media/libopus/silk/SigProc_FIX.h

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

     1 /***********************************************************************
     2 Copyright (c) 2006-2011, Skype Limited. All rights reserved.
     3 Redistribution and use in source and binary forms, with or without
     4 modification, are permitted provided that the following conditions
     5 are met:
     6 - Redistributions of source code must retain the above copyright notice,
     7 this list of conditions and the following disclaimer.
     8 - Redistributions in binary form must reproduce the above copyright
     9 notice, this list of conditions and the following disclaimer in the
    10 documentation and/or other materials provided with the distribution.
    11 - Neither the name of Internet Society, IETF or IETF Trust, nor the
    12 names of specific contributors, may be used to endorse or promote
    13 products derived from this software without specific prior written
    14 permission.
    15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
    16 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    17 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    18 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
    19 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
    20 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
    21 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
    22 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
    23 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    24 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
    25 POSSIBILITY OF SUCH DAMAGE.
    26 ***********************************************************************/
    28 #ifndef SILK_SIGPROC_FIX_H
    29 #define SILK_SIGPROC_FIX_H
    31 #ifdef  __cplusplus
    32 extern "C"
    33 {
    34 #endif
    36 /*#define silk_MACRO_COUNT */          /* Used to enable WMOPS counting */
    38 #define SILK_MAX_ORDER_LPC            16            /* max order of the LPC analysis in schur() and k2a() */
    40 #include <string.h>                                 /* for memset(), memcpy(), memmove() */
    41 #include "typedef.h"
    42 #include "resampler_structs.h"
    43 #include "macros.h"
    46 /********************************************************************/
    47 /*                    SIGNAL PROCESSING FUNCTIONS                   */
    48 /********************************************************************/
    50 /*!
    51  * Initialize/reset the resampler state for a given pair of input/output sampling rates
    52 */
    53 opus_int silk_resampler_init(
    54     silk_resampler_state_struct *S,                 /* I/O  Resampler state                                             */
    55     opus_int32                  Fs_Hz_in,           /* I    Input sampling rate (Hz)                                    */
    56     opus_int32                  Fs_Hz_out,          /* I    Output sampling rate (Hz)                                   */
    57     opus_int                    forEnc              /* I    If 1: encoder; if 0: decoder                                */
    58 );
    60 /*!
    61  * Resampler: convert from one sampling rate to another
    62  */
    63 opus_int silk_resampler(
    64     silk_resampler_state_struct *S,                 /* I/O  Resampler state                                             */
    65     opus_int16                  out[],              /* O    Output signal                                               */
    66     const opus_int16            in[],               /* I    Input signal                                                */
    67     opus_int32                  inLen               /* I    Number of input samples                                     */
    68 );
    70 /*!
    71 * Downsample 2x, mediocre quality
    72 */
    73 void silk_resampler_down2(
    74     opus_int32                  *S,                 /* I/O  State vector [ 2 ]                                          */
    75     opus_int16                  *out,               /* O    Output signal [ len ]                                       */
    76     const opus_int16            *in,                /* I    Input signal [ floor(len/2) ]                               */
    77     opus_int32                  inLen               /* I    Number of input samples                                     */
    78 );
    80 /*!
    81  * Downsample by a factor 2/3, low quality
    82 */
    83 void silk_resampler_down2_3(
    84     opus_int32                  *S,                 /* I/O  State vector [ 6 ]                                          */
    85     opus_int16                  *out,               /* O    Output signal [ floor(2*inLen/3) ]                          */
    86     const opus_int16            *in,                /* I    Input signal [ inLen ]                                      */
    87     opus_int32                  inLen               /* I    Number of input samples                                     */
    88 );
    90 /*!
