arith_encode(cinfo, st, 0);
   431       /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
   432       if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
   433 	entropy->dc_context[ci] = 0;	/* zero diff category */
   434       else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
   435 	entropy->dc_context[ci] += 8;	/* large diff category */
   436       /* Figure F.9: Encoding the magnitude bit pattern of v */
   437       st += 14;
   438       while (m >>= 1)
   439 	arith_encode(cinfo, st, (m & v) ? 1 : 0);
   440     }
   441   }
   443   return TRUE;
   444 }
   447 /*
   448  * MCU encoding for AC initial scan (either spectral selection,
   449  * or first pass of successive approximation).
   450  */
   452 METHODDEF(boolean)
   453 encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
   454 {
   455   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
   456   JBLOCKROW block;
   457   unsigned char *st;
   458   int tbl, k, ke;
   459   int v, v2, m;
   461   /* Emit restart marker if needed */
   462   if (cinfo->restart_interval) {
   463     if (entropy->restarts_to_go == 0) {
   464       emit_restart(cinfo, entropy->next_restart_num);
   465       entropy->restarts_to_go = cinfo->restart_interval;
   466       entropy->next_restart_num++;
   467       entropy->next_restart_num &= 7;
   468     }
   469     entropy->restarts_to_go--;
   470   }
   472   /* Encode the MCU data block */
   473   block = MCU_data[0];
   474   tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
   476   /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
   478   /* Establish EOB (end-of-block) index */
   479   for (ke = cinfo->Se; ke > 0; ke--)
   480     /* We must apply the point transform by Al.  For AC coefficients this
   481      * is an integer division with rounding towards 0.  To do this portably
   482      * in C, we shift after obtaining the absolute value.
   483      */
   484     if ((v = (*block)[jpeg_natural_order[ke]]) >= 0) {
   485       if (v >>= cinfo->Al) break;
   486     } else {
   487       v = -v;
   488       if (v >>= cinfo->Al) break;
   489     }
   491   /* Figure F.5: Encode_AC_Coefficients */
   492   for (k = cinfo->Ss; k <= ke; k++) {
   493     st = entropy->ac_stats[tbl] + 3 * (k - 1);
   494     arith_encode(cinfo, st, 0);		/* EOB decision */
   495     for (;;) {
   496       if ((v = (*block)[jpeg_natural_order[k]]) >= 0) {
   497 	if (v >>= cinfo->Al) {
   498 	  arith_encode(cinfo, st + 1, 1);
   499 	  arith_encode(cinfo, entropy->fixed_bin, 0);
   500 	  break;
   501 	}
   502       } else {
   503 	v = -v;
   504 	if (v >>= cinfo->Al) {
   505 	  arith_encode(cinfo, st + 1, 1);
   506 	  arith_encode(cinfo, entropy->fixed_bin, 1);
   507 	  break;
   508 	}
   509       }
   510       arith_encode(cinfo, st + 1, 0); st += 3; k++;
   511     }
   512     st += 2;
   513     /* Figure F.8: Encoding the magnitude category of v */
   514     m = 0;
   515     if (v -= 1) {
   516       arith_encode(cinfo, st, 1);
   517       m = 1;
   518       v2 = v;
   519       if (v2 >>= 1) {
   520 	arith_encode(cinfo, st, 1);
   521 	m <<= 1;
   522 	st = entropy->ac_stats[tbl] +
   523 	     (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
   524 	while (v2 >>= 1) {
   525 	  arith_encode(cinfo, st, 1);
   526 	  m <<= 1;
   527 	  st += 1;
   528 	}
   529       }
   530     }
   531     arith_encode(cinfo, st, 0);
   532     /* Figure F.9: Encoding the magnitude bit pattern of v */
   533     st += 14;
   534     while (m >>= 1)
   535       arith_encode(cinfo, st, (m & v) ? 1 : 0);
   536   }
   537   /* Encode EOB decision only if k <= cinfo->Se */
   538   if (k <= cinfo->Se) {
   539     st = entropy->ac_stats[tbl] + 3 * (k - 1);
   540     arith_encode(cinfo, st, 1);
   541   }
   543   return TRUE;
   544 }
   547 /*
   548  * MCU encoding for DC successive approximation refinement scan.
