media/libjpeg/jquant2.c

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

     1 /*
     2  * jquant2.c
     3  *
     4  * This file was part of the Independent JPEG Group's software:
     5  * Copyright (C) 1991-1996, Thomas G. Lane.
     6  * libjpeg-turbo Modifications:
     7  * Copyright (C) 2009, D. R. Commander.
     8  * For conditions of distribution and use, see the accompanying README file.
     9  *
    10  * This file contains 2-pass color quantization (color mapping) routines.
    11  * These routines provide selection of a custom color map for an image,
    12  * followed by mapping of the image to that color map, with optional
    13  * Floyd-Steinberg dithering.
    14  * It is also possible to use just the second pass to map to an arbitrary
    15  * externally-given color map.
    16  *
    17  * Note: ordered dithering is not supported, since there isn't any fast
    18  * way to compute intercolor distances; it's unclear that ordered dither's
    19  * fundamental assumptions even hold with an irregularly spaced color map.
    20  */
    22 #define JPEG_INTERNALS
    23 #include "jinclude.h"
    24 #include "jpeglib.h"
    26 #ifdef QUANT_2PASS_SUPPORTED
    29 /*
    30  * This module implements the well-known Heckbert paradigm for color
    31  * quantization.  Most of the ideas used here can be traced back to
    32  * Heckbert's seminal paper
    33  *   Heckbert, Paul.  "Color Image Quantization for Frame Buffer Display",
    34  *   Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.
    35  *
    36  * In the first pass over the image, we accumulate a histogram showing the
    37  * usage count of each possible color.  To keep the histogram to a reasonable
    38  * size, we reduce the precision of the input; typical practice is to retain
    39  * 5 or 6 bits per color, so that 8 or 4 different input values are counted
    40  * in the same histogram cell.
    41  *
    42  * Next, the color-selection step begins with a box representing the whole
    43  * color space, and repeatedly splits the "largest" remaining box until we
    44  * have as many boxes as desired colors.  Then the mean color in each
    45  * remaining box becomes one of the possible output colors.
    46  * 
    47  * The second pass over the image maps each input pixel to the closest output
    48  * color (optionally after applying a Floyd-Steinberg dithering correction).
    49  * This mapping is logically trivial, but making it go fast enough requires
    50  * considerable care.
    51  *
    52  * Heckbert-style quantizers vary a good deal in their policies for choosing
    53  * the "largest" box and deciding where to cut it.  The particular policies
    54  * used here have proved out well in experimental comparisons, but better ones
    55  * may yet be found.
    56  *
    57  * In earlier versions of the IJG code, this module quantized in YCbCr color
    58  * space, processing the raw upsampled data without a color conversion step.
    59  * This allowed the color conversion math to be done only once per colormap
    60  * entry, not once per pixel.  However, that optimization precluded other
    61  * useful optimizations (such as merging color conversion with upsampling)
    62  * and it also interfered with desired capabilities such as quantizing to an
    63  * externally-supplied colormap.  We have therefore abandoned that approach.
    64  * The present code works in the post-conversion color space, typically RGB.
    65  *
    66  * To improve the visual quality of the results, we actually work in scaled
    67  * RGB space, giving G distances more weight than R, and R in turn more than
    68  * B.  To do everything in integer math, we must use integer scale factors.
    69  * The 2/3/1 scale factors used here correspond loosely to the relative
    70  * weights of the colors in the NTSC grayscale equation.
    71  * If you want to use this code to quantize a non-RGB color space, you'll
    72  * probably need to change these scale factors.
    73  */
    75 #define R_SCALE 2		/* scale R distances by this much */
    76 #define G_SCALE 3		/* scale G distances by this much */
    77 #define B_SCALE 1		/* and B by this much */
    79 static const int c_scales[3]={R_SCALE, G_SCALE, B_SCALE};
    80 #define C0_SCALE c_scales[rgb_red[cinfo->out_color_space]]
    81 #define C1_SCALE c_scales[rgb_green[cinfo->out_color_space]]
    82 #define C2_SCALE c_scales[rgb_blue[cinfo->out_color_space]]
    84 /*
    85  * First we have the histogram data structure and routines for creating it.
    86  *
    87  * The number of bits of precision can be adjusted by changing these symbols.
    88  * We recommend keeping 6 bits for G and 5 each for R and B.
    89  * If you have plenty of memory and cycles, 6 bits all around gives marginally
    90  * better results; if you are short of memory, 5 bits all around will save
    91  * some space but degrade the results.
    92  * To maintain a fully accurate histogram, we'd need to allocate a "long"
    93  * (preferably unsigned long) for each cell.  In practice this is overkill;
    94  * we can get by with 16 bits per cell.  Few of the cell counts will overflow,
    95  * and clamping those that do overflow to the maximum value will give close-
    96  * enough results.  This reduces the recommended histogram size from 256Kb
    97  * to 128Kb, which is a useful savings on PC-class machines.
    98  * (In the second pass the histogram space is re-used for pixel mapping data;
    99  * in that capacity, each cell must be able to store zero to the number of
   100  * desired colors.  16 bits/cell is plenty for that too.)
   101  * Since the JPEG code is intended to run in small memory model on 80x86
   102  * machines, we can't just allocate the histogram in one chunk.  Instead
   103  * of a true 3-D array, we use a row of pointers to 2-D arrays.  Each
   104  * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and
   105  * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries.  Note that
   106  * on 80x86 machines, the pointer row is in near memory but the actual
   107  * arrays are in far memory (same arrangement as we use for image arrays).
   108  */
   110 #define MAXNUMCOLORS  (MAXJSAMPLE+1) /* maximum size of colormap */
   112 /* These will do the right thing for either R,G,B or B,G,R color order,
   113  * but you may not like the results for other color orders.
   114  */
   115 #define HIST_C0_BITS  5		/* bits of precision in R/B histogram */
   116 #define HIST_C1_BITS  6		/* bits of precision in G histogram */
   117 #define HIST_C2_BITS  5		/* bits of precision in B/R histogram */
   119 /* Number of elements along histogram axes. */
   120 #define HIST_C0_ELEMS  (1<<HIST_C0_BITS)
   121 #define HIST_C1_ELEMS  (1<<HIST_C1_BITS)
   122 #define HIST_C2_ELEMS  (1<<HIST_C2_BITS)
   124 /* These are the amounts to shift an input value to get a histogram index. */
   125 #define C0_SHIFT  (BITS_IN_JSAMPLE-HIST_C0_BITS)
   126 #define C1_SHIFT  (BITS_IN_JSAMPLE-HIST_C1_BITS)
   127 #define C2_SHIFT  (BITS_IN_JSAMPLE-HIST_C2_BITS)
   130 typedef UINT16 histcell;	/* histogram cell; prefer an unsigned type */
   132 typedef histcell FAR * histptr;	/* for pointers to histogram cells */
   134 typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */
   135 typedef hist1d FAR * hist2d;	/* type for the 2nd-level pointers */
   136 typedef hist2d * hist3d;	/* type for top-level pointer */
   139 /* Declarations for Floyd-Steinberg dithering.