    91  * second order ARMA filter;
    92  * slower than biquad() but uses more precise coefficients
    93  * can handle (slowly) varying coefficients
    94  */
    95 void silk_biquad_alt(
    96     const opus_int16            *in,                /* I     input signal                                               */
    97     const opus_int32            *B_Q28,             /* I     MA coefficients [3]                                        */
    98     const opus_int32            *A_Q28,             /* I     AR coefficients [2]                                        */
    99     opus_int32                  *S,                 /* I/O   State vector [2]                                           */
   100     opus_int16                  *out,               /* O     output signal                                              */
   101     const opus_int32            len,                /* I     signal length (must be even)                               */
   102     opus_int                    stride              /* I     Operate on interleaved signal if > 1                       */
   103 );
   105 /* Variable order MA prediction error filter. */
   106 void silk_LPC_analysis_filter(
   107     opus_int16                  *out,               /* O    Output signal                                               */
   108     const opus_int16            *in,                /* I    Input signal                                                */
   109     const opus_int16            *B,                 /* I    MA prediction coefficients, Q12 [order]                     */
   110     const opus_int32            len,                /* I    Signal length                                               */
   111     const opus_int32            d                   /* I    Filter order                                                */
   112 );
   114 /* Chirp (bandwidth expand) LP AR filter */
   115 void silk_bwexpander(
   116     opus_int16                  *ar,                /* I/O  AR filter to be expanded (without leading 1)                */
   117     const opus_int              d,                  /* I    Length of ar                                                */
   118     opus_int32                  chirp_Q16           /* I    Chirp factor (typically in the range 0 to 1)                */
   119 );
   121 /* Chirp (bandwidth expand) LP AR filter */
   122 void silk_bwexpander_32(
   123     opus_int32                  *ar,                /* I/O  AR filter to be expanded (without leading 1)                */
   124     const opus_int              d,                  /* I    Length of ar                                                */
   125     opus_int32                  chirp_Q16           /* I    Chirp factor in Q16                                         */
   126 );
   128 /* Compute inverse of LPC prediction gain, and                           */
   129 /* test if LPC coefficients are stable (all poles within unit circle)    */
   130 opus_int32 silk_LPC_inverse_pred_gain(              /* O   Returns inverse prediction gain in energy domain, Q30        */
   131     const opus_int16            *A_Q12,             /* I   Prediction coefficients, Q12 [order]                         */
   132     const opus_int              order               /* I   Prediction order                                             */
   133 );
   135 /* For input in Q24 domain */
   136 opus_int32 silk_LPC_inverse_pred_gain_Q24(          /* O    Returns inverse prediction gain in energy domain, Q30       */
   137     const opus_int32            *A_Q24,             /* I    Prediction coefficients [order]                             */
   138     const opus_int              order               /* I    Prediction order                                            */
   139 );
   141 /* Split signal in two decimated bands using first-order allpass filters */
   142 void silk_ana_filt_bank_1(
   143     const opus_int16            *in,                /* I    Input signal [N]                                            */
   144     opus_int32                  *S,                 /* I/O  State vector [2]                                            */
   145     opus_int16                  *outL,              /* O    Low band [N/2]                                              */
   146     opus_int16                  *outH,              /* O    High band [N/2]                                             */
   147     const opus_int32            N                   /* I    Number of input samples                                     */
   148 );
   150 /********************************************************************/
   151 /*                        SCALAR FUNCTIONS                          */
   152 /********************************************************************/
   154 /* Approximation of 128 * log2() (exact inverse of approx 2^() below) */
   155 /* Convert input to a log scale    */
   156 opus_int32 silk_lin2log(
   157     const opus_int32            inLin               /* I  input in linear scale                                         */
   158 );
   160 /* Approximation of a sigmoid function */
   161 opus_int silk_sigm_Q15(
   162     opus_int                    in_Q5               /* I                                                                */
   163 );
   165 /* Approximation of 2^() (exact inverse of approx log2() above) */
   166 /* Convert input to a linear scale */
   167 opus_int32 silk_log2lin(
   168     const opus_int32            inLog_Q7            /* I  input on log scale                                            */
   169 );
   171 /* Compute number of bits to right shift the sum of squares of a vector    */
   172 /* of int16s to make it fit in an int32                                    */
   173 void silk_sum_sqr_shift(
   174     opus_int32                  *energy,            /* O   Energy of x, after shifting to the right                     */
   175     opus_int                    *shift,             /* O   Number of bits right shift applied to energy                 */
   176     const opus_int16            *x,                 /* I   Input vector                                                 */
   177     opus_int                    len                 /* I   Length of input vector                                       */
   178 );
   180 /* Calculates the reflection coefficients from the correlation sequence    */
   181 /* Faster than schur64(), but much less accurate.                          */
   182 /* uses SMLAWB(), requiring armv5E and higher.                             */
   183 opus_int32 silk_schur(                              /* O    Returns residual energy                                     */
   184     opus_int16                  *rc_Q15,            /* O    reflection coefficients [order] Q15                         */
   185     const opus_int32            *c,                 /* I    correlations [order+1]                                      */
