media/libjpeg/simd/jiss2red-64.asm

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

     1 ;
     2 ; jiss2red-64.asm - reduced-size IDCT (64-bit SSE2)
     3 ;
     4 ; Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
     5 ; Copyright 2009 D. R. Commander
     6 ;
     7 ; Based on
     8 ; x86 SIMD extension for IJG JPEG library
     9 ; Copyright (C) 1999-2006, MIYASAKA Masaru.
    10 ; For conditions of distribution and use, see copyright notice in jsimdext.inc
    11 ;
    12 ; This file should be assembled with NASM (Netwide Assembler),
    13 ; can *not* be assembled with Microsoft's MASM or any compatible
    14 ; assembler (including Borland's Turbo Assembler).
    15 ; NASM is available from http://nasm.sourceforge.net/ or
    16 ; http://sourceforge.net/project/showfiles.php?group_id=6208
    17 ;
    18 ; This file contains inverse-DCT routines that produce reduced-size
    19 ; output: either 4x4 or 2x2 pixels from an 8x8 DCT block.
    20 ; The following code is based directly on the IJG's original jidctred.c;
    21 ; see the jidctred.c for more details.
    22 ;
    23 ; [TAB8]
    25 %include "jsimdext.inc"
    26 %include "jdct.inc"
    28 ; --------------------------------------------------------------------------
    30 %define CONST_BITS	13
    31 %define PASS1_BITS	2
    33 %define DESCALE_P1_4	(CONST_BITS-PASS1_BITS+1)
    34 %define DESCALE_P2_4	(CONST_BITS+PASS1_BITS+3+1)
    35 %define DESCALE_P1_2	(CONST_BITS-PASS1_BITS+2)
    36 %define DESCALE_P2_2	(CONST_BITS+PASS1_BITS+3+2)
    38 %if CONST_BITS == 13
    39 F_0_211	equ	 1730		; FIX(0.211164243)
    40 F_0_509	equ	 4176		; FIX(0.509795579)
    41 F_0_601	equ	 4926		; FIX(0.601344887)
    42 F_0_720	equ	 5906		; FIX(0.720959822)
    43 F_0_765	equ	 6270		; FIX(0.765366865)
    44 F_0_850	equ	 6967		; FIX(0.850430095)
    45 F_0_899	equ	 7373		; FIX(0.899976223)
    46 F_1_061	equ	 8697		; FIX(1.061594337)
    47 F_1_272	equ	10426		; FIX(1.272758580)
    48 F_1_451	equ	11893		; FIX(1.451774981)
    49 F_1_847	equ	15137		; FIX(1.847759065)
    50 F_2_172	equ	17799		; FIX(2.172734803)
    51 F_2_562	equ	20995		; FIX(2.562915447)
    52 F_3_624	equ	29692		; FIX(3.624509785)
    53 %else
    54 ; NASM cannot do compile-time arithmetic on floating-point constants.
    55 %define DESCALE(x,n)  (((x)+(1<<((n)-1)))>>(n))
    56 F_0_211	equ	DESCALE( 226735879,30-CONST_BITS)	; FIX(0.211164243)
    57 F_0_509	equ	DESCALE( 547388834,30-CONST_BITS)	; FIX(0.509795579)
    58 F_0_601	equ	DESCALE( 645689155,30-CONST_BITS)	; FIX(0.601344887)
    59 F_0_720	equ	DESCALE( 774124714,30-CONST_BITS)	; FIX(0.720959822)
    60 F_0_765	equ	DESCALE( 821806413,30-CONST_BITS)	; FIX(0.765366865)
    61 F_0_850	equ	DESCALE( 913142361,30-CONST_BITS)	; FIX(0.850430095)
    62 F_0_899	equ	DESCALE( 966342111,30-CONST_BITS)	; FIX(0.899976223)