   140  *
   141  * Errors are accumulated into the array fserrors[], at a resolution of
   142  * 1/16th of a pixel count.  The error at a given pixel is propagated
   143  * to its not-yet-processed neighbors using the standard F-S fractions,
   144  *		...	(here)	7/16
   145  *		3/16	5/16	1/16
   146  * We work left-to-right on even rows, right-to-left on odd rows.
   147  *
   148  * We can get away with a single array (holding one row's worth of errors)
   149  * by using it to store the current row's errors at pixel columns not yet
   150  * processed, but the next row's errors at columns already processed.  We
   151  * need only a few extra variables to hold the errors immediately around the
   152  * current column.  (If we are lucky, those variables are in registers, but
   153  * even if not, they're probably cheaper to access than array elements are.)
   154  *
   155  * The fserrors[] array has (#columns + 2) entries; the extra entry at
   156  * each end saves us from special-casing the first and last pixels.
   157  * Each entry is three values long, one value for each color component.
   158  *
   159  * Note: on a wide image, we might not have enough room in a PC's near data
   160  * segment to hold the error array; so it is allocated with alloc_large.
   161  */
   163 #if BITS_IN_JSAMPLE == 8
   164 typedef INT16 FSERROR;		/* 16 bits should be enough */
   165 typedef int LOCFSERROR;		/* use 'int' for calculation temps */
   166 #else
   167 typedef INT32 FSERROR;		/* may need more than 16 bits */
   168 typedef INT32 LOCFSERROR;	/* be sure calculation temps are big enough */
   169 #endif
   171 typedef FSERROR FAR *FSERRPTR;	/* pointer to error array (in FAR storage!) */
   174 /* Private subobject */
   176 typedef struct {
   177   struct jpeg_color_quantizer pub; /* public fields */
   179   /* Space for the eventually created colormap is stashed here */
   180   JSAMPARRAY sv_colormap;	/* colormap allocated at init time */
   181   int desired;			/* desired # of colors = size of colormap */
   183   /* Variables for accumulating image statistics */
   184   hist3d histogram;		/* pointer to the histogram */
   186   boolean needs_zeroed;		/* TRUE if next pass must zero histogram */
   188   /* Variables for Floyd-Steinberg dithering */
   189   FSERRPTR fserrors;		/* accumulated errors */
   190   boolean on_odd_row;		/* flag to remember which row we are on */
   191   int * error_limiter;		/* table for clamping the applied error */
   192 } my_cquantizer;
   194 typedef my_cquantizer * my_cquantize_ptr;
   197 /*
   198  * Prescan some rows of pixels.
   199  * In this module the prescan simply updates the histogram, which has been
   200  * initialized to zeroes by start_pass.
   201  * An output_buf parameter is required by the method signature, but no data
   202  * is actually output (in fact the buffer controller is probably passing a
   203  * NULL pointer).
   204  */
   206 METHODDEF(void)
   207 prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
   208 		  JSAMPARRAY output_buf, int num_rows)
   209 {
   210   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
   211   register JSAMPROW ptr;
   212   register histptr histp;
   213   register hist3d histogram = cquantize->histogram;
   214   int row;
   215   JDIMENSION col;
   216   JDIMENSION width = cinfo->output_width;
   218   for (row = 0; row < num_rows; row++) {
   219     ptr = input_buf[row];
   220     for (col = width; col > 0; col--) {
   221       /* get pixel value and index into the histogram */
   222       histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT]
   223 			 [GETJSAMPLE(ptr[1]) >> C1_SHIFT]
   224 			 [GETJSAMPLE(ptr[2]) >> C2_SHIFT];
   225       /* increment, check for overflow and undo increment if so. */
   226       if (++(*histp) <= 0)
   227 	(*histp)--;
   228       ptr += 3;
   229     }
   230   }
   231 }
   234 /*
   235  * Next we have the really interesting routines: selection of a colormap
   236  * given the completed histogram.
   237  * These routines work with a list of "boxes", each representing a rectangular
   238  * subset of the input color space (to histogram precision).
   239  */
   241 typedef struct {
   242   /* The bounds of the box (inclusive); expressed as histogram indexes */
   243   int c0min, c0max;
   244   int c1min, c1max;
   245   int c2min, c2max;
   246   /* The volume (actually 2-norm) of the box */
   247   INT32 volume;
   248   /* The number of nonzero histogram cells within this box */
   249   long colorcount;
   250 } box;
   252 typedef box * boxptr;
   255 LOCAL(boxptr)
   256 find_biggest_color_pop (boxptr boxlist, int numboxes)
   257 /* Find the splittable box with the largest color population */
   258 /* Returns NULL if no splittable boxes remain */
   259 {
   260   register boxptr boxp;
   261   register int i;
   262   register long maxc = 0;
   263   boxptr which = NULL;
   265   for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
   266     if (boxp->colorcount > maxc && boxp->volume > 0) {
   267       which = boxp;
   268       maxc = boxp->colorcount;
   269     }
   270   }
   271   return which;
   272 }
   275 LOCAL(boxptr)
   276 find_biggest_volume (boxptr boxlist, int numboxes)
   277 /* Find the splittable box with the largest (scaled) volume */
   278 /* Returns NULL if no splittable boxes remain */
   279 {
   280   register boxptr boxp;
   281   register int i;
   282   register INT32 maxv = 0;
   283   boxptr which = NULL;
   285   for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
   286     if (boxp->volume > maxv) {
   287       which = boxp;
   288       maxv = boxp->volume;
   289     }
   290   }
   291   return which;
   292 }
   295 LOCAL(void)
   296 update_box (j_decompress_ptr cinfo, boxptr boxp)
   297 /* Shrink the min/max bounds of a box to enclose only nonzero elements, */
   298 /* and recompute its volume and population */
   299 {
