media/libjpeg/jidctfst.c

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

     1 /*
     2  * jidctfst.c
     3  *
     4  * Copyright (C) 1994-1998, Thomas G. Lane.
     5  * This file is part of the Independent JPEG Group's software.
     6  * For conditions of distribution and use, see the accompanying README file.
     7  *
     8  * This file contains a fast, not so accurate integer implementation of the
     9  * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine
    10  * must also perform dequantization of the input coefficients.
    11  *
    12  * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
    13  * on each row (or vice versa, but it's more convenient to emit a row at
    14  * a time).  Direct algorithms are also available, but they are much more
    15  * complex and seem not to be any faster when reduced to code.
    16  *
    17  * This implementation is based on Arai, Agui, and Nakajima's algorithm for
    18  * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
    19  * Japanese, but the algorithm is described in the Pennebaker & Mitchell
    20  * JPEG textbook (see REFERENCES section in file README).  The following code
    21  * is based directly on figure 4-8 in P&M.
    22  * While an 8-point DCT cannot be done in less than 11 multiplies, it is
    23  * possible to arrange the computation so that many of the multiplies are
    24  * simple scalings of the final outputs.  These multiplies can then be
    25  * folded into the multiplications or divisions by the JPEG quantization
    26  * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
    27  * to be done in the DCT itself.
    28  * The primary disadvantage of this method is that with fixed-point math,
    29  * accuracy is lost due to imprecise representation of the scaled
    30  * quantization values.  The smaller the quantization table entry, the less
    31  * precise the scaled value, so this implementation does worse with high-
    32  * quality-setting files than with low-quality ones.
    33  */
    35 #define JPEG_INTERNALS
    36 #include "jinclude.h"
    37 #include "jpeglib.h"
    38 #include "jdct.h"		/* Private declarations for DCT subsystem */
    40 #ifdef DCT_IFAST_SUPPORTED
    43 /*
    44  * This module is specialized to the case DCTSIZE = 8.
    45  */
    47 #if DCTSIZE != 8
    48   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
    49 #endif
    52 /* Scaling decisions are generally the same as in the LL&M algorithm;
    53  * see jidctint.c for more details.  However, we choose to descale
    54  * (right shift) multiplication products as soon as they are formed,
    55  * rather than carrying additional fractional bits into subsequent additions.
    56  * This compromises accuracy slightly, but it lets us save a few shifts.
    57  * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
    58  * everywhere except in the multiplications proper; this saves a good deal
    59  * of work on 16-bit-int machines.
    60  *
    61  * The dequantized coefficients are not integers because the AA&N scaling
    62  * factors have been incorporated.  We represent them scaled up by PASS1_BITS,
    63  * so that the first and second IDCT rounds have the same input scaling.
    64  * For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to
    65  * avoid a descaling shift; this compromises accuracy rather drastically
    66  * for small quantization table entries, but it saves a lot of shifts.
    67  * For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway,
    68  * so we use a much larger scaling factor to preserve accuracy.
    69  *
    70  * A final compromise is to represent the multiplicative constants to only
    71  * 8 fractional bits, rather than 13.  This saves some shifting work on some
    72  * machines, and may also reduce the cost of multiplication (since there
    73  * are fewer one-bits in the constants).
    74  */
    76 #if BITS_IN_JSAMPLE == 8
    77 #define CONST_BITS  8
    78 #define PASS1_BITS  2
    79 #else
    80 #define CONST_BITS  8
    81 #define PASS1_BITS  1		/* lose a little precision to avoid overflow */
    82 #endif
    84 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
    85  * causing a lot of useless floating-point operations at run time.
    86  * To get around this we use the following pre-calculated constants.
    87  * If you change CONST_BITS you may want to add appropriate values.
    88  * (With a reasonable C compiler, you can just rely on the FIX() macro...)
    89  */
    91 #if CONST_BITS == 8
    92 #define FIX_1_082392200  ((INT32)  277)		/* FIX(1.082392200) */
    93 #define FIX_1_414213562  ((INT32)  362)		/* FIX(1.414213562) */
    94 #define FIX_1_847759065  ((INT32)  473)		/* FIX(1.847759065) */
    95 #define FIX_2_613125930  ((INT32)  669)		/* FIX(2.613125930) */
    96 #else
    97 #define FIX_1_082392200  FIX(1.082392200)
    98 #define FIX_1_414213562  FIX(1.414213562)
    99 #define FIX_1_847759065  FIX(1.847759065)
   100 #define FIX_2_613125930  FIX(2.613125930)
   101 #endif
   104 /* We can gain a little more speed, with a further compromise in accuracy,
   105  * by omitting the addition in a descaling shift.  This yields an incorrectly
   106  * rounded result half the time...