    63 F_1_061	equ	DESCALE(1139878239,30-CONST_BITS)	; FIX(1.061594337)
    64 F_1_272	equ	DESCALE(1366614119,30-CONST_BITS)	; FIX(1.272758580)
    65 F_1_451	equ	DESCALE(1558831516,30-CONST_BITS)	; FIX(1.451774981)
    66 F_1_847	equ	DESCALE(1984016188,30-CONST_BITS)	; FIX(1.847759065)
    67 F_2_172	equ	DESCALE(2332956230,30-CONST_BITS)	; FIX(2.172734803)
    68 F_2_562	equ	DESCALE(2751909506,30-CONST_BITS)	; FIX(2.562915447)
    69 F_3_624	equ	DESCALE(3891787747,30-CONST_BITS)	; FIX(3.624509785)
    70 %endif
    72 ; --------------------------------------------------------------------------
    73 	SECTION	SEG_CONST
    75 	alignz	16
    76 	global	EXTN(jconst_idct_red_sse2)
    78 EXTN(jconst_idct_red_sse2):
    80 PW_F184_MF076	times 4 dw  F_1_847,-F_0_765
    81 PW_F256_F089	times 4 dw  F_2_562, F_0_899
    82 PW_F106_MF217	times 4 dw  F_1_061,-F_2_172
    83 PW_MF060_MF050	times 4 dw -F_0_601,-F_0_509
    84 PW_F145_MF021	times 4 dw  F_1_451,-F_0_211
    85 PW_F362_MF127	times 4 dw  F_3_624,-F_1_272
    86 PW_F085_MF072	times 4 dw  F_0_850,-F_0_720
    87 PD_DESCALE_P1_4	times 4 dd  1 << (DESCALE_P1_4-1)
    88 PD_DESCALE_P2_4	times 4 dd  1 << (DESCALE_P2_4-1)
    89 PD_DESCALE_P1_2	times 4 dd  1 << (DESCALE_P1_2-1)
    90 PD_DESCALE_P2_2	times 4 dd  1 << (DESCALE_P2_2-1)
    91 PB_CENTERJSAMP	times 16 db CENTERJSAMPLE
    93 	alignz	16
    95 ; --------------------------------------------------------------------------
    96 	SECTION	SEG_TEXT
    97 	BITS	64
    98 ;
    99 ; Perform dequantization and inverse DCT on one block of coefficients,
   100 ; producing a reduced-size 4x4 output block.
   101 ;
   102 ; GLOBAL(void)
   103 ; jsimd_idct_4x4_sse2 (void * dct_table, JCOEFPTR coef_block,
   104 ;                      JSAMPARRAY output_buf, JDIMENSION output_col)
   105 ;
   107 ; r10 = void * dct_table
   108 ; r11 = JCOEFPTR coef_block
   109 ; r12 = JSAMPARRAY output_buf
   110 ; r13 = JDIMENSION output_col
   112 %define original_rbp	rbp+0
   113 %define wk(i)		rbp-(WK_NUM-(i))*SIZEOF_XMMWORD	; xmmword wk[WK_NUM]
   114 %define WK_NUM		2
   116 	align	16
   117 	global	EXTN(jsimd_idct_4x4_sse2)
   119 EXTN(jsimd_idct_4x4_sse2):
   120 	push	rbp
   121 	mov	rax,rsp				; rax = original rbp
   122 	sub	rsp, byte 4
   123 	and	rsp, byte (-SIZEOF_XMMWORD)	; align to 128 bits
   124 	mov	[rsp],rax
   125 	mov	rbp,rsp				; rbp = aligned rbp
   126 	lea	rsp, [wk(0)]
   127 	collect_args
   129 	; ---- Pass 1: process columns from input.
   131 	mov	rdx, r10	; quantptr
   132 	mov	rsi, r11		; inptr
   134 %ifndef NO_ZERO_COLUMN_TEST_4X4_SSE2
   135 	mov	eax, DWORD [DWBLOCK(1,0,rsi,SIZEOF_JCOEF)]
   136 	or	eax, DWORD [DWBLOCK(2,0,rsi,SIZEOF_JCOEF)]
   137 	jnz	short .columnDCT
   139 	movdqa	xmm0, XMMWORD [XMMBLOCK(1,0,rsi,SIZEOF_JCOEF)]
   140 	movdqa	xmm1, XMMWORD [XMMBLOCK(2,0,rsi,SIZEOF_JCOEF)]