   300   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
   301   hist3d histogram = cquantize->histogram;
   302   histptr histp;
   303   int c0,c1,c2;
   304   int c0min,c0max,c1min,c1max,c2min,c2max;
   305   INT32 dist0,dist1,dist2;
   306   long ccount;
   308   c0min = boxp->c0min;  c0max = boxp->c0max;
   309   c1min = boxp->c1min;  c1max = boxp->c1max;
   310   c2min = boxp->c2min;  c2max = boxp->c2max;
   312   if (c0max > c0min)
   313     for (c0 = c0min; c0 <= c0max; c0++)
   314       for (c1 = c1min; c1 <= c1max; c1++) {
   315 	histp = & histogram[c0][c1][c2min];
   316 	for (c2 = c2min; c2 <= c2max; c2++)
   317 	  if (*histp++ != 0) {
   318 	    boxp->c0min = c0min = c0;
   319 	    goto have_c0min;
   320 	  }
   321       }
   322  have_c0min:
   323   if (c0max > c0min)
   324     for (c0 = c0max; c0 >= c0min; c0--)
   325       for (c1 = c1min; c1 <= c1max; c1++) {
   326 	histp = & histogram[c0][c1][c2min];
   327 	for (c2 = c2min; c2 <= c2max; c2++)
   328 	  if (*histp++ != 0) {
   329 	    boxp->c0max = c0max = c0;
   330 	    goto have_c0max;
   331 	  }
   332       }
   333  have_c0max:
   334   if (c1max > c1min)
   335     for (c1 = c1min; c1 <= c1max; c1++)
   336       for (c0 = c0min; c0 <= c0max; c0++) {
   337 	histp = & histogram[c0][c1][c2min];
   338 	for (c2 = c2min; c2 <= c2max; c2++)
   339 	  if (*histp++ != 0) {
   340 	    boxp->c1min = c1min = c1;
   341 	    goto have_c1min;
   342 	  }
   343       }
   344  have_c1min:
   345   if (c1max > c1min)
   346     for (c1 = c1max; c1 >= c1min; c1--)
   347       for (c0 = c0min; c0 <= c0max; c0++) {
   348 	histp = & histogram[c0][c1][c2min];
   349 	for (c2 = c2min; c2 <= c2max; c2++)
   350 	  if (*histp++ != 0) {
   351 	    boxp->c1max = c1max = c1;
   352 	    goto have_c1max;
   353 	  }
   354       }
   355  have_c1max:
   356   if (c2max > c2min)
   357     for (c2 = c2min; c2 <= c2max; c2++)
   358       for (c0 = c0min; c0 <= c0max; c0++) {
   359 	histp = & histogram[c0][c1min][c2];
   360 	for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
   361 	  if (*histp != 0) {
   362 	    boxp->c2min = c2min = c2;
   363 	    goto have_c2min;
   364 	  }
   365       }
   366  have_c2min:
   367   if (c2max > c2min)
   368     for (c2 = c2max; c2 >= c2min; c2--)
   369       for (c0 = c0min; c0 <= c0max; c0++) {
   370 	histp = & histogram[c0][c1min][c2];
   371 	for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
   372 	  if (*histp != 0) {
   373 	    boxp->c2max = c2max = c2;
   374 	    goto have_c2max;
   375 	  }
   376       }
   377  have_c2max:
   379   /* Update box volume.
   380    * We use 2-norm rather than real volume here; this biases the method
   381    * against making long narrow boxes, and it has the side benefit that
   382    * a box is splittable iff norm > 0.
   383    * Since the differences are expressed in histogram-cell units,
   384    * we have to shift back to JSAMPLE units to get consistent distances;
   385    * after which, we scale according to the selected distance scale factors.
   386    */
   387   dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE;
   388   dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE;
   389   dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE;
   390   boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2;
   392   /* Now scan remaining volume of box and compute population */
   393   ccount = 0;
   394   for (c0 = c0min; c0 <= c0max; c0++)
   395     for (c1 = c1min; c1 <= c1max; c1++) {
   396       histp = & histogram[c0][c1][c2min];
   397       for (c2 = c2min; c2 <= c2max; c2++, histp++)
   398 	if (*histp != 0) {
   399 	  ccount++;
   400 	}
   401     }
   402   boxp->colorcount = ccount;
   403 }
   406 LOCAL(int)
   407 median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes,
   408 	    int desired_colors)
   409 /* Repeatedly select and split the largest box until we have enough boxes */
   410 {
   411   int n,lb;
   412   int c0,c1,c2,cmax;
   413   register boxptr b1,b2;
   415   while (numboxes < desired_colors) {
   416     /* Select box to split.
   417      * Current algorithm: by population for first half, then by volume.
   418      */
   419     if (numboxes*2 <= desired_colors) {
   420       b1 = find_biggest_color_pop(boxlist, numboxes);
   421     } else {
   422       b1 = find_biggest_volume(boxlist, numboxes);
   423     }
   424     if (b1 == NULL)		/* no splittable boxes left! */
   425       break;
   426     b2 = &boxlist[numboxes];	/* where new box will go */
   427     /* Copy the color bounds to the new box. */
   428     b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max;
   429     b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min;
   430     /* Choose which axis to split the box on.
   431      * Current algorithm: longest scaled axis.
   432      * See notes in update_box about scaling distances.
   433      */
   434     c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE;
   435     c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE;
   436     c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE;
   437     /* We want to break any ties in favor of green, then red, blue last.
   438      * This code does the right thing for R,G,B or B,G,R color orders only.
   439      */
   440     if (rgb_red[cinfo->out_color_space] == 0) {
   441       cmax = c1; n = 1;
   442       if (c0 > cmax) { cmax = c0; n = 0; }
   443       if (c2 > cmax) { n = 2; }
   444     }
   445     else {
   446       cmax = c1; n = 1;
   447       if (c2 > cmax) { cmax = c2; n = 2; }
   448       if (c0 > cmax) { n = 0; }
   449     }
   450     /* Choose split point along selected axis, and update box bounds.
   451      * Current algorithm: split at halfway point.
   452      * (Since the box has been shrunk to minimum volume,
   453      * any split will produce two nonempty subboxes.)
   454      * Note that lb value is max for lower box, so must be < old max.