   107  */
   109 #ifndef USE_ACCURATE_ROUNDING
   110 #undef DESCALE
   111 #define DESCALE(x,n)  RIGHT_SHIFT(x, n)
   112 #endif
   115 /* Multiply a DCTELEM variable by an INT32 constant, and immediately
   116  * descale to yield a DCTELEM result.
   117  */
   119 #define MULTIPLY(var,const)  ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
   122 /* Dequantize a coefficient by multiplying it by the multiplier-table
   123  * entry; produce a DCTELEM result.  For 8-bit data a 16x16->16
   124  * multiplication will do.  For 12-bit data, the multiplier table is
   125  * declared INT32, so a 32-bit multiply will be used.
   126  */
   128 #if BITS_IN_JSAMPLE == 8
   129 #define DEQUANTIZE(coef,quantval)  (((IFAST_MULT_TYPE) (coef)) * (quantval))
   130 #else
   131 #define DEQUANTIZE(coef,quantval)  \
   132 	DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS)
   133 #endif
   136 /* Like DESCALE, but applies to a DCTELEM and produces an int.
   137  * We assume that int right shift is unsigned if INT32 right shift is.
   138  */
   140 #ifdef RIGHT_SHIFT_IS_UNSIGNED
   141 #define ISHIFT_TEMPS	DCTELEM ishift_temp;
   142 #if BITS_IN_JSAMPLE == 8
   143 #define DCTELEMBITS  16		/* DCTELEM may be 16 or 32 bits */
   144 #else
   145 #define DCTELEMBITS  32		/* DCTELEM must be 32 bits */
   146 #endif
   147 #define IRIGHT_SHIFT(x,shft)  \
   148     ((ishift_temp = (x)) < 0 ? \
   149      (ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (DCTELEMBITS-(shft))) : \
   150      (ishift_temp >> (shft)))
   151 #else
   152 #define ISHIFT_TEMPS
   153 #define IRIGHT_SHIFT(x,shft)	((x) >> (shft))
   154 #endif
   156 #ifdef USE_ACCURATE_ROUNDING
   157 #define IDESCALE(x,n)  ((int) IRIGHT_SHIFT((x) + (1 << ((n)-1)), n))
   158 #else
   159 #define IDESCALE(x,n)  ((int) IRIGHT_SHIFT(x, n))
   160 #endif
   163 /*
   164  * Perform dequantization and inverse DCT on one block of coefficients.
   165  */
   167 GLOBAL(void)
   168 jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr,
   169 		 JCOEFPTR coef_block,
   170 		 JSAMPARRAY output_buf, JDIMENSION output_col)
   171 {
   172   DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
   173   DCTELEM tmp10, tmp11, tmp12, tmp13;
   174   DCTELEM z5, z10, z11, z12, z13;
   175   JCOEFPTR inptr;
   176   IFAST_MULT_TYPE * quantptr;
   177   int * wsptr;
   178   JSAMPROW outptr;
   179   JSAMPLE *range_limit = IDCT_range_limit(cinfo);
   180   int ctr;
   181   int workspace[DCTSIZE2];	/* buffers data between passes */
   182   SHIFT_TEMPS			/* for DESCALE */
   183   ISHIFT_TEMPS			/* for IDESCALE */
   185   /* Pass 1: process columns from input, store into work array. */
   187   inptr = coef_block;
   188   quantptr = (IFAST_MULT_TYPE *) compptr->dct_table;
   189   wsptr = workspace;
   190   for (ctr = DCTSIZE; ctr > 0; ctr--) {
   191     /* Due to quantization, we will usually find that many of the input
   192      * coefficients are zero, especially the AC terms.  We can exploit this
   193      * by short-circuiting the IDCT calculation for any column in which all
   194      * the AC terms are zero.  In that case each output is equal to the
   195      * DC coefficient (with scale factor as needed).
   196      * With typical images and quantization tables, half or more of the
   197      * column DCT calculations can be simplified this way.