   186     const opus_int32            order               /* I    prediction order                                            */
   187 );
   189 /* Calculates the reflection coefficients from the correlation sequence    */
   190 /* Slower than schur(), but more accurate.                                 */
   191 /* Uses SMULL(), available on armv4                                        */
   192 opus_int32 silk_schur64(                            /* O    returns residual energy                                     */
   193     opus_int32                  rc_Q16[],           /* O    Reflection coefficients [order] Q16                         */
   194     const opus_int32            c[],                /* I    Correlations [order+1]                                      */
   195     opus_int32                  order               /* I    Prediction order                                            */
   196 );
   198 /* Step up function, converts reflection coefficients to prediction coefficients */
   199 void silk_k2a(
   200     opus_int32                  *A_Q24,             /* O    Prediction coefficients [order] Q24                         */
   201     const opus_int16            *rc_Q15,            /* I    Reflection coefficients [order] Q15                         */
   202     const opus_int32            order               /* I    Prediction order                                            */
   203 );
   205 /* Step up function, converts reflection coefficients to prediction coefficients */
   206 void silk_k2a_Q16(
   207     opus_int32                  *A_Q24,             /* O    Prediction coefficients [order] Q24                         */
   208     const opus_int32            *rc_Q16,            /* I    Reflection coefficients [order] Q16                         */
   209     const opus_int32            order               /* I    Prediction order                                            */
   210 );
   212 /* Apply sine window to signal vector.                              */
   213 /* Window types:                                                    */
   214 /*    1 -> sine window from 0 to pi/2                               */
   215 /*    2 -> sine window from pi/2 to pi                              */
   216 /* every other sample of window is linearly interpolated, for speed */
   217 void silk_apply_sine_window(
   218     opus_int16                  px_win[],           /* O    Pointer to windowed signal                                  */
   219     const opus_int16            px[],               /* I    Pointer to input signal                                     */
   220     const opus_int              win_type,           /* I    Selects a window type                                       */
   221     const opus_int              length              /* I    Window length, multiple of 4                                */
   222 );
   224 /* Compute autocorrelation */
   225 void silk_autocorr(
   226     opus_int32                  *results,           /* O    Result (length correlationCount)                            */
   227     opus_int                    *scale,             /* O    Scaling of the correlation vector                           */
   228     const opus_int16            *inputData,         /* I    Input data to correlate                                     */
   229     const opus_int              inputDataSize,      /* I    Length of input                                             */
   230     const opus_int              correlationCount,   /* I    Number of correlation taps to compute                       */
   231     int                         arch                /* I    Run-time architecture                                       */
   232 );
   234 void silk_decode_pitch(
   235     opus_int16                  lagIndex,           /* I                                                                */
   236     opus_int8                   contourIndex,       /* O                                                                */
   237     opus_int                    pitch_lags[],       /* O    4 pitch values                                              */
   238     const opus_int              Fs_kHz,             /* I    sampling frequency (kHz)                                    */
   239     const opus_int              nb_subfr            /* I    number of sub frames                                        */
   240 );
   242 opus_int silk_pitch_analysis_core(                  /* O    Voicing estimate: 0 voiced, 1 unvoiced                      */
   243     const opus_int16            *frame,             /* I    Signal of length PE_FRAME_LENGTH_MS*Fs_kHz                  */
   244     opus_int                    *pitch_out,         /* O    4 pitch lag values                                          */
   245     opus_int16                  *lagIndex,          /* O    Lag Index                                                   */
   246     opus_int8                   *contourIndex,      /* O    Pitch contour Index                                         */
   247     opus_int                    *LTPCorr_Q15,       /* I/O  Normalized correlation; input: value from previous frame    */
   248     opus_int                    prevLag,            /* I    Last lag of previous frame; set to zero is unvoiced         */
   249     const opus_int32            search_thres1_Q16,  /* I    First stage threshold for lag candidates 0 - 1              */
   250     const opus_int              search_thres2_Q13,  /* I    Final threshold for lag candidates 0 - 1                    */
   251     const opus_int              Fs_kHz,             /* I    Sample frequency (kHz)                                      */
   252     const opus_int              complexity,         /* I    Complexity setting, 0-2, where 2 is highest                 */
   253     const opus_int              nb_subfr,           /* I    number of 5 ms subframes                                    */
   254     int                         arch                /* I    Run-time architecture                                       */
   255 );
   257 /* Compute Normalized Line Spectral Frequencies (NLSFs) from whitening filter coefficients      */
   258 /* If not all roots are found, the a_Q16 coefficients are bandwidth expanded until convergence. */
   259 void silk_A2NLSF(
   260     opus_int16                  *NLSF,              /* O    Normalized Line Spectral Frequencies in Q15 (0..2^15-1) [d] */
   261     opus_int32                  *a_Q16,             /* I/O  Monic whitening filter coefficients in Q16 [d]              */
   262     const opus_int              d                   /* I    Filter order (must be even)                                 */
   263 );
   265 /* compute whitening filter coefficients from normalized line spectral frequencies */
   266 void silk_NLSF2A(
   267     opus_int16                  *a_Q12,             /* O    monic whitening filter coefficients in Q12,  [ d ]          */