   455      */
   456     switch (n) {
   457     case 0:
   458       lb = (b1->c0max + b1->c0min) / 2;
   459       b1->c0max = lb;
   460       b2->c0min = lb+1;
   461       break;
   462     case 1:
   463       lb = (b1->c1max + b1->c1min) / 2;
   464       b1->c1max = lb;
   465       b2->c1min = lb+1;
   466       break;
   467     case 2:
   468       lb = (b1->c2max + b1->c2min) / 2;
   469       b1->c2max = lb;
   470       b2->c2min = lb+1;
   471       break;
   472     }
   473     /* Update stats for boxes */
   474     update_box(cinfo, b1);
   475     update_box(cinfo, b2);
   476     numboxes++;
   477   }
   478   return numboxes;
   479 }
   482 LOCAL(void)
   483 compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor)
   484 /* Compute representative color for a box, put it in colormap[icolor] */
   485 {
   486   /* Current algorithm: mean weighted by pixels (not colors) */
   487   /* Note it is important to get the rounding correct! */
   488   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
   489   hist3d histogram = cquantize->histogram;
   490   histptr histp;
   491   int c0,c1,c2;
   492   int c0min,c0max,c1min,c1max,c2min,c2max;
   493   long count;
   494   long total = 0;
   495   long c0total = 0;
   496   long c1total = 0;
   497   long c2total = 0;
   499   c0min = boxp->c0min;  c0max = boxp->c0max;
   500   c1min = boxp->c1min;  c1max = boxp->c1max;
   501   c2min = boxp->c2min;  c2max = boxp->c2max;
   503   for (c0 = c0min; c0 <= c0max; c0++)
   504     for (c1 = c1min; c1 <= c1max; c1++) {
   505       histp = & histogram[c0][c1][c2min];
   506       for (c2 = c2min; c2 <= c2max; c2++) {
   507 	if ((count = *histp++) != 0) {
   508 	  total += count;
   509 	  c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count;
   510 	  c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count;
   511 	  c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count;
   512 	}
   513       }
   514     }
   516   cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total);
   517   cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total);
   518   cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total);
   519 }
   522 LOCAL(void)
   523 select_colors (j_decompress_ptr cinfo, int desired_colors)
   524 /* Master routine for color selection */
   525 {
   526   boxptr boxlist;
   527   int numboxes;
   528   int i;
   530   /* Allocate workspace for box list */
   531   boxlist = (boxptr) (*cinfo->mem->alloc_small)
   532     ((j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * SIZEOF(box));
   533   /* Initialize one box containing whole space */
   534   numboxes = 1;
   535   boxlist[0].c0min = 0;
   536   boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT;
   537   boxlist[0].c1min = 0;
   538   boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT;
   539   boxlist[0].c2min = 0;
   540   boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT;
   541   /* Shrink it to actually-used volume and set its statistics */
   542   update_box(cinfo, & boxlist[0]);
   543   /* Perform median-cut to produce final box list */
   544   numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors);
   545   /* Compute the representative color for each box, fill colormap */
   546   for (i = 0; i < numboxes; i++)
   547     compute_color(cinfo, & boxlist[i], i);
   548   cinfo->actual_number_of_colors = numboxes;
   549   TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes);
   550 }
   553 /*
   554  * These routines are concerned with the time-critical task of mapping input
   555  * colors to the nearest color in the selected colormap.
   556  *
   557  * We re-use the histogram space as an "inverse color map", essentially a
   558  * cache for the results of nearest-color searches.  All colors within a
   559  * histogram cell will be mapped to the same colormap entry, namely the one
   560  * closest to the cell's center.  This may not be quite the closest entry to
   561  * the actual input color, but it's almost as good.  A zero in the cache
   562  * indicates we haven't found the nearest color for that cell yet; the array
   563  * is cleared to zeroes before starting the mapping pass.  When we find the
   564  * nearest color for a cell, its colormap index plus one is recorded in the
   565  * cache for future use.  The pass2 scanning routines call fill_inverse_cmap
   566  * when they need to use an unfilled entry in the cache.
   567  *
   568  * Our method of efficiently finding nearest colors is based on the "locally
   569  * sorted search" idea described by Heckbert and on the incremental distance
   570  * calculation described by Spencer W. Thomas in chapter III.1 of Graphics
   571  * Gems II (James Arvo, ed.  Academic Press, 1991).  Thomas points out that
   572  * the distances from a given colormap entry to each cell of the histogram can
   573  * be computed quickly using an incremental method: the differences between
   574  * distances to adjacent cells themselves differ by a constant.  This allows a
   575  * fairly fast implementation of the "brute force" approach of computing the
   576  * distance from every colormap entry to every histogram cell.  Unfortunately,
   577  * it needs a work array to hold the best-distance-so-far for each histogram
   578  * cell (because the inner loop has to be over cells, not colormap entries).
   579  * The work array elements have to be INT32s, so the work array would need
   580  * 256Kb at our recommended precision.  This is not feasible in DOS machines.
   581  *
   582  * To get around these problems, we apply Thomas' method to compute the
   583  * nearest colors for only the cells within a small subbox of the histogram.
   584  * The work array need be only as big as the subbox, so the memory usage
   585  * problem is solved.  Furthermore, we need not fill subboxes that are never
   586  * referenced in pass2; many images use only part of the color gamut, so a
   587  * fair amount of work is saved.  An additional advantage of this
   588  * approach is that we can apply Heckbert's locality criterion to quickly
   589  * eliminate colormap entries that are far away from the subbox; typically
   590  * three-fourths of the colormap entries are rejected by Heckbert's criterion,
   591  * and we need not compute their distances to individual cells in the subbox.
   592  * The speed of this approach is heavily influenced by the subbox size: too
   593  * small means too much overhead, too big loses because Heckbert's criterion
   594  * can't eliminate as many colormap entries.  Empirically the best subbox
   595  * size seems to be about 1/512th of the histogram (1/8th in each direction).
   596  *
   597  * Thomas' article also describes a refined method which is asymptotically
   598  * faster than the brute-force method, but it is also far more complex and
   599  * cannot efficiently be applied to small subboxes.  It is therefore not
   600  * useful for programs intended to be portable to DOS machines.  On machines
   601  * with plenty of memory, filling the whole histogram in one shot with Thomas'
   602  * refined method might be faster than the present code --- but then again,
   603  * it might not be any faster, and it's certainly more complicated.
   604  */
   607 /* log2(histogram cells in update box) for each axis; this can be adjusted */
   608 #define BOX_C0_LOG  (HIST_C0_BITS-3)
   609 #define BOX_C1_LOG  (HIST_C1_BITS-3)
   610 #define BOX_C2_LOG  (HIST_C2_BITS-3)
   612 #define BOX_C0_ELEMS  (1<<BOX_C0_LOG) /* # of hist cells in update box */
   613 #define BOX_C1_ELEMS  (1<<BOX_C1_LOG)
   614 #define BOX_C2_ELEMS  (1<<BOX_C2_LOG)
   616 #define BOX_C0_SHIFT  (C0_SHIFT + BOX_C0_LOG)
   617 #define BOX_C1_SHIFT  (C1_SHIFT + BOX_C1_LOG)
   618 #define BOX_C2_SHIFT  (C2_SHIFT + BOX_C2_LOG)
   621 /*
   622  * The next three routines implement inverse colormap filling.  They could
   623  * all be folded into one big routine, but splitting them up this way saves
   624  * some stack space (the mindist[] and bestdist[] arrays need not coexist)
   625  * and may allow some compilers to produce better code by registerizing more
   626  * inner-loop variables.
   627  */
   629 LOCAL(int)
   630 find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
   631 		    JSAMPLE colorlist[])
   632 /* Locate the colormap entries close enough to an update box to be candidates
   633  * for the nearest entry to some cell(s) in the update box.  The update box
   634  * is specified by the center coordinates of its first cell.  The number of
   635  * candidate colormap entries is returned, and their colormap indexes are
   636  * placed in colorlist[].
   637  * This routine uses Heckbert's "locally sorted search" criterion to select
   638  * the colors that need further consideration.
   639  */
   640 {
   641   int numcolors = cinfo->actual_number_of_colors;
   642   int maxc0, maxc1, maxc2;
   643   int centerc0, centerc1, centerc2;
   644   int i, x, ncolors;
   645   INT32 minmaxdist, min_dist, max_dist, tdist;
   646   INT32 mindist[MAXNUMCOLORS];	/* min distance to colormap entry i */
   648   /* Compute true coordinates of update box's upper corner and center.