   198      */
   200     if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
   201 	inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
   202 	inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
   203 	inptr[DCTSIZE*7] == 0) {
   204       /* AC terms all zero */
   205       int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
   207       wsptr[DCTSIZE*0] = dcval;
   208       wsptr[DCTSIZE*1] = dcval;
   209       wsptr[DCTSIZE*2] = dcval;
   210       wsptr[DCTSIZE*3] = dcval;
   211       wsptr[DCTSIZE*4] = dcval;
   212       wsptr[DCTSIZE*5] = dcval;
   213       wsptr[DCTSIZE*6] = dcval;
   214       wsptr[DCTSIZE*7] = dcval;
   216       inptr++;			/* advance pointers to next column */
   217       quantptr++;
   218       wsptr++;
   219       continue;
   220     }
   222     /* Even part */
   224     tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
   225     tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
   226     tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
   227     tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
   229     tmp10 = tmp0 + tmp2;	/* phase 3 */
   230     tmp11 = tmp0 - tmp2;
   232     tmp13 = tmp1 + tmp3;	/* phases 5-3 */
   233     tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */
   235     tmp0 = tmp10 + tmp13;	/* phase 2 */
   236     tmp3 = tmp10 - tmp13;
   237     tmp1 = tmp11 + tmp12;
   238     tmp2 = tmp11 - tmp12;
   240     /* Odd part */
   242     tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
   243     tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
   244     tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
   245     tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
   247     z13 = tmp6 + tmp5;		/* phase 6 */
   248     z10 = tmp6 - tmp5;
   249     z11 = tmp4 + tmp7;
   250     z12 = tmp4 - tmp7;
   252     tmp7 = z11 + z13;		/* phase 5 */
   253     tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
   255     z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
   256     tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
   257     tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
   259     tmp6 = tmp12 - tmp7;	/* phase 2 */
   260     tmp5 = tmp11 - tmp6;
   261     tmp4 = tmp10 + tmp5;
   263     wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7);
   264     wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7);
   265     wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6);
   266     wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6);
   267     wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5);
   268     wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5);
   269     wsptr[DCTSIZE*4] = (int) (tmp3 + tmp4);
   270     wsptr[DCTSIZE*3] = (int) (tmp3 - tmp4);
   272     inptr++;			/* advance pointers to next column */
   273     quantptr++;
   274     wsptr++;
   275   }
   277   /* Pass 2: process rows from work array, store into output array. */
   278   /* Note that we must descale the results by a factor of 8 == 2**3, */
   279   /* and also undo the PASS1_BITS scaling. */
   281   wsptr = workspace;
   282   for (ctr = 0; ctr < DCTSIZE; ctr++) {
   283     outptr = output_buf[ctr] + output_col;
   284     /* Rows of zeroes can be exploited in the same way as we did with columns.
   285      * However, the column calculation has created many nonzero AC terms, so
   286      * the simplification applies less often (typically 5% to 10% of the time).
   287      * On machines with very fast multiplication, it's possible that the
   288      * test takes more time than it's worth.  In that case this section
   289      * may be commented out.
   290      */
   292 #ifndef NO_ZERO_ROW_TEST
   293     if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
   294 	wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
   295       /* AC terms all zero */
   296       JSAMPLE dcval = range_limit[IDESCALE(wsptr[0], PASS1_BITS+3)
   297 				  & RANGE_MASK];
   299       outptr[0] = dcval;
   300       outptr[1] = dcval;
   301       outptr[2] = dcval;
   302       outptr[3] = dcval;
   303       outptr[4] = dcval;
   304       outptr[5] = dcval;
   305       outptr[6] = dcval;
   306       outptr[7] = dcval;
   308       wsptr += DCTSIZE;		/* advance pointer to next row */
   309       continue;
   310     }
   311 #endif
   313     /* Even part */
   315     tmp10 = ((DCTELEM) wsptr[0] + (DCTELEM) wsptr[4]);
   316     tmp11 = ((DCTELEM) wsptr[0] - (DCTELEM) wsptr[4]);
   318     tmp13 = ((DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]);
   319     tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6], FIX_1_414213562)
   320 	    - tmp13;
   322     tmp0 = tmp10 + tmp13;
   323     tmp3 = tmp10 - tmp13;
   324     tmp1 = tmp11 + tmp12;
   325     tmp2 = tmp11 - tmp12;
   327     /* Odd part */
   329     z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3];
   330     z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3];
   331     z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7];
   332     z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7];
   334     tmp7 = z11 + z13;		/* phase 5 */
   335     tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
   337     z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
   338     tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
   339     tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
   341     tmp6 = tmp12 - tmp7;	/* phase 2 */
   342     tmp5 = tmp11 - tmp6;
   343     tmp4 = tmp10 + tmp5;
   345     /* Final output stage: scale down by a factor of 8 and range-limit */
   347     outptr[0] = range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS+3)
   348 			    & RANGE_MASK];
   349     outptr[7] = range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS+3)
   350 			    & RANGE_MASK];
   351     outptr[1] = range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS+3)
   352 			    & RANGE_MASK];
   353     outptr[6] = range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS+3)
   354 			    & RANGE_MASK];
   355     outptr[2] = range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS+3)
   356 			    & RANGE_MASK];
   357     outptr[5] = range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS+3)
   358 			    & RANGE_MASK];
   359     outptr[4] = range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS+3)
   360 			    & RANGE_MASK];
   361     outptr[3] = range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS+3)
   362 			    & RANGE_MASK];
   364     wsptr += DCTSIZE;		/* advance pointer to next row */
   365   }
   366 }
   368 #endif /* DCT_IFAST_SUPPORTED */

mercurial