   549  */
   551 METHODDEF(boolean)
   552 encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
   553 {
   554   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
   555   unsigned char *st;
   556   int Al, blkn;
   558   /* Emit restart marker if needed */
   559   if (cinfo->restart_interval) {
   560     if (entropy->restarts_to_go == 0) {
   561       emit_restart(cinfo, entropy->next_restart_num);
   562       entropy->restarts_to_go = cinfo->restart_interval;
   563       entropy->next_restart_num++;
   564       entropy->next_restart_num &= 7;
   565     }
   566     entropy->restarts_to_go--;
   567   }
   569   st = entropy->fixed_bin;	/* use fixed probability estimation */
   570   Al = cinfo->Al;
   572   /* Encode the MCU data blocks */
   573   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
   574     /* We simply emit the Al'th bit of the DC coefficient value. */
   575     arith_encode(cinfo, st, (MCU_data[blkn][0][0] >> Al) & 1);
   576   }
   578   return TRUE;
   579 }
   582 /*
   583  * MCU encoding for AC successive approximation refinement scan.
   584  */
   586 METHODDEF(boolean)
   587 encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
   588 {
   589   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
   590   JBLOCKROW block;
   591   unsigned char *st;
   592   int tbl, k, ke, kex;
   593   int v;
   595   /* Emit restart marker if needed */
   596   if (cinfo->restart_interval) {
   597     if (entropy->restarts_to_go == 0) {
   598       emit_restart(cinfo, entropy->next_restart_num);
   599       entropy->restarts_to_go = cinfo->restart_interval;
   600       entropy->next_restart_num++;
   601       entropy->next_restart_num &= 7;
   602     }
   603     entropy->restarts_to_go--;
   604   }
   606   /* Encode the MCU data block */
   607   block = MCU_data[0];
   608   tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
   610   /* Section G.1.3.3: Encoding of AC coefficients */
   612   /* Establish EOB (end-of-block) index */
   613   for (ke = cinfo->Se; ke > 0; ke--)
   614     /* We must apply the point transform by Al.  For AC coefficients this
   615      * is an integer division with rounding towards 0.  To do this portably
   616      * in C, we shift after obtaining the absolute value.
   617      */
   618     if ((v = (*block)[jpeg_natural_order[ke]]) >= 0) {
   619       if (v >>= cinfo->Al) break;
   620     } else {
   621       v = -v;
   622       if (v >>= cinfo->Al) break;
   623     }
   625   /* Establish EOBx (previous stage end-of-block) index */
   626   for (kex = ke; kex > 0; kex--)
   627     if ((v = (*block)[jpeg_natural_order[kex]]) >= 0) {
   628       if (v >>= cinfo->Ah) break;
   629     } else {
   630       v = -v;
   631       if (v >>= cinfo->Ah) break;
   632     }
   634   /* Figure G.10: Encode_AC_Coefficients_SA */
   635   for (k = cinfo->Ss; k <= ke; k++) {
   636     st = entropy->ac_stats[tbl] + 3 * (k - 1);
   637     if (k > kex)
   638       arith_encode(cinfo, st, 0);	/* EOB decision */
   639     for (;;) {
   640       if ((v = (*block)[jpeg_natural_order[k]]) >= 0) {
   641 	if (v >>= cinfo->Al) {
   642 	  if (v >> 1)			/* previously nonzero coef */
   643 	    arith_encode(cinfo, st + 2, (v & 1));
   644 	  else {			/* newly nonzero coef */
   645 	    arith_encode(cinfo, st + 1, 1);
   646 	    arith_encode(cinfo, entropy->fixed_bin, 0);
   647 	  }
   648 	  break;
   649 	}
   650       } else {
   651 	v = -v;
   652 	if (v >>= cinfo->Al) {
   653 	  if (v >> 1)			/* previously nonzero coef */
   654 	    arith_encode(cinfo, st + 2, (v & 1));
   655 	  else {			/* newly nonzero coef */
   656 	    arith_encode(cinfo, st + 1, 1);
   657 	    arith_encode(cinfo, entropy->fixed_bin, 1);
   658 	  }
   659 	  break;
   660 	}
   661       }
   662       arith_encode(cinfo, st + 1, 0); st += 3; k++;
   663     }
   664   }
   665   /* Encode EOB decision only if k <= cinfo->Se */
   666   if (k <= cinfo->Se) {
   667     st = entropy->ac_stats[tbl] + 3 * (k - 1);
   668     arith_encode(cinfo, st, 1);
   669   }
   671   return TRUE;
   672 }
   675 /*
   676  * Encode and output one MCU's worth of arithmetic-compressed coefficients.