   649    * Actually we compute the coordinates of the center of the upper-corner
   650    * histogram cell, which are the upper bounds of the volume we care about.
   651    * Note that since ">>" rounds down, the "center" values may be closer to
   652    * min than to max; hence comparisons to them must be "<=", not "<".
   653    */
   654   maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT));
   655   centerc0 = (minc0 + maxc0) >> 1;
   656   maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT));
   657   centerc1 = (minc1 + maxc1) >> 1;
   658   maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT));
   659   centerc2 = (minc2 + maxc2) >> 1;
   661   /* For each color in colormap, find:
   662    *  1. its minimum squared-distance to any point in the update box
   663    *     (zero if color is within update box);
   664    *  2. its maximum squared-distance to any point in the update box.
   665    * Both of these can be found by considering only the corners of the box.
   666    * We save the minimum distance for each color in mindist[];
   667    * only the smallest maximum distance is of interest.
   668    */
   669   minmaxdist = 0x7FFFFFFFL;
   671   for (i = 0; i < numcolors; i++) {
   672     /* We compute the squared-c0-distance term, then add in the other two. */
   673     x = GETJSAMPLE(cinfo->colormap[0][i]);
   674     if (x < minc0) {
   675       tdist = (x - minc0) * C0_SCALE;
   676       min_dist = tdist*tdist;
   677       tdist = (x - maxc0) * C0_SCALE;
   678       max_dist = tdist*tdist;
   679     } else if (x > maxc0) {
   680       tdist = (x - maxc0) * C0_SCALE;
   681       min_dist = tdist*tdist;
   682       tdist = (x - minc0) * C0_SCALE;
   683       max_dist = tdist*tdist;
   684     } else {
   685       /* within cell range so no contribution to min_dist */
   686       min_dist = 0;
   687       if (x <= centerc0) {
   688 	tdist = (x - maxc0) * C0_SCALE;
   689 	max_dist = tdist*tdist;
   690       } else {
   691 	tdist = (x - minc0) * C0_SCALE;
   692 	max_dist = tdist*tdist;
   693       }
   694     }
   696     x = GETJSAMPLE(cinfo->colormap[1][i]);
   697     if (x < minc1) {
   698       tdist = (x - minc1) * C1_SCALE;
   699       min_dist += tdist*tdist;
   700       tdist = (x - maxc1) * C1_SCALE;
   701       max_dist += tdist*tdist;
   702     } else if (x > maxc1) {
   703       tdist = (x - maxc1) * C1_SCALE;
   704       min_dist += tdist*tdist;
   705       tdist = (x - minc1) * C1_SCALE;
   706       max_dist += tdist*tdist;
   707     } else {
   708       /* within cell range so no contribution to min_dist */
   709       if (x <= centerc1) {
   710 	tdist = (x - maxc1) * C1_SCALE;
   711 	max_dist += tdist*tdist;
   712       } else {
   713 	tdist = (x - minc1) * C1_SCALE;
   714 	max_dist += tdist*tdist;
   715       }
   716     }
   718     x = GETJSAMPLE(cinfo->colormap[2][i]);
   719     if (x < minc2) {
   720       tdist = (x - minc2) * C2_SCALE;
   721       min_dist += tdist*tdist;
   722       tdist = (x - maxc2) * C2_SCALE;
   723       max_dist += tdist*tdist;
   724     } else if (x > maxc2) {
   725       tdist = (x - maxc2) * C2_SCALE;
   726       min_dist += tdist*tdist;
   727       tdist = (x - minc2) * C2_SCALE;
   728       max_dist += tdist*tdist;
   729     } else {
   730       /* within cell range so no contribution to min_dist */
   731       if (x <= centerc2) {
   732 	tdist = (x - maxc2) * C2_SCALE;
   733 	max_dist += tdist*tdist;
   734       } else {
   735 	tdist = (x - minc2) * C2_SCALE;
   736 	max_dist += tdist*tdist;
   737       }
   738     }
   740     mindist[i] = min_dist;	/* save away the results */
   741     if (max_dist < minmaxdist)
   742       minmaxdist = max_dist;
   743   }
   745   /* Now we know that no cell in the update box is more than minmaxdist
   746    * away from some colormap entry.  Therefore, only colors that are
   747    * within minmaxdist of some part of the box need be considered.
   748    */
   749   ncolors = 0;
   750   for (i = 0; i < numcolors; i++) {
   751     if (mindist[i] <= minmaxdist)
   752       colorlist[ncolors++] = (JSAMPLE) i;
   753   }
   754   return ncolors;
   755 }
   758 LOCAL(void)
   759 find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
   760 		  int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[])
   761 /* Find the closest colormap entry for each cell in the update box,
   762  * given the list of candidate colors prepared by find_nearby_colors.
   763  * Return the indexes of the closest entries in the bestcolor[] array.
   764  * This routine uses Thomas' incremental distance calculation method to
   765  * find the distance from a colormap entry to successive cells in the box.
   766  */
   767 {
   768   int ic0, ic1, ic2;
   769   int i, icolor;
   770   register INT32 * bptr;	/* pointer into bestdist[] array */
   771   JSAMPLE * cptr;		/* pointer into bestcolor[] array */
   772   INT32 dist0, dist1;		/* initial distance values */
   773   register INT32 dist2;		/* current distance in inner loop */
   774   INT32 xx0, xx1;		/* distance increments */
   775   register INT32 xx2;
   776   INT32 inc0, inc1, inc2;	/* initial values for increments */
   777   /* This array holds the distance to the nearest-so-far color for each cell */
   778   INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
   780   /* Initialize best-distance for each cell of the update box */
   781   bptr = bestdist;
   782   for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--)
   783     *bptr++ = 0x7FFFFFFFL;
   785   /* For each color selected by find_nearby_colors,
   786    * compute its distance to the center of each cell in the box.
   787    * If that's less than best-so-far, update best distance and color number.