   268     const opus_int16            *NLSF,              /* I    normalized line spectral frequencies in Q15, [ d ]          */
   269     const opus_int              d                   /* I    filter order (should be even)                               */
   270 );
   272 void silk_insertion_sort_increasing(
   273     opus_int32                  *a,                 /* I/O   Unsorted / Sorted vector                                   */
   274     opus_int                    *idx,               /* O     Index vector for the sorted elements                       */
   275     const opus_int              L,                  /* I     Vector length                                              */
   276     const opus_int              K                   /* I     Number of correctly sorted positions                       */
   277 );
   279 void silk_insertion_sort_decreasing_int16(
   280     opus_int16                  *a,                 /* I/O   Unsorted / Sorted vector                                   */
   281     opus_int                    *idx,               /* O     Index vector for the sorted elements                       */
   282     const opus_int              L,                  /* I     Vector length                                              */
   283     const opus_int              K                   /* I     Number of correctly sorted positions                       */
   284 );
   286 void silk_insertion_sort_increasing_all_values_int16(
   287      opus_int16                 *a,                 /* I/O   Unsorted / Sorted vector                                   */
   288      const opus_int             L                   /* I     Vector length                                              */
   289 );
   291 /* NLSF stabilizer, for a single input data vector */
   292 void silk_NLSF_stabilize(
   293           opus_int16            *NLSF_Q15,          /* I/O   Unstable/stabilized normalized LSF vector in Q15 [L]       */
   294     const opus_int16            *NDeltaMin_Q15,     /* I     Min distance vector, NDeltaMin_Q15[L] must be >= 1 [L+1]   */
   295     const opus_int              L                   /* I     Number of NLSF parameters in the input vector              */
   296 );
   298 /* Laroia low complexity NLSF weights */
   299 void silk_NLSF_VQ_weights_laroia(
   300     opus_int16                  *pNLSFW_Q_OUT,      /* O     Pointer to input vector weights [D]                        */
   301     const opus_int16            *pNLSF_Q15,         /* I     Pointer to input vector         [D]                        */
   302     const opus_int              D                   /* I     Input vector dimension (even)                              */
   303 );
   305 /* Compute reflection coefficients from input signal */
   306 void silk_burg_modified(
   307     opus_int32                  *res_nrg,           /* O    Residual energy                                             */
   308     opus_int                    *res_nrg_Q,         /* O    Residual energy Q value                                     */
   309     opus_int32                  A_Q16[],            /* O    Prediction coefficients (length order)                      */
   310     const opus_int16            x[],                /* I    Input signal, length: nb_subfr * ( D + subfr_length )       */
   311     const opus_int32            minInvGain_Q30,     /* I    Inverse of max prediction gain                              */
   312     const opus_int              subfr_length,       /* I    Input signal subframe length (incl. D preceding samples)    */
   313     const opus_int              nb_subfr,           /* I    Number of subframes stacked in x                            */
   314     const opus_int              D,                  /* I    Order                                                       */
   315     int                         arch                /* I    Run-time architecture                                       */
   316 );
   318 /* Copy and multiply a vector by a constant */
   319 void silk_scale_copy_vector16(
   320     opus_int16                  *data_out,
   321     const opus_int16            *data_in,
   322     opus_int32                  gain_Q16,           /* I    Gain in Q16                                                 */
   323     const opus_int              dataSize            /* I    Length                                                      */
   324 );
   326 /* Some for the LTP related function requires Q26 to work.*/
   327 void silk_scale_vector32_Q26_lshift_18(
   328     opus_int32                  *data1,             /* I/O  Q0/Q18                                                      */
   329     opus_int32                  gain_Q26,           /* I    Q26                                                         */
   330     opus_int                    dataSize            /* I    length                                                      */
   331 );
   333 /********************************************************************/
   334 /*                        INLINE ARM MATH                           */
   335 /********************************************************************/
   337 /*    return sum( inVec1[i] * inVec2[i] ) */
   338 opus_int32 silk_inner_prod_aligned(
   339     const opus_int16 *const     inVec1,             /*    I input vector 1                                              */
   340     const opus_int16 *const     inVec2,             /*    I input vector 2                                              */
   341     const opus_int              len                 /*    I vector lengths                                              */
   342 );
   344 opus_int32 silk_inner_prod_aligned_scale(
   345     const opus_int16 *const     inVec1,             /*    I input vector 1                                              */
   346     const opus_int16 *const     inVec2,             /*    I input vector 2                                              */
   347     const opus_int              scale,              /*    I number of bits to shift                                     */
   348     const opus_int              len                 /*    I vector lengths                                              */
   349 );
   351 opus_int64 silk_inner_prod16_aligned_64(
   352     const opus_int16            *inVec1,            /*    I input vector 1                                              */
   353     const opus_int16            *inVec2,            /*    I input vector 2                                              */
   354     const opus_int              len                 /*    I vector lengths                                              */
   355 );
   357 /********************************************************************/
   358 /*                                MACROS                            */
   359 /********************************************************************/
   361 /* Rotate a32 right by 'rot' bits. Negative rot values result in rotating
   362    left. Output is 32bit int.