   141 	por	xmm0, XMMWORD [XMMBLOCK(3,0,rsi,SIZEOF_JCOEF)]
   142 	por	xmm1, XMMWORD [XMMBLOCK(5,0,rsi,SIZEOF_JCOEF)]
   143 	por	xmm0, XMMWORD [XMMBLOCK(6,0,rsi,SIZEOF_JCOEF)]
   144 	por	xmm1, XMMWORD [XMMBLOCK(7,0,rsi,SIZEOF_JCOEF)]
   145 	por	xmm0,xmm1
   146 	packsswb xmm0,xmm0
   147 	packsswb xmm0,xmm0
   148 	movd	eax,xmm0
   149 	test	rax,rax
   150 	jnz	short .columnDCT
   152 	; -- AC terms all zero
   154 	movdqa	xmm0, XMMWORD [XMMBLOCK(0,0,rsi,SIZEOF_JCOEF)]
   155 	pmullw	xmm0, XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_ISLOW_MULT_TYPE)]
   157 	psllw	xmm0,PASS1_BITS
   159 	movdqa    xmm3,xmm0	; xmm0=in0=(00 01 02 03 04 05 06 07)
   160 	punpcklwd xmm0,xmm0	; xmm0=(00 00 01 01 02 02 03 03)
   161 	punpckhwd xmm3,xmm3	; xmm3=(04 04 05 05 06 06 07 07)
   163 	pshufd	xmm1,xmm0,0x50	; xmm1=[col0 col1]=(00 00 00 00 01 01 01 01)
   164 	pshufd	xmm0,xmm0,0xFA	; xmm0=[col2 col3]=(02 02 02 02 03 03 03 03)
   165 	pshufd	xmm6,xmm3,0x50	; xmm6=[col4 col5]=(04 04 04 04 05 05 05 05)
   166 	pshufd	xmm3,xmm3,0xFA	; xmm3=[col6 col7]=(06 06 06 06 07 07 07 07)
   168 	jmp	near .column_end
   169 %endif
   170 .columnDCT:
   172 	; -- Odd part
   174 	movdqa	xmm0, XMMWORD [XMMBLOCK(1,0,rsi,SIZEOF_JCOEF)]
   175 	movdqa	xmm1, XMMWORD [XMMBLOCK(3,0,rsi,SIZEOF_JCOEF)]
   176 	pmullw	xmm0, XMMWORD [XMMBLOCK(1,0,rdx,SIZEOF_ISLOW_MULT_TYPE)]
   177 	pmullw	xmm1, XMMWORD [XMMBLOCK(3,0,rdx,SIZEOF_ISLOW_MULT_TYPE)]
   178 	movdqa	xmm2, XMMWORD [XMMBLOCK(5,0,rsi,SIZEOF_JCOEF)]
   179 	movdqa	xmm3, XMMWORD [XMMBLOCK(7,0,rsi,SIZEOF_JCOEF)]
   180 	pmullw	xmm2, XMMWORD [XMMBLOCK(5,0,rdx,SIZEOF_ISLOW_MULT_TYPE)]
   181 	pmullw	xmm3, XMMWORD [XMMBLOCK(7,0,rdx,SIZEOF_ISLOW_MULT_TYPE)]
   183 	movdqa    xmm4,xmm0
   184 	movdqa    xmm5,xmm0
   185 	punpcklwd xmm4,xmm1
   186 	punpckhwd xmm5,xmm1
   187 	movdqa    xmm0,xmm4
   188 	movdqa    xmm1,xmm5
   189 	pmaddwd   xmm4,[rel PW_F256_F089]	; xmm4=(tmp2L)
   190 	pmaddwd   xmm5,[rel PW_F256_F089]	; xmm5=(tmp2H)
   191 	pmaddwd   xmm0,[rel PW_F106_MF217]	; xmm0=(tmp0L)
   192 	pmaddwd   xmm1,[rel PW_F106_MF217]	; xmm1=(tmp0H)
   194 	movdqa    xmm6,xmm2
   195 	movdqa    xmm7,xmm2
   196 	punpcklwd xmm6,xmm3
   197 	punpckhwd xmm7,xmm3
   198 	movdqa    xmm2,xmm6
   199 	movdqa    xmm3,xmm7
   200 	pmaddwd   xmm6,[rel PW_MF060_MF050]	; xmm6=(tmp2L)
   201 	pmaddwd   xmm7,[rel PW_MF060_MF050]	; xmm7=(tmp2H)
   202 	pmaddwd   xmm2,[rel PW_F145_MF021]	; xmm2=(tmp0L)
   203 	pmaddwd   xmm3,[rel PW_F145_MF021]	; xmm3=(tmp0H)
   205 	paddd	xmm6,xmm4		; xmm6=tmp2L
   206 	paddd	xmm7,xmm5		; xmm7=tmp2H
   207 	paddd	xmm2,xmm0		; xmm2=tmp0L
   208 	paddd	xmm3,xmm1		; xmm3=tmp0H
   210 	movdqa	XMMWORD [wk(0)], xmm2	; wk(0)=tmp0L
   211 	movdqa	XMMWORD [wk(1)], xmm3	; wk(1)=tmp0H
   213 	; -- Even part
   215 	movdqa	xmm4, XMMWORD [XMMBLOCK(0,0,rsi,SIZEOF_JCOEF)]
   216 	movdqa	xmm5, XMMWORD [XMMBLOCK(2,0,rsi,SIZEOF_JCOEF)]