   788    */
   790   /* Nominal steps between cell centers ("x" in Thomas article) */
   791 #define STEP_C0  ((1 << C0_SHIFT) * C0_SCALE)
   792 #define STEP_C1  ((1 << C1_SHIFT) * C1_SCALE)
   793 #define STEP_C2  ((1 << C2_SHIFT) * C2_SCALE)
   795   for (i = 0; i < numcolors; i++) {
   796     icolor = GETJSAMPLE(colorlist[i]);
   797     /* Compute (square of) distance from minc0/c1/c2 to this color */
   798     inc0 = (minc0 - GETJSAMPLE(cinfo->colormap[0][icolor])) * C0_SCALE;
   799     dist0 = inc0*inc0;
   800     inc1 = (minc1 - GETJSAMPLE(cinfo->colormap[1][icolor])) * C1_SCALE;
   801     dist0 += inc1*inc1;
   802     inc2 = (minc2 - GETJSAMPLE(cinfo->colormap[2][icolor])) * C2_SCALE;
   803     dist0 += inc2*inc2;
   804     /* Form the initial difference increments */
   805     inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0;
   806     inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1;
   807     inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2;
   808     /* Now loop over all cells in box, updating distance per Thomas method */
   809     bptr = bestdist;
   810     cptr = bestcolor;
   811     xx0 = inc0;
   812     for (ic0 = BOX_C0_ELEMS-1; ic0 >= 0; ic0--) {
   813       dist1 = dist0;
   814       xx1 = inc1;
   815       for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) {
   816 	dist2 = dist1;
   817 	xx2 = inc2;
   818 	for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) {
   819 	  if (dist2 < *bptr) {
   820 	    *bptr = dist2;
   821 	    *cptr = (JSAMPLE) icolor;
   822 	  }
   823 	  dist2 += xx2;
   824 	  xx2 += 2 * STEP_C2 * STEP_C2;
   825 	  bptr++;
   826 	  cptr++;
   827 	}
   828 	dist1 += xx1;
   829 	xx1 += 2 * STEP_C1 * STEP_C1;
   830       }
   831       dist0 += xx0;
   832       xx0 += 2 * STEP_C0 * STEP_C0;
   833     }
   834   }
   835 }
   838 LOCAL(void)
   839 fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2)
   840 /* Fill the inverse-colormap entries in the update box that contains */
   841 /* histogram cell c0/c1/c2.  (Only that one cell MUST be filled, but */
   842 /* we can fill as many others as we wish.) */
   843 {
   844   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
   845   hist3d histogram = cquantize->histogram;
   846   int minc0, minc1, minc2;	/* lower left corner of update box */
   847   int ic0, ic1, ic2;
   848   register JSAMPLE * cptr;	/* pointer into bestcolor[] array */
   849   register histptr cachep;	/* pointer into main cache array */
   850   /* This array lists the candidate colormap indexes. */
   851   JSAMPLE colorlist[MAXNUMCOLORS];
   852   int numcolors;		/* number of candidate colors */
   853   /* This array holds the actually closest colormap index for each cell. */
   854   JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
   856   /* Convert cell coordinates to update box ID */
   857   c0 >>= BOX_C0_LOG;
   858   c1 >>= BOX_C1_LOG;
   859   c2 >>= BOX_C2_LOG;
   861   /* Compute true coordinates of update box's origin corner.
   862    * Actually we compute the coordinates of the center of the corner
   863    * histogram cell, which are the lower bounds of the volume we care about.
   864    */
   865   minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1);
   866   minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1);
   867   minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1);
   869   /* Determine which colormap entries are close enough to be candidates
   870    * for the nearest entry to some cell in the update box.
   871    */
   872   numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist);
   874   /* Determine the actually nearest colors. */
   875   find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist,
   876 		   bestcolor);
   878   /* Save the best color numbers (plus 1) in the main cache array */
   879   c0 <<= BOX_C0_LOG;		/* convert ID back to base cell indexes */
   880   c1 <<= BOX_C1_LOG;
   881   c2 <<= BOX_C2_LOG;
   882   cptr = bestcolor;
   883   for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) {
   884     for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) {
   885       cachep = & histogram[c0+ic0][c1+ic1][c2];
   886       for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) {
   887 	*cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1);
   888       }
   889     }
   890   }
   891 }
   894 /*
   895  * Map some rows of pixels to the output colormapped representation.
   896  */
   898 METHODDEF(void)
   899 pass2_no_dither (j_decompress_ptr cinfo,
   900 		 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
   901 /* This version performs no dithering */
   902 {
   903   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
   904   hist3d histogram = cquantize->histogram;
   905   register JSAMPROW inptr, outptr;
   906   register histptr cachep;
   907   register int c0, c1, c2;
   908   int row;
   909   JDIMENSION col;
   910   JDIMENSION width = cinfo->output_width;
   912   for (row = 0; row < num_rows; row++) {
   913     inptr = input_buf[row];
   914     outptr = output_buf[row];
   915     for (col = width; col > 0; col--) {
   916       /* get pixel value and index into the cache */
   917       c0 = GETJSAMPLE(*inptr++) >> C0_SHIFT;
   918       c1 = GETJSAMPLE(*inptr++) >> C1_SHIFT;
   919       c2 = GETJSAMPLE(*inptr++) >> C2_SHIFT;
   920       cachep = & histogram[c0][c1][c2];
   921       /* If we have not seen this color before, find nearest colormap entry */
   922       /* and update the cache */
   923       if (*cachep == 0)
   924 	fill_inverse_cmap(cinfo, c0,c1,c2);
   925       /* Now emit the colormap index for this cell */
   926       *outptr++ = (JSAMPLE) (*cachep - 1);
   927     }
   928   }
   929 }
   932 METHODDEF(void)
   933 pass2_fs_dither (j_decompress_ptr cinfo,
   934 		 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
   935 /* This version performs Floyd-Steinberg dithering */
   936 {
   937   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
   938   hist3d histogram = cquantize->histogram;
   939   register LOCFSERROR cur0, cur1, cur2;	/* current error or pixel value */
   940   LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */
   941   LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */
   942   register FSERRPTR errorptr;	/* => fserrors[] at column before current */
   943   JSAMPROW inptr;		/* => current input pixel */
   944   JSAMPROW outptr;		/* => current output pixel */
   945   histptr cachep;
   946   int dir;			/* +1 or -1 depending on direction */
   947   int dir3;			/* 3*dir, for advancing inptr & errorptr */
   948   int row;
   949   JDIMENSION col;
   950   JDIMENSION width = cinfo->output_width;
   951   JSAMPLE *range_limit = cinfo->sample_range_limit;
   952   int *error_limit = cquantize->error_limiter;
   953   JSAMPROW colormap0 = cinfo->colormap[0];
   954   JSAMPROW colormap1 = cinfo->colormap[1];
   955   JSAMPROW colormap2 = cinfo->colormap[2];
   956   SHIFT_TEMPS
   958   for (row = 0; row < num_rows; row++) {
   959     inptr = input_buf[row];
   960     outptr = output_buf[row];
   961     if (cquantize->on_odd_row) {
   962       /* work right to left in this row */
   963       inptr += (width-1) * 3;	/* so point to rightmost pixel */
   964       outptr += width-1;
   965       dir = -1;
   966       dir3 = -3;
   967       errorptr = cquantize->fserrors + (width+1)*3; /* => entry after last column */
   968       cquantize->on_odd_row = FALSE; /* flip for next time */
   969     } else {
   970       /* work left to right in this row */
   971       dir = 1;
   972       dir3 = 3;
   973       errorptr = cquantize->fserrors; /* => entry before first real column */
   974       cquantize->on_odd_row = TRUE; /* flip for next time */
   975     }
   976     /* Preset error values: no error propagated to first pixel from left */
   977     cur0 = cur1 = cur2 = 0;
   978     /* and no error propagated to row below yet */
   979     belowerr0 = belowerr1 = belowerr2 = 0;
   980     bpreverr0 = bpreverr1 = bpreverr2 = 0;
   982     for (col = width; col > 0; col--) {
   983       /* curN holds the error propagated from the previous pixel on the
   984        * current line.  Add the error propagated from the previous line
   985        * to form the complete error correction term for this pixel, and
   986        * round the error term (which is expressed * 16) to an integer.