   363    Note: contemporary compilers recognize the C expression below and
   364    compile it into a 'ror' instruction if available. No need for OPUS_INLINE ASM! */
   365 static OPUS_INLINE opus_int32 silk_ROR32( opus_int32 a32, opus_int rot )
   366 {
   367     opus_uint32 x = (opus_uint32) a32;
   368     opus_uint32 r = (opus_uint32) rot;
   369     opus_uint32 m = (opus_uint32) -rot;
   370     if( rot == 0 ) {
   371         return a32;
   372     } else if( rot < 0 ) {
   373         return (opus_int32) ((x << m) | (x >> (32 - m)));
   374     } else {
   375         return (opus_int32) ((x << (32 - r)) | (x >> r));
   376     }
   377 }
   379 /* Allocate opus_int16 aligned to 4-byte memory address */
   380 #if EMBEDDED_ARM
   381 #define silk_DWORD_ALIGN __attribute__((aligned(4)))
   382 #else
   383 #define silk_DWORD_ALIGN
   384 #endif
   386 /* Useful Macros that can be adjusted to other platforms */
   387 #define silk_memcpy(dest, src, size)        memcpy((dest), (src), (size))
   388 #define silk_memset(dest, src, size)        memset((dest), (src), (size))
   389 #define silk_memmove(dest, src, size)       memmove((dest), (src), (size))
   391 /* Fixed point macros */
   393 /* (a32 * b32) output have to be 32bit int */
   394 #define silk_MUL(a32, b32)                  ((a32) * (b32))
   396 /* (a32 * b32) output have to be 32bit uint */
   397 #define silk_MUL_uint(a32, b32)             silk_MUL(a32, b32)
   399 /* a32 + (b32 * c32) output have to be 32bit int */
   400 #define silk_MLA(a32, b32, c32)             silk_ADD32((a32),((b32) * (c32)))
   402 /* a32 + (b32 * c32) output have to be 32bit uint */
   403 #define silk_MLA_uint(a32, b32, c32)        silk_MLA(a32, b32, c32)
   405 /* ((a32 >> 16)  * (b32 >> 16)) output have to be 32bit int */
   406 #define silk_SMULTT(a32, b32)               (((a32) >> 16) * ((b32) >> 16))
   408 /* a32 + ((a32 >> 16)  * (b32 >> 16)) output have to be 32bit int */
   409 #define silk_SMLATT(a32, b32, c32)          silk_ADD32((a32),((b32) >> 16) * ((c32) >> 16))
   411 #define silk_SMLALBB(a64, b16, c16)         silk_ADD64((a64),(opus_int64)((opus_int32)(b16) * (opus_int32)(c16)))
   413 /* (a32 * b32) */
   414 #define silk_SMULL(a32, b32)                ((opus_int64)(a32) * /*(opus_int64)*/(b32))
   416 /* Adds two signed 32-bit values in a way that can overflow, while not relying on undefined behaviour
   417    (just standard two's complement implementation-specific behaviour) */
   418 #define silk_ADD32_ovflw(a, b)              ((opus_int32)((opus_uint32)(a) + (opus_uint32)(b)))
   419 /* Subtractss two signed 32-bit values in a way that can overflow, while not relying on undefined behaviour
   420    (just standard two's complement implementation-specific behaviour) */
   421 #define silk_SUB32_ovflw(a, b)              ((opus_int32)((opus_uint32)(a) - (opus_uint32)(b)))
   423 /* Multiply-accumulate macros that allow overflow in the addition (ie, no asserts in debug mode) */
   424 #define silk_MLA_ovflw(a32, b32, c32)       silk_ADD32_ovflw((a32), (opus_uint32)(b32) * (opus_uint32)(c32))
   425 #define silk_SMLABB_ovflw(a32, b32, c32)    (silk_ADD32_ovflw((a32) , ((opus_int32)((opus_int16)(b32))) * (opus_int32)((opus_int16)(c32))))
   427 #define silk_DIV32_16(a32, b16)             ((opus_int32)((a32) / (b16)))
   428 #define silk_DIV32(a32, b32)                ((opus_int32)((a32) / (b32)))