   217 	movdqa	xmm0, XMMWORD [XMMBLOCK(6,0,rsi,SIZEOF_JCOEF)]
   218 	pmullw	xmm4, XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_ISLOW_MULT_TYPE)]
   219 	pmullw	xmm5, XMMWORD [XMMBLOCK(2,0,rdx,SIZEOF_ISLOW_MULT_TYPE)]
   220 	pmullw	xmm0, XMMWORD [XMMBLOCK(6,0,rdx,SIZEOF_ISLOW_MULT_TYPE)]
   222 	pxor      xmm1,xmm1
   223 	pxor      xmm2,xmm2
   224 	punpcklwd xmm1,xmm4		; xmm1=tmp0L
   225 	punpckhwd xmm2,xmm4		; xmm2=tmp0H
   226 	psrad     xmm1,(16-CONST_BITS-1) ; psrad xmm1,16 & pslld xmm1,CONST_BITS+1
   227 	psrad     xmm2,(16-CONST_BITS-1) ; psrad xmm2,16 & pslld xmm2,CONST_BITS+1
   229 	movdqa    xmm3,xmm5		; xmm5=in2=z2
   230 	punpcklwd xmm5,xmm0		; xmm0=in6=z3
   231 	punpckhwd xmm3,xmm0
   232 	pmaddwd   xmm5,[rel PW_F184_MF076]	; xmm5=tmp2L
   233 	pmaddwd   xmm3,[rel PW_F184_MF076]	; xmm3=tmp2H
   235 	movdqa	xmm4,xmm1
   236 	movdqa	xmm0,xmm2
   237 	paddd	xmm1,xmm5		; xmm1=tmp10L
   238 	paddd	xmm2,xmm3		; xmm2=tmp10H
   239 	psubd	xmm4,xmm5		; xmm4=tmp12L
   240 	psubd	xmm0,xmm3		; xmm0=tmp12H
   242 	; -- Final output stage
   244 	movdqa	xmm5,xmm1
   245 	movdqa	xmm3,xmm2
   246 	paddd	xmm1,xmm6		; xmm1=data0L
   247 	paddd	xmm2,xmm7		; xmm2=data0H
   248 	psubd	xmm5,xmm6		; xmm5=data3L
   249 	psubd	xmm3,xmm7		; xmm3=data3H
   251 	movdqa	xmm6,[rel PD_DESCALE_P1_4]	; xmm6=[rel PD_DESCALE_P1_4]
   253 	paddd	xmm1,xmm6
   254 	paddd	xmm2,xmm6
   255 	psrad	xmm1,DESCALE_P1_4
   256 	psrad	xmm2,DESCALE_P1_4
   257 	paddd	xmm5,xmm6
   258 	paddd	xmm3,xmm6
   259 	psrad	xmm5,DESCALE_P1_4
   260 	psrad	xmm3,DESCALE_P1_4
   262 	packssdw  xmm1,xmm2		; xmm1=data0=(00 01 02 03 04 05 06 07)
   263 	packssdw  xmm5,xmm3		; xmm5=data3=(30 31 32 33 34 35 36 37)
   265 	movdqa	xmm7, XMMWORD [wk(0)]	; xmm7=tmp0L
   266 	movdqa	xmm6, XMMWORD [wk(1)]	; xmm6=tmp0H
   268 	movdqa	xmm2,xmm4
   269 	movdqa	xmm3,xmm0
   270 	paddd	xmm4,xmm7		; xmm4=data1L
   271 	paddd	xmm0,xmm6		; xmm0=data1H
   272 	psubd	xmm2,xmm7		; xmm2=data2L
   273 	psubd	xmm3,xmm6		; xmm3=data2H
   275 	movdqa	xmm7,[rel PD_DESCALE_P1_4]	; xmm7=[rel PD_DESCALE_P1_4]
   277 	paddd	xmm4,xmm7
   278 	paddd	xmm0,xmm7
   279 	psrad	xmm4,DESCALE_P1_4
   280 	psrad	xmm0,DESCALE_P1_4
   281 	paddd	xmm2,xmm7
   282 	paddd	xmm3,xmm7
   283 	psrad	xmm2,DESCALE_P1_4
   284 	psrad	xmm3,DESCALE_P1_4
   286 	packssdw  xmm4,xmm0		; xmm4=data1=(10 11 12 13 14 15 16 17)
   287 	packssdw  xmm2,xmm3		; xmm2=data2=(20 21 22 23 24 25 26 27)
   289 	movdqa    xmm6,xmm1	; transpose coefficients(phase 1)
   290 	punpcklwd xmm1,xmm4	; xmm1=(00 10 01 11 02 12 03 13)
   291 	punpckhwd xmm6,xmm4	; xmm6=(04 14 05 15 06 16 07 17)
   292 	movdqa    xmm7,xmm2	; transpose coefficients(phase 1)
   293 	punpcklwd xmm2,xmm5	; xmm2=(20 30 21 31 22 32 23 33)
   294 	punpckhwd xmm7,xmm5	; xmm7=(24 34 25 35 26 36 27 37)
   296 	movdqa    xmm0,xmm1	; transpose coefficients(phase 2)