   987        * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
   988        * for either sign of the error value.
   989        * Note: errorptr points to *previous* column's array entry.
   990        */
   991       cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3+0] + 8, 4);
   992       cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3+1] + 8, 4);
   993       cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3+2] + 8, 4);
   994       /* Limit the error using transfer function set by init_error_limit.
   995        * See comments with init_error_limit for rationale.
   996        */
   997       cur0 = error_limit[cur0];
   998       cur1 = error_limit[cur1];
   999       cur2 = error_limit[cur2];
  1000       /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
  1001        * The maximum error is +- MAXJSAMPLE (or less with error limiting);
  1002        * this sets the required size of the range_limit array.
  1003        */
  1004       cur0 += GETJSAMPLE(inptr[0]);
  1005       cur1 += GETJSAMPLE(inptr[1]);
  1006       cur2 += GETJSAMPLE(inptr[2]);
  1007       cur0 = GETJSAMPLE(range_limit[cur0]);
  1008       cur1 = GETJSAMPLE(range_limit[cur1]);
  1009       cur2 = GETJSAMPLE(range_limit[cur2]);
  1010       /* Index into the cache with adjusted pixel value */
  1011       cachep = & histogram[cur0>>C0_SHIFT][cur1>>C1_SHIFT][cur2>>C2_SHIFT];
  1012       /* If we have not seen this color before, find nearest colormap */
  1013       /* entry and update the cache */
  1014       if (*cachep == 0)
  1015 	fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT);
  1016       /* Now emit the colormap index for this cell */
  1017       { register int pixcode = *cachep - 1;
  1018 	*outptr = (JSAMPLE) pixcode;
  1019 	/* Compute representation error for this pixel */
  1020 	cur0 -= GETJSAMPLE(colormap0[pixcode]);
  1021 	cur1 -= GETJSAMPLE(colormap1[pixcode]);
  1022 	cur2 -= GETJSAMPLE(colormap2[pixcode]);
  1024       /* Compute error fractions to be propagated to adjacent pixels.
  1025        * Add these into the running sums, and simultaneously shift the
  1026        * next-line error sums left by 1 column.
  1027        */
  1028       { register LOCFSERROR bnexterr, delta;
  1030 	bnexterr = cur0;	/* Process component 0 */
  1031 	delta = cur0 * 2;
  1032 	cur0 += delta;		/* form error * 3 */
  1033 	errorptr[0] = (FSERROR) (bpreverr0 + cur0);
  1034 	cur0 += delta;		/* form error * 5 */
  1035 	bpreverr0 = belowerr0 + cur0;
  1036 	belowerr0 = bnexterr;
  1037 	cur0 += delta;		/* form error * 7 */
  1038 	bnexterr = cur1;	/* Process component 1 */
  1039 	delta = cur1 * 2;
  1040 	cur1 += delta;		/* form error * 3 */
  1041 	errorptr[1] = (FSERROR) (bpreverr1 + cur1);
  1042 	cur1 += delta;		/* form error * 5 */
  1043 	bpreverr1 = belowerr1 + cur1;
  1044 	belowerr1 = bnexterr;
  1045 	cur1 += delta;		/* form error * 7 */
  1046 	bnexterr = cur2;	/* Process component 2 */
  1047 	delta = cur2 * 2;
  1048 	cur2 += delta;		/* form error * 3 */
  1049 	errorptr[2] = (FSERROR) (bpreverr2 + cur2);
  1050 	cur2 += delta;		/* form error * 5 */
  1051 	bpreverr2 = belowerr2 + cur2;
  1052 	belowerr2 = bnexterr;
  1053 	cur2 += delta;		/* form error * 7 */
  1055       /* At this point curN contains the 7/16 error value to be propagated
  1056        * to the next pixel on the current line, and all the errors for the
  1057        * next line have been shifted over.  We are therefore ready to move on.
  1058        */
  1059       inptr += dir3;		/* Advance pixel pointers to next column */
  1060       outptr += dir;
  1061       errorptr += dir3;		/* advance errorptr to current column */
  1063     /* Post-loop cleanup: we must unload the final error values into the
  1064      * final fserrors[] entry.  Note we need not unload belowerrN because
  1065      * it is for the dummy column before or after the actual array.
  1066      */
  1067     errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */
  1068     errorptr[1] = (FSERROR) bpreverr1;
  1069     errorptr[2] = (FSERROR) bpreverr2;
  1074 /*
  1075  * Initialize the error-limiting transfer function (lookup table).
  1076  * The raw F-S error computation can potentially compute error values of up to
  1077  * +- MAXJSAMPLE.  But we want the maximum correction applied to a pixel to be
  1078  * much less, otherwise obviously wrong pixels will be created.  (Typical
  1079  * effects include weird fringes at color-area boundaries, isolated bright
  1080  * pixels in a dark area, etc.)  The standard advice for avoiding this problem
  1081  * is to ensure that the "corners" of the color cube are allocated as output
  1082  * colors; then repeated errors in the same direction cannot cause cascading
  1083  * error buildup.  However, that only prevents the error from getting
  1084  * completely out of hand; Aaron Giles reports that error limiting improves
  1085  * the results even with corner colors allocated.
  1086  * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty
  1087  * well, but the smoother transfer function used below is even better.  Thanks
  1088  * to Aaron Giles for this idea.
  1089  */
  1091 LOCAL(void)
  1092 init_error_limit (j_decompress_ptr cinfo)
  1093 /* Allocate and fill in the error_limiter table */
  1095   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  1096   int * table;
  1097   int in, out;
  1099   table = (int *) (*cinfo->mem->alloc_small)
  1100     ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE*2+1) * SIZEOF(int));
  1101   table += MAXJSAMPLE;		/* so can index -MAXJSAMPLE .. +MAXJSAMPLE */
  1102   cquantize->error_limiter = table;
  1104 #define STEPSIZE ((MAXJSAMPLE+1)/16)
  1105   /* Map errors 1:1 up to +- MAXJSAMPLE/16 */
  1106   out = 0;
  1107   for (in = 0; in < STEPSIZE; in++, out++) {
  1108     table[in] = out; table[-in] = -out;
  1110   /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */
  1111   for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1) {
  1112     table[in] = out; table[-in] = -out;
  1114   /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */
  1115   for (; in <= MAXJSAMPLE; in++) {
  1116     table[in] = out; table[-in] = -out;
  1118 #undef STEPSIZE
  1122 /*
  1123  * Finish up at the end of each pass.