   430 /* These macros enables checking for overflow in silk_API_Debug.h*/
   431 #define silk_ADD16(a, b)                    ((a) + (b))
   432 #define silk_ADD32(a, b)                    ((a) + (b))
   433 #define silk_ADD64(a, b)                    ((a) + (b))
   435 #define silk_SUB16(a, b)                    ((a) - (b))
   436 #define silk_SUB32(a, b)                    ((a) - (b))
   437 #define silk_SUB64(a, b)                    ((a) - (b))
   439 #define silk_SAT8(a)                        ((a) > silk_int8_MAX ? silk_int8_MAX  :       \
   440                                             ((a) < silk_int8_MIN ? silk_int8_MIN  : (a)))
   441 #define silk_SAT16(a)                       ((a) > silk_int16_MAX ? silk_int16_MAX :      \
   442                                             ((a) < silk_int16_MIN ? silk_int16_MIN : (a)))
   443 #define silk_SAT32(a)                       ((a) > silk_int32_MAX ? silk_int32_MAX :      \
   444                                             ((a) < silk_int32_MIN ? silk_int32_MIN : (a)))
   446 #define silk_CHECK_FIT8(a)                  (a)
   447 #define silk_CHECK_FIT16(a)                 (a)
   448 #define silk_CHECK_FIT32(a)                 (a)
   450 #define silk_ADD_SAT16(a, b)                (opus_int16)silk_SAT16( silk_ADD32( (opus_int32)(a), (b) ) )
   451 #define silk_ADD_SAT64(a, b)                ((((a) + (b)) & 0x8000000000000000LL) == 0 ?                            \
   452                                             ((((a) & (b)) & 0x8000000000000000LL) != 0 ? silk_int64_MIN : (a)+(b)) : \
   453                                             ((((a) | (b)) & 0x8000000000000000LL) == 0 ? silk_int64_MAX : (a)+(b)) )
   455 #define silk_SUB_SAT16(a, b)                (opus_int16)silk_SAT16( silk_SUB32( (opus_int32)(a), (b) ) )
   456 #define silk_SUB_SAT64(a, b)                ((((a)-(b)) & 0x8000000000000000LL) == 0 ?                                               \
   457                                             (( (a) & ((b)^0x8000000000000000LL) & 0x8000000000000000LL) ? silk_int64_MIN : (a)-(b)) : \
   458                                             ((((a)^0x8000000000000000LL) & (b)  & 0x8000000000000000LL) ? silk_int64_MAX : (a)-(b)) )
   460 /* Saturation for positive input values */
   461 #define silk_POS_SAT32(a)                   ((a) > silk_int32_MAX ? silk_int32_MAX : (a))
   463 /* Add with saturation for positive input values */
   464 #define silk_ADD_POS_SAT8(a, b)             ((((a)+(b)) & 0x80)                 ? silk_int8_MAX  : ((a)+(b)))
   465 #define silk_ADD_POS_SAT16(a, b)            ((((a)+(b)) & 0x8000)               ? silk_int16_MAX : ((a)+(b)))
   466 #define silk_ADD_POS_SAT32(a, b)            ((((a)+(b)) & 0x80000000)           ? silk_int32_MAX : ((a)+(b)))
   467 #define silk_ADD_POS_SAT64(a, b)            ((((a)+(b)) & 0x8000000000000000LL) ? silk_int64_MAX : ((a)+(b)))
   469 #define silk_LSHIFT8(a, shift)              ((opus_int8)((opus_uint8)(a)<<(shift)))         /* shift >= 0, shift < 8  */
   470 #define silk_LSHIFT16(a, shift)             ((opus_int16)((opus_uint16)(a)<<(shift)))       /* shift >= 0, shift < 16 */
   471 #define silk_LSHIFT32(a, shift)             ((opus_int32)((opus_uint32)(a)<<(shift)))       /* shift >= 0, shift < 32 */
   472 #define silk_LSHIFT64(a, shift)             ((opus_int64)((opus_uint64)(a)<<(shift)))       /* shift >= 0, shift < 64 */
   473 #define silk_LSHIFT(a, shift)               silk_LSHIFT32(a, shift)                         /* shift >= 0, shift < 32 */