   677  */
   679 METHODDEF(boolean)
   680 encode_mcu (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
   681 {
   682   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
   683   jpeg_component_info * compptr;
   684   JBLOCKROW block;
   685   unsigned char *st;
   686   int blkn, ci, tbl, k, ke;
   687   int v, v2, m;
   689   /* Emit restart marker if needed */
   690   if (cinfo->restart_interval) {
   691     if (entropy->restarts_to_go == 0) {
   692       emit_restart(cinfo, entropy->next_restart_num);
   693       entropy->restarts_to_go = cinfo->restart_interval;
   694       entropy->next_restart_num++;
   695       entropy->next_restart_num &= 7;
   696     }
   697     entropy->restarts_to_go--;
   698   }
   700   /* Encode the MCU data blocks */
   701   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
   702     block = MCU_data[blkn];
   703     ci = cinfo->MCU_membership[blkn];
   704     compptr = cinfo->cur_comp_info[ci];
   706     /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
   708     tbl = compptr->dc_tbl_no;
   710     /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
   711     st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
   713     /* Figure F.4: Encode_DC_DIFF */
   714     if ((v = (*block)[0] - entropy->last_dc_val[ci]) == 0) {
   715       arith_encode(cinfo, st, 0);
   716       entropy->dc_context[ci] = 0;	/* zero diff category */
   717     } else {
   718       entropy->last_dc_val[ci] = (*block)[0];
   719       arith_encode(cinfo, st, 1);
   720       /* Figure F.6: Encoding nonzero value v */
   721       /* Figure F.7: Encoding the sign of v */
   722       if (v > 0) {
   723 	arith_encode(cinfo, st + 1, 0);	/* Table F.4: SS = S0 + 1 */
   724 	st += 2;			/* Table F.4: SP = S0 + 2 */
   725 	entropy->dc_context[ci] = 4;	/* small positive diff category */
   726       } else {
   727 	v = -v;
   728 	arith_encode(cinfo, st + 1, 1);	/* Table F.4: SS = S0 + 1 */
   729 	st += 3;			/* Table F.4: SN = S0 + 3 */
   730 	entropy->dc_context[ci] = 8;	/* small negative diff category */
   731       }
   732       /* Figure F.8: Encoding the magnitude category of v */
   733       m = 0;
   734       if (v -= 1) {
   735 	arith_encode(cinfo, st, 1);
   736 	m = 1;
   737 	v2 = v;
   738 	st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
   739 	while (v2 >>= 1) {
   740 	  arith_encode(cinfo, st, 1);
   741 	  m <<= 1;
   742 	  st += 1;
   743 	}
   744       }
   745       arith_encode(cinfo, st, 0);
   746       /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
   747       if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
   748 	entropy->dc_context[ci] = 0;	/* zero diff category */
   749       else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
   750 	entropy->dc_context[ci] += 8;	/* large diff category */
   751       /* Figure F.9: Encoding the magnitude bit pattern of v */
   752       st += 14;
   753       while (m >>= 1)
   754 	arith_encode(cinfo, st, (m & v) ? 1 : 0);
   755     }
   757     /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
   759     tbl = compptr->ac_tbl_no;
   761     /* Establish EOB (end-of-block) index */
   762     for (ke = DCTSIZE2 - 1; ke > 0; ke--)
   763       if ((*block)[jpeg_natural_order[ke]]) break;
   765     /* Figure F.5: Encode_AC_Coefficients */
   766     for (k = 1; k <= ke; k++) {
   767       st = entropy->ac_stats[tbl] + 3 * (k - 1);
   768       arith_encode(cinfo, st, 0);	/* EOB decision */
   769       while ((v = (*block)[jpeg_natural_order[k]]) == 0) {
   770 	arith_encode(cinfo, st + 1, 0); st += 3; k++;
   771       }
   772       arith_encode(cinfo, st + 1, 1);
   773       /* Figure F.6: Encoding nonzero value v */
   774       /* Figure F.7: Encoding the sign of v */
   775       if (v > 0) {
   776 	arith_encode(cinfo, entropy->fixed_bin, 0);
   777       } else {
   778 	v = -v;
   779 	arith_encode(cinfo, entropy->fixed_bin, 1);
   780       }
   781       st += 2;
   782       /* Figure F.8: Encoding the magnitude category of v */
   783       m = 0;
   784       if (v -= 1) {
   785 	arith_encode(cinfo, st, 1);
   786 	m = 1;
   787 	v2 = v;
   788 	if (v2 >>= 1) {
   789 	  arith_encode(cinfo, st, 1);
   790 	  m <<= 1;
   791 	  st = entropy->ac_stats[tbl] +
   792 	       (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
   793 	  while (v2 >>= 1) {
   794 	    arith_encode(cinfo, st, 1);
   795 	    m <<= 1;
   796 	    st += 1;
   797 	  }
   798 	}
   799       }
   800       arith_encode(cinfo, st, 0);
   801       /* Figure F.9: Encoding the magnitude bit pattern of v */
   802       st += 14;
   803       while (m >>= 1)
   804 	arith_encode(cinfo, st, (m & v) ? 1 : 0);
   805     }
   806     /* Encode EOB decision only if k <= DCTSIZE2 - 1 */
   807     if (k <= DCTSIZE2 - 1) {
   808       st = entropy->ac_stats[tbl] + 3 * (k - 1);
   809       arith_encode(cinfo, st, 1);
   810     }
   811   }
   813   return TRUE;
   814 }
   817 /*
   818  * Initialize for an arithmetic-compressed scan.