   297 	punpckldq xmm1,xmm2	; xmm1=[col0 col1]=(00 10 20 30 01 11 21 31)
   298 	punpckhdq xmm0,xmm2	; xmm0=[col2 col3]=(02 12 22 32 03 13 23 33)
   299 	movdqa    xmm3,xmm6	; transpose coefficients(phase 2)
   300 	punpckldq xmm6,xmm7	; xmm6=[col4 col5]=(04 14 24 34 05 15 25 35)
   301 	punpckhdq xmm3,xmm7	; xmm3=[col6 col7]=(06 16 26 36 07 17 27 37)
   302 .column_end:
   304 	; -- Prefetch the next coefficient block
   306 	prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 0*32]
   307 	prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 1*32]
   308 	prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 2*32]
   309 	prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 3*32]
   311 	; ---- Pass 2: process rows, store into output array.
   313 	mov	rax, [original_rbp]
   314 	mov	rdi, r12	; (JSAMPROW *)
   315 	mov	rax, r13
   317 	; -- Even part
   319 	pxor      xmm4,xmm4
   320 	punpcklwd xmm4,xmm1		; xmm4=tmp0
   321 	psrad     xmm4,(16-CONST_BITS-1) ; psrad xmm4,16 & pslld xmm4,CONST_BITS+1
   323 	; -- Odd part
   325 	punpckhwd xmm1,xmm0
   326 	punpckhwd xmm6,xmm3
   327 	movdqa    xmm5,xmm1
   328 	movdqa    xmm2,xmm6
   329 	pmaddwd   xmm1,[rel PW_F256_F089]	; xmm1=(tmp2)
   330 	pmaddwd   xmm6,[rel PW_MF060_MF050]	; xmm6=(tmp2)
   331 	pmaddwd   xmm5,[rel PW_F106_MF217]	; xmm5=(tmp0)
   332 	pmaddwd   xmm2,[rel PW_F145_MF021]	; xmm2=(tmp0)
   334 	paddd     xmm6,xmm1		; xmm6=tmp2
   335 	paddd     xmm2,xmm5		; xmm2=tmp0
   337 	; -- Even part
   339 	punpcklwd xmm0,xmm3
   340 	pmaddwd   xmm0,[rel PW_F184_MF076]	; xmm0=tmp2
   342 	movdqa    xmm7,xmm4
   343 	paddd     xmm4,xmm0		; xmm4=tmp10
   344 	psubd     xmm7,xmm0		; xmm7=tmp12
   346 	; -- Final output stage
   348 	movdqa	xmm1,[rel PD_DESCALE_P2_4]	; xmm1=[rel PD_DESCALE_P2_4]
   350 	movdqa	xmm5,xmm4
   351 	movdqa	xmm3,xmm7
   352 	paddd	xmm4,xmm6		; xmm4=data0=(00 10 20 30)
   353 	paddd	xmm7,xmm2		; xmm7=data1=(01 11 21 31)
   354 	psubd	xmm5,xmm6		; xmm5=data3=(03 13 23 33)
   355 	psubd	xmm3,xmm2		; xmm3=data2=(02 12 22 32)
   357 	paddd	xmm4,xmm1
   358 	paddd	xmm7,xmm1
   359 	psrad	xmm4,DESCALE_P2_4
   360 	psrad	xmm7,DESCALE_P2_4
   361 	paddd	xmm5,xmm1
   362 	paddd	xmm3,xmm1
   363 	psrad	xmm5,DESCALE_P2_4
   364 	psrad	xmm3,DESCALE_P2_4
   366 	packssdw  xmm4,xmm3		; xmm4=(00 10 20 30 02 12 22 32)
   367 	packssdw  xmm7,xmm5		; xmm7=(01 11 21 31 03 13 23 33)
   369 	movdqa    xmm0,xmm4		; transpose coefficients(phase 1)
   370 	punpcklwd xmm4,xmm7		; xmm4=(00 01 10 11 20 21 30 31)
   371 	punpckhwd xmm0,xmm7		; xmm0=(02 03 12 13 22 23 32 33)
   373 	movdqa    xmm6,xmm4		; transpose coefficients(phase 2)
   374 	punpckldq xmm4,xmm0		; xmm4=(00 01 02 03 10 11 12 13)
   375 	punpckhdq xmm6,xmm0		; xmm6=(20 21 22 23 30 31 32 33)
   377 	packsswb  xmm4,xmm6		; xmm4=(00 01 02 03 10 11 12 13 20 ..)