   475 #define silk_RSHIFT8(a, shift)              ((a)>>(shift))                                  /* shift >= 0, shift < 8  */
   476 #define silk_RSHIFT16(a, shift)             ((a)>>(shift))                                  /* shift >= 0, shift < 16 */
   477 #define silk_RSHIFT32(a, shift)             ((a)>>(shift))                                  /* shift >= 0, shift < 32 */
   478 #define silk_RSHIFT64(a, shift)             ((a)>>(shift))                                  /* shift >= 0, shift < 64 */
   479 #define silk_RSHIFT(a, shift)               silk_RSHIFT32(a, shift)                         /* shift >= 0, shift < 32 */
   481 /* saturates before shifting */
   482 #define silk_LSHIFT_SAT32(a, shift)         (silk_LSHIFT32( silk_LIMIT( (a), silk_RSHIFT32( silk_int32_MIN, (shift) ), \
   483                                                     silk_RSHIFT32( silk_int32_MAX, (shift) ) ), (shift) ))
   485 #define silk_LSHIFT_ovflw(a, shift)         ((opus_int32)((opus_uint32)(a) << (shift)))     /* shift >= 0, allowed to overflow */
   486 #define silk_LSHIFT_uint(a, shift)          ((a) << (shift))                                /* shift >= 0 */
   487 #define silk_RSHIFT_uint(a, shift)          ((a) >> (shift))                                /* shift >= 0 */
   489 #define silk_ADD_LSHIFT(a, b, shift)        ((a) + silk_LSHIFT((b), (shift)))               /* shift >= 0 */
   490 #define silk_ADD_LSHIFT32(a, b, shift)      silk_ADD32((a), silk_LSHIFT32((b), (shift)))    /* shift >= 0 */
   491 #define silk_ADD_LSHIFT_uint(a, b, shift)   ((a) + silk_LSHIFT_uint((b), (shift)))          /* shift >= 0 */
   492 #define silk_ADD_RSHIFT(a, b, shift)        ((a) + silk_RSHIFT((b), (shift)))               /* shift >= 0 */
   493 #define silk_ADD_RSHIFT32(a, b, shift)      silk_ADD32((a), silk_RSHIFT32((b), (shift)))    /* shift >= 0 */
   494 #define silk_ADD_RSHIFT_uint(a, b, shift)   ((a) + silk_RSHIFT_uint((b), (shift)))          /* shift >= 0 */
   495 #define silk_SUB_LSHIFT32(a, b, shift)      silk_SUB32((a), silk_LSHIFT32((b), (shift)))    /* shift >= 0 */
   496 #define silk_SUB_RSHIFT32(a, b, shift)      silk_SUB32((a), silk_RSHIFT32((b), (shift)))    /* shift >= 0 */
   498 /* Requires that shift > 0 */
   499 #define silk_RSHIFT_ROUND(a, shift)         ((shift) == 1 ? ((a) >> 1) + ((a) & 1) : (((a) >> ((shift) - 1)) + 1) >> 1)
   500 #define silk_RSHIFT_ROUND64(a, shift)       ((shift) == 1 ? ((a) >> 1) + ((a) & 1) : (((a) >> ((shift) - 1)) + 1) >> 1)
   502 /* Number of rightshift required to fit the multiplication */
   503 #define silk_NSHIFT_MUL_32_32(a, b)         ( -(31- (32-silk_CLZ32(silk_abs(a)) + (32-silk_CLZ32(silk_abs(b))))) )
   504 #define silk_NSHIFT_MUL_16_16(a, b)         ( -(15- (16-silk_CLZ16(silk_abs(a)) + (16-silk_CLZ16(silk_abs(b))))) )
   507 #define silk_min(a, b)                      (((a) < (b)) ? (a) : (b))
   508 #define silk_max(a, b)                      (((a) > (b)) ? (a) : (b))
   510 /* Macro to convert floating-point constants to fixed-point */
   511 #define SILK_FIX_CONST( C, Q )              ((opus_int32)((C) * ((opus_int64)1 << (Q)) + 0.5))
   513 /* silk_min() versions with typecast in the function call */
   514 static OPUS_INLINE opus_int silk_min_int(opus_int a, opus_int b)
   515 {
   516     return (((a) < (b)) ? (a) : (b));
   517 }
   518 static OPUS_INLINE opus_int16 silk_min_16(opus_int16 a, opus_int16 b)