   819  */
   821 METHODDEF(void)
   822 start_pass (j_compress_ptr cinfo, boolean gather_statistics)
   823 {
   824   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
   825   int ci, tbl;
   826   jpeg_component_info * compptr;
   828   if (gather_statistics)
   829     /* Make sure to avoid that in the master control logic!
   830      * We are fully adaptive here and need no extra
   831      * statistics gathering pass!
   832      */
   833     ERREXIT(cinfo, JERR_NOT_COMPILED);
   835   /* We assume jcmaster.c already validated the progressive scan parameters. */
   837   /* Select execution routines */
   838   if (cinfo->progressive_mode) {
   839     if (cinfo->Ah == 0) {
   840       if (cinfo->Ss == 0)
   841 	entropy->pub.encode_mcu = encode_mcu_DC_first;
   842       else
   843 	entropy->pub.encode_mcu = encode_mcu_AC_first;
   844     } else {
   845       if (cinfo->Ss == 0)
   846 	entropy->pub.encode_mcu = encode_mcu_DC_refine;
   847       else
   848 	entropy->pub.encode_mcu = encode_mcu_AC_refine;
   849     }
   850   } else
   851     entropy->pub.encode_mcu = encode_mcu;
   853   /* Allocate & initialize requested statistics areas */
   854   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
   855     compptr = cinfo->cur_comp_info[ci];
   856     /* DC needs no table for refinement scan */
   857     if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
   858       tbl = compptr->dc_tbl_no;
   859       if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
   860 	ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
   861       if (entropy->dc_stats[tbl] == NULL)
   862 	entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
   863 	  ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
   864       MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
   865       /* Initialize DC predictions to 0 */
   866       entropy->last_dc_val[ci] = 0;
   867       entropy->dc_context[ci] = 0;
   868     }
   869     /* AC needs no table when not present */
   870     if (cinfo->progressive_mode == 0 || cinfo->Se) {
   871       tbl = compptr->ac_tbl_no;
   872       if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
   873 	ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
   874       if (entropy->ac_stats[tbl] == NULL)
   875 	entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
   876 	  ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
   877       MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
   878 #ifdef CALCULATE_SPECTRAL_CONDITIONING
   879       if (cinfo->progressive_mode)
   880 	/* Section G.1.3.2: Set appropriate arithmetic conditioning value Kx */
   881 	cinfo->arith_ac_K[tbl] = cinfo->Ss + ((8 + cinfo->Se - cinfo->Ss) >> 4);
   882 #endif
   883     }
   884   }
   886   /* Initialize arithmetic encoding variables */
   887   entropy->c = 0;
   888   entropy->a = 0x10000L;
   889   entropy->sc = 0;
   890   entropy->zc = 0;
   891   entropy->ct = 11;
   892   entropy->buffer = -1;  /* empty */
   894   /* Initialize restart stuff */
   895   entropy->restarts_to_go = cinfo->restart_interval;
   896   entropy->next_restart_num = 0;
   897 }
   900 /*
   901  * Module initialization routine for arithmetic entropy encoding.
   902  */
   904 GLOBAL(void)
   905 jinit_arith_encoder (j_compress_ptr cinfo)
   906 {
   907   arith_entropy_ptr entropy;
   908   int i;
   910   entropy = (arith_entropy_ptr)
   911     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
   912 				SIZEOF(arith_entropy_encoder));
   913   cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
   914   entropy->pub.start_pass = start_pass;
   915   entropy->pub.finish_pass = finish_pass;
   917   /* Mark tables unallocated */
   918   for (i = 0; i < NUM_ARITH_TBLS; i++) {
   919     entropy->dc_stats[i] = NULL;
   920     entropy->ac_stats[i] = NULL;
   921   }
   923   /* Initialize index for fixed probability estimation */
   924   entropy->fixed_bin[0] = 113;
   925 }

mercurial