   378 	paddb     xmm4,[rel PB_CENTERJSAMP]
   380 	pshufd    xmm2,xmm4,0x39	; xmm2=(10 11 12 13 20 21 22 23 30 ..)
   381 	pshufd    xmm1,xmm4,0x4E	; xmm1=(20 21 22 23 30 31 32 33 00 ..)
   382 	pshufd    xmm3,xmm4,0x93	; xmm3=(30 31 32 33 00 01 02 03 10 ..)
   384 	mov	rdx, JSAMPROW [rdi+0*SIZEOF_JSAMPROW]
   385 	mov	rsi, JSAMPROW [rdi+1*SIZEOF_JSAMPROW]
   386 	movd	XMM_DWORD [rdx+rax*SIZEOF_JSAMPLE], xmm4
   387 	movd	XMM_DWORD [rsi+rax*SIZEOF_JSAMPLE], xmm2
   388 	mov	rdx, JSAMPROW [rdi+2*SIZEOF_JSAMPROW]
   389 	mov	rsi, JSAMPROW [rdi+3*SIZEOF_JSAMPROW]
   390 	movd	XMM_DWORD [rdx+rax*SIZEOF_JSAMPLE], xmm1
   391 	movd	XMM_DWORD [rsi+rax*SIZEOF_JSAMPLE], xmm3
   393 	uncollect_args
   394 	mov	rsp,rbp		; rsp <- aligned rbp
   395 	pop	rsp		; rsp <- original rbp
   396 	pop	rbp
   397 	ret
   400 ; --------------------------------------------------------------------------
   401 ;
   402 ; Perform dequantization and inverse DCT on one block of coefficients,
   403 ; producing a reduced-size 2x2 output block.
   404 ;
   405 ; GLOBAL(void)
   406 ; jsimd_idct_2x2_sse2 (void * dct_table, JCOEFPTR coef_block,
   407 ;                      JSAMPARRAY output_buf, JDIMENSION output_col)
   408 ;
   410 ; r10 = void * dct_table
   411 ; r11 = JCOEFPTR coef_block
   412 ; r12 = JSAMPARRAY output_buf
   413 ; r13 = JDIMENSION output_col
   415 	align	16
   416 	global	EXTN(jsimd_idct_2x2_sse2)
   418 EXTN(jsimd_idct_2x2_sse2):
   419 	push	rbp
   420 	mov	rax,rsp
   421 	mov	rbp,rsp
   422 	collect_args
   423 	push	rbx
   425 	; ---- Pass 1: process columns from input.