   519 {
   520     return (((a) < (b)) ? (a) : (b));
   521 }
   522 static OPUS_INLINE opus_int32 silk_min_32(opus_int32 a, opus_int32 b)
   523 {
   524     return (((a) < (b)) ? (a) : (b));
   525 }
   526 static OPUS_INLINE opus_int64 silk_min_64(opus_int64 a, opus_int64 b)
   527 {
   528     return (((a) < (b)) ? (a) : (b));
   529 }
   531 /* silk_min() versions with typecast in the function call */
   532 static OPUS_INLINE opus_int silk_max_int(opus_int a, opus_int b)
   533 {
   534     return (((a) > (b)) ? (a) : (b));
   535 }
   536 static OPUS_INLINE opus_int16 silk_max_16(opus_int16 a, opus_int16 b)
   537 {
   538     return (((a) > (b)) ? (a) : (b));
   539 }
   540 static OPUS_INLINE opus_int32 silk_max_32(opus_int32 a, opus_int32 b)
   541 {
   542     return (((a) > (b)) ? (a) : (b));
   543 }
   544 static OPUS_INLINE opus_int64 silk_max_64(opus_int64 a, opus_int64 b)
   545 {
   546     return (((a) > (b)) ? (a) : (b));
   547 }
   549 #define silk_LIMIT( a, limit1, limit2)      ((limit1) > (limit2) ? ((a) > (limit1) ? (limit1) : ((a) < (limit2) ? (limit2) : (a))) \
   550                                                                  : ((a) > (limit2) ? (limit2) : ((a) < (limit1) ? (limit1) : (a))))
   552 #define silk_LIMIT_int                      silk_LIMIT
   553 #define silk_LIMIT_16                       silk_LIMIT
   554 #define silk_LIMIT_32                       silk_LIMIT
   556 #define silk_abs(a)                         (((a) >  0)  ? (a) : -(a))            /* Be careful, silk_abs returns wrong when input equals to silk_intXX_MIN */
   557 #define silk_abs_int(a)                     (((a) ^ ((a) >> (8 * sizeof(a) - 1))) - ((a) >> (8 * sizeof(a) - 1)))
   558 #define silk_abs_int32(a)                   (((a) ^ ((a) >> 31)) - ((a) >> 31))
   559 #define silk_abs_int64(a)                   (((a) >  0)  ? (a) : -(a))
   561 #define silk_sign(a)                        ((a) > 0 ? 1 : ( (a) < 0 ? -1 : 0 ))
   563 /* PSEUDO-RANDOM GENERATOR                                                          */
   564 /* Make sure to store the result as the seed for the next call (also in between     */
   565 /* frames), otherwise result won't be random at all. When only using some of the    */
   566 /* bits, take the most significant bits by right-shifting.                          */
   567 #define silk_RAND(seed)                     (silk_MLA_ovflw(907633515, (seed), 196314165))
   569 /*  Add some multiplication functions that can be easily mapped to ARM. */
   571 /*    silk_SMMUL: Signed top word multiply.
   572           ARMv6        2 instruction cycles.
   573           ARMv3M+      3 instruction cycles. use SMULL and ignore LSB registers.(except xM)*/
   574 /*#define silk_SMMUL(a32, b32)                (opus_int32)silk_RSHIFT(silk_SMLAL(silk_SMULWB((a32), (b32)), (a32), silk_RSHIFT_ROUND((b32), 16)), 16)*/
   575 /* the following seems faster on x86 */
   576 #define silk_SMMUL(a32, b32)                (opus_int32)silk_RSHIFT64(silk_SMULL((a32), (b32)), 32)
   578 #include "Inlines.h"
   579 #include "MacroCount.h"
   580 #include "MacroDebug.h"
   582 #ifdef OPUS_ARM_INLINE_ASM
   583 #include "arm/SigProc_FIX_armv4.h"
   584 #endif
   586 #ifdef OPUS_ARM_INLINE_EDSP
   587 #include "arm/SigProc_FIX_armv5e.h"
   588 #endif
   590 #ifdef  __cplusplus
   591 }
   592 #endif
   594 #endif /* SILK_SIGPROC_FIX_H */

mercurial