  1124  */
  1126 METHODDEF(void)
  1127 finish_pass1 (j_decompress_ptr cinfo)
  1129   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  1131   /* Select the representative colors and fill in cinfo->colormap */
  1132   cinfo->colormap = cquantize->sv_colormap;
  1133   select_colors(cinfo, cquantize->desired);
  1134   /* Force next pass to zero the color index table */
  1135   cquantize->needs_zeroed = TRUE;
  1139 METHODDEF(void)
  1140 finish_pass2 (j_decompress_ptr cinfo)
  1142   /* no work */
  1146 /*
  1147  * Initialize for each processing pass.
  1148  */
  1150 METHODDEF(void)
  1151 start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
  1153   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  1154   hist3d histogram = cquantize->histogram;
  1155   int i;
  1157   /* Only F-S dithering or no dithering is supported. */
  1158   /* If user asks for ordered dither, give him F-S. */
  1159   if (cinfo->dither_mode != JDITHER_NONE)
  1160     cinfo->dither_mode = JDITHER_FS;
  1162   if (is_pre_scan) {
  1163     /* Set up method pointers */
  1164     cquantize->pub.color_quantize = prescan_quantize;
  1165     cquantize->pub.finish_pass = finish_pass1;
  1166     cquantize->needs_zeroed = TRUE; /* Always zero histogram */
  1167   } else {
  1168     /* Set up method pointers */
  1169     if (cinfo->dither_mode == JDITHER_FS)
  1170       cquantize->pub.color_quantize = pass2_fs_dither;
  1171     else
  1172       cquantize->pub.color_quantize = pass2_no_dither;
  1173     cquantize->pub.finish_pass = finish_pass2;
  1175     /* Make sure color count is acceptable */
  1176     i = cinfo->actual_number_of_colors;
  1177     if (i < 1)
  1178       ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 1);
  1179     if (i > MAXNUMCOLORS)
  1180       ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
  1182     if (cinfo->dither_mode == JDITHER_FS) {
  1183       size_t arraysize = (size_t) ((cinfo->output_width + 2) *
  1184 				   (3 * SIZEOF(FSERROR)));
  1185       /* Allocate Floyd-Steinberg workspace if we didn't already. */
  1186       if (cquantize->fserrors == NULL)
  1187 	cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
  1188 	  ((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
  1189       /* Initialize the propagated errors to zero. */
  1190       jzero_far((void FAR *) cquantize->fserrors, arraysize);
  1191       /* Make the error-limit table if we didn't already. */
  1192       if (cquantize->error_limiter == NULL)
  1193 	init_error_limit(cinfo);
  1194       cquantize->on_odd_row = FALSE;
  1198   /* Zero the histogram or inverse color map, if necessary */
  1199   if (cquantize->needs_zeroed) {
  1200     for (i = 0; i < HIST_C0_ELEMS; i++) {
  1201       jzero_far((void FAR *) histogram[i],
  1202 		HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
  1204     cquantize->needs_zeroed = FALSE;
  1209 /*
  1210  * Switch to a new external colormap between output passes.
  1211  */
  1213 METHODDEF(void)
  1214 new_color_map_2_quant (j_decompress_ptr cinfo)
  1216   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  1218   /* Reset the inverse color map */
  1219   cquantize->needs_zeroed = TRUE;
  1223 /*
  1224  * Module initialization routine for 2-pass color quantization.
  1225  */
  1227 GLOBAL(void)
  1228 jinit_2pass_quantizer (j_decompress_ptr cinfo)
  1230   my_cquantize_ptr cquantize;
  1231   int i;
  1233   cquantize = (my_cquantize_ptr)
  1234     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
  1235 				SIZEOF(my_cquantizer));
  1236   cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
  1237   cquantize->pub.start_pass = start_pass_2_quant;
  1238   cquantize->pub.new_color_map = new_color_map_2_quant;
  1239   cquantize->fserrors = NULL;	/* flag optional arrays not allocated */
  1240   cquantize->error_limiter = NULL;
  1242   /* Make sure jdmaster didn't give me a case I can't handle */
  1243   if (cinfo->out_color_components != 3)
  1244     ERREXIT(cinfo, JERR_NOTIMPL);
  1246   /* Allocate the histogram/inverse colormap storage */
  1247   cquantize->histogram = (hist3d) (*cinfo->mem->alloc_small)
  1248     ((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * SIZEOF(hist2d));
  1249   for (i = 0; i < HIST_C0_ELEMS; i++) {
  1250     cquantize->histogram[i] = (hist2d) (*cinfo->mem->alloc_large)
  1251       ((j_common_ptr) cinfo, JPOOL_IMAGE,
  1252        HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
  1254   cquantize->needs_zeroed = TRUE; /* histogram is garbage now */
  1256   /* Allocate storage for the completed colormap, if required.
  1257    * We do this now since it is FAR storage and may affect
  1258    * the memory manager's space calculations.
  1259    */
  1260   if (cinfo->enable_2pass_quant) {
  1261     /* Make sure color count is acceptable */
  1262     int desired = cinfo->desired_number_of_colors;
  1263     /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */
  1264     if (desired < 8)
  1265       ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8);
  1266     /* Make sure colormap indexes can be represented by JSAMPLEs */
  1267     if (desired > MAXNUMCOLORS)
  1268       ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
  1269     cquantize->sv_colormap = (*cinfo->mem->alloc_sarray)
  1270       ((j_common_ptr) cinfo,JPOOL_IMAGE, (JDIMENSION) desired, (JDIMENSION) 3);
  1271     cquantize->desired = desired;
  1272   } else
  1273     cquantize->sv_colormap = NULL;
  1275   /* Only F-S dithering or no dithering is supported. */
  1276   /* If user asks for ordered dither, give him F-S. */
  1277   if (cinfo->dither_mode != JDITHER_NONE)
  1278     cinfo->dither_mode = JDITHER_FS;
  1280   /* Allocate Floyd-Steinberg workspace if necessary.
  1281    * This isn't really needed until pass 2, but again it is FAR storage.
  1282    * Although we will cope with a later change in dither_mode,
  1283    * we do not promise to honor max_memory_to_use if dither_mode changes.
  1284    */
  1285   if (cinfo->dither_mode == JDITHER_FS) {
  1286     cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
  1287       ((j_common_ptr) cinfo, JPOOL_IMAGE,
  1288        (size_t) ((cinfo->output_width + 2) * (3 * SIZEOF(FSERROR))));
  1289     /* Might as well create the error-limiting table too. */
  1290     init_error_limit(cinfo);
  1294 #endif /* QUANT_2PASS_SUPPORTED */

mercurial