   427 	mov	rdx, r10	; quantptr
   428 	mov	rsi, r11		; inptr
   430 	; | input:                  | result:        |
   431 	; | 00 01 ** 03 ** 05 ** 07 |                |
   432 	; | 10 11 ** 13 ** 15 ** 17 |                |
   433 	; | ** ** ** ** ** ** ** ** |                |
   434 	; | 30 31 ** 33 ** 35 ** 37 | A0 A1 A3 A5 A7 |
   435 	; | ** ** ** ** ** ** ** ** | B0 B1 B3 B5 B7 |
   436 	; | 50 51 ** 53 ** 55 ** 57 |                |
   437 	; | ** ** ** ** ** ** ** ** |                |
   438 	; | 70 71 ** 73 ** 75 ** 77 |                |
   440 	; -- Odd part
   442 	movdqa	xmm0, XMMWORD [XMMBLOCK(1,0,rsi,SIZEOF_JCOEF)]
   443 	movdqa	xmm1, XMMWORD [XMMBLOCK(3,0,rsi,SIZEOF_JCOEF)]
   444 	pmullw	xmm0, XMMWORD [XMMBLOCK(1,0,rdx,SIZEOF_ISLOW_MULT_TYPE)]
   445 	pmullw	xmm1, XMMWORD [XMMBLOCK(3,0,rdx,SIZEOF_ISLOW_MULT_TYPE)]
   446 	movdqa	xmm2, XMMWORD [XMMBLOCK(5,0,rsi,SIZEOF_JCOEF)]
   447 	movdqa	xmm3, XMMWORD [XMMBLOCK(7,0,rsi,SIZEOF_JCOEF)]
   448 	pmullw	xmm2, XMMWORD [XMMBLOCK(5,0,rdx,SIZEOF_ISLOW_MULT_TYPE)]
   449 	pmullw	xmm3, XMMWORD [XMMBLOCK(7,0,rdx,SIZEOF_ISLOW_MULT_TYPE)]
   451 	; xmm0=(10 11 ** 13 ** 15 ** 17), xmm1=(30 31 ** 33 ** 35 ** 37)
   452 	; xmm2=(50 51 ** 53 ** 55 ** 57), xmm3=(70 71 ** 73 ** 75 ** 77)
   454 	pcmpeqd   xmm7,xmm7
   455 	pslld     xmm7,WORD_BIT		; xmm7={0x0000 0xFFFF 0x0000 0xFFFF ..}
   457 	movdqa    xmm4,xmm0		; xmm4=(10 11 ** 13 ** 15 ** 17)
   458 	movdqa    xmm5,xmm2		; xmm5=(50 51 ** 53 ** 55 ** 57)
   459 	punpcklwd xmm4,xmm1		; xmm4=(10 30 11 31 ** ** 13 33)
   460 	punpcklwd xmm5,xmm3		; xmm5=(50 70 51 71 ** ** 53 73)
   461 	pmaddwd   xmm4,[rel PW_F362_MF127]
   462 	pmaddwd   xmm5,[rel PW_F085_MF072]
   464 	psrld	xmm0,WORD_BIT		; xmm0=(11 -- 13 -- 15 -- 17 --)
   465 	pand	xmm1,xmm7		; xmm1=(-- 31 -- 33 -- 35 -- 37)
   466 	psrld	xmm2,WORD_BIT		; xmm2=(51 -- 53 -- 55 -- 57 --)
   467 	pand	xmm3,xmm7		; xmm3=(-- 71 -- 73 -- 75 -- 77)
   468 	por	xmm0,xmm1		; xmm0=(11 31 13 33 15 35 17 37)
   469 	por	xmm2,xmm3		; xmm2=(51 71 53 73 55 75 57 77)
   470 	pmaddwd	xmm0,[rel PW_F362_MF127]
   471 	pmaddwd	xmm2,[rel PW_F085_MF072]
   473 	paddd	xmm4,xmm5		; xmm4=tmp0[col0 col1 **** col3]
   474 	paddd	xmm0,xmm2		; xmm0=tmp0[col1 col3 col5 col7]
   476 	; -- Even part
   478 	movdqa	xmm6, XMMWORD [XMMBLOCK(0,0,rsi,SIZEOF_JCOEF)]
   479 	pmullw	xmm6, XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_ISLOW_MULT_TYPE)]
   481 	; xmm6=(00 01 ** 03 ** 05 ** 07)
   483 	movdqa	xmm1,xmm6		; xmm1=(00 01 ** 03 ** 05 ** 07)
   484 	pslld	xmm6,WORD_BIT		; xmm6=(-- 00 -- ** -- ** -- **)
   485 	pand	xmm1,xmm7		; xmm1=(-- 01 -- 03 -- 05 -- 07)
   486 	psrad	xmm6,(WORD_BIT-CONST_BITS-2) ; xmm6=tmp10[col0 **** **** ****]
   487 	psrad	xmm1,(WORD_BIT-CONST_BITS-2) ; xmm1=tmp10[col1 col3 col5 col7]
   489 	; -- Final output stage
   491 	movdqa	xmm3,xmm6
   492 	movdqa	xmm5,xmm1
   493 	paddd	xmm6,xmm4	; xmm6=data0[col0 **** **** ****]=(A0 ** ** **)
   494 	paddd	xmm1,xmm0	; xmm1=data0[col1 col3 col5 col7]=(A1 A3 A5 A7)
   495 	psubd	xmm3,xmm4	; xmm3=data1[col0 **** **** ****]=(B0 ** ** **)
   496 	psubd	xmm5,xmm0	; xmm5=data1[col1 col3 col5 col7]=(B1 B3 B5 B7)
   498 	movdqa	xmm2,[rel PD_DESCALE_P1_2]	; xmm2=[rel PD_DESCALE_P1_2]
   500 	punpckldq  xmm6,xmm3		; xmm6=(A0 B0 ** **)
   502 	movdqa     xmm7,xmm1
   503 	punpcklqdq xmm1,xmm5		; xmm1=(A1 A3 B1 B3)
   504 	punpckhqdq xmm7,xmm5		; xmm7=(A5 A7 B5 B7)
   506 	paddd	xmm6,xmm2
   507 	psrad	xmm6,DESCALE_P1_2
   509 	paddd	xmm1,xmm2
   510 	paddd	xmm7,xmm2
   511 	psrad	xmm1,DESCALE_P1_2
   512 	psrad	xmm7,DESCALE_P1_2
   514 	; -- Prefetch the next coefficient block
   516 	prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 0*32]
   517 	prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 1*32]
   518 	prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 2*32]
   519 	prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 3*32]
   521 	; ---- Pass 2: process rows, store into output array.
   523 	mov	rdi, r12	; (JSAMPROW *)
   524 	mov	rax, r13
   526 	; | input:| result:|
   527 	; | A0 B0 |        |
   528 	; | A1 B1 | C0 C1  |
   529 	; | A3 B3 | D0 D1  |
   530 	; | A5 B5 |        |
   531 	; | A7 B7 |        |
   533 	; -- Odd part
   535 	packssdw  xmm1,xmm1		; xmm1=(A1 A3 B1 B3 A1 A3 B1 B3)
   536 	packssdw  xmm7,xmm7		; xmm7=(A5 A7 B5 B7 A5 A7 B5 B7)
   537 	pmaddwd   xmm1,[rel PW_F362_MF127]
   538 	pmaddwd   xmm7,[rel PW_F085_MF072]
   540 	paddd     xmm1,xmm7		; xmm1=tmp0[row0 row1 row0 row1]
   542 	; -- Even part
   544 	pslld     xmm6,(CONST_BITS+2)	; xmm6=tmp10[row0 row1 **** ****]
   546 	; -- Final output stage
   548 	movdqa    xmm4,xmm6
   549 	paddd     xmm6,xmm1	; xmm6=data0[row0 row1 **** ****]=(C0 C1 ** **)
   550 	psubd     xmm4,xmm1	; xmm4=data1[row0 row1 **** ****]=(D0 D1 ** **)
   552 	punpckldq xmm6,xmm4	; xmm6=(C0 D0 C1 D1)
   554 	paddd     xmm6,[rel PD_DESCALE_P2_2]
   555 	psrad     xmm6,DESCALE_P2_2
   557 	packssdw  xmm6,xmm6		; xmm6=(C0 D0 C1 D1 C0 D0 C1 D1)
   558 	packsswb  xmm6,xmm6		; xmm6=(C0 D0 C1 D1 C0 D0 C1 D1 ..)
   559 	paddb     xmm6,[rel PB_CENTERJSAMP]
   561 	pextrw	ebx,xmm6,0x00		; ebx=(C0 D0 -- --)
   562 	pextrw	ecx,xmm6,0x01		; ecx=(C1 D1 -- --)
   564 	mov	rdx, JSAMPROW [rdi+0*SIZEOF_JSAMPROW]
   565 	mov	rsi, JSAMPROW [rdi+1*SIZEOF_JSAMPROW]
   566 	mov	WORD [rdx+rax*SIZEOF_JSAMPLE], bx
   567 	mov	WORD [rsi+rax*SIZEOF_JSAMPLE], cx
   569 	pop	rbx
   570 	uncollect_args
   571 	pop	rbp
   572 	ret
   574 ; For some reason, the OS X linker does not honor the request to align the
   575 ; segment unless we do this.
   576 	align	16

mercurial