media/libopus/silk/resampler.c

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

     1 /***********************************************************************
     2 Copyright (c) 2006-2011, Skype Limited. All rights reserved.
     3 Redistribution and use in source and binary forms, with or without
     4 modification, are permitted provided that the following conditions
     5 are met:
     6 - Redistributions of source code must retain the above copyright notice,
     7 this list of conditions and the following disclaimer.
     8 - Redistributions in binary form must reproduce the above copyright
     9 notice, this list of conditions and the following disclaimer in the
    10 documentation and/or other materials provided with the distribution.
    11 - Neither the name of Internet Society, IETF or IETF Trust, nor the
    12 names of specific contributors, may be used to endorse or promote
    13 products derived from this software without specific prior written
    14 permission.
    15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
    16 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    17 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    18 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
    19 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
    20 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
    21 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
    22 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
    23 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    24 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
    25 POSSIBILITY OF SUCH DAMAGE.
    26 ***********************************************************************/
    28 #ifdef HAVE_CONFIG_H
    29 #include "config.h"
    30 #endif
    32 /*
    33  * Matrix of resampling methods used:
    34  *                                 Fs_out (kHz)
    35  *                        8      12     16     24     48
    36  *
    37  *               8        C      UF     U      UF     UF
    38  *              12        AF     C      UF     U      UF
    39  * Fs_in (kHz)  16        D      AF     C      UF     UF
    40  *              24        AF     D      AF     C      U
    41  *              48        AF     AF     AF     D      C
    42  *
    43  * C   -> Copy (no resampling)
    44  * D   -> Allpass-based 2x downsampling
    45  * U   -> Allpass-based 2x upsampling
    46  * UF  -> Allpass-based 2x upsampling followed by FIR interpolation
    47  * AF  -> AR2 filter followed by FIR interpolation
    48  */
    50 #include "resampler_private.h"
    52 /* Tables with delay compensation values to equalize total delay for different modes */
    53 static const opus_int8 delay_matrix_enc[ 5 ][ 3 ] = {
    54 /* in  \ out  8  12  16 */
    55 /*  8 */   {  6,  0,  3 },
    56 /* 12 */   {  0,  7,  3 },
    57 /* 16 */   {  0,  1, 10 },
    58 /* 24 */   {  0,  2,  6 },
    59 /* 48 */   { 18, 10, 12 }
    60 };
    62 static const opus_int8 delay_matrix_dec[ 3 ][ 5 ] = {
    63 /* in  \ out  8  12  16  24  48 */
    64 /*  8 */   {  4,  0,  2,  0,  0 },
    65 /* 12 */   {  0,  9,  4,  7,  4 },
    66 /* 16 */   {  0,  3, 12,  7,  7 }
    67 };
    69 /* Simple way to make [8000, 12000, 16000, 24000, 48000] to [0, 1, 2, 3, 4] */
    70 #define rateID(R) ( ( ( ((R)>>12) - ((R)>16000) ) >> ((R)>24000) ) - 1 )
    72 #define USE_silk_resampler_copy                     (0)
    73 #define USE_silk_resampler_private_up2_HQ_wrapper   (1)
    74 #define USE_silk_resampler_private_IIR_FIR          (2)
    75 #define USE_silk_resampler_private_down_FIR         (3)
    77 /* Initialize/reset the resampler state for a given pair of input/output sampling rates */
    78 opus_int silk_resampler_init(
    79     silk_resampler_state_struct *S,                 /* I/O  Resampler state                                             */
    80     opus_int32                  Fs_Hz_in,           /* I    Input sampling rate (Hz)                                    */
    81     opus_int32                  Fs_Hz_out,          /* I    Output sampling rate (Hz)                                   */
    82     opus_int                    forEnc              /* I    If 1: encoder; if 0: decoder                                */
    83 )
    84 {
    85     opus_int up2x;
    87     /* Clear state */
    88     silk_memset( S, 0, sizeof( silk_resampler_state_struct ) );
    90     /* Input checking */
    91     if( forEnc ) {
    92         if( ( Fs_Hz_in  != 8000 && Fs_Hz_in  != 12000 && Fs_Hz_in  != 16000 && Fs_Hz_in  != 24000 && Fs_Hz_in  != 48000 ) ||
    93             ( Fs_Hz_out != 8000 && Fs_Hz_out != 12000 && Fs_Hz_out != 16000 ) ) {
    94             silk_assert( 0 );
    95             return -1;
    96         }
    97         S->inputDelay = delay_matrix_enc[ rateID( Fs_Hz_in ) ][ rateID( Fs_Hz_out ) ];
    98     } else {
    99         if( ( Fs_Hz_in  != 8000 && Fs_Hz_in  != 12000 && Fs_Hz_in  != 16000 ) ||
   100             ( Fs_Hz_out != 8000 && Fs_Hz_out != 12000 && Fs_Hz_out != 16000 && Fs_Hz_out != 24000 && Fs_Hz_out != 48000 ) ) {
   101             silk_assert( 0 );
   102             return -1;
   103         }
   104         S->inputDelay = delay_matrix_dec[ rateID( Fs_Hz_in ) ][ rateID( Fs_Hz_out ) ];
   105     }
   107     S->Fs_in_kHz  = silk_DIV32_16( Fs_Hz_in,  1000 );
   108     S->Fs_out_kHz = silk_DIV32_16( Fs_Hz_out, 1000 );
   110     /* Number of samples processed per batch */
   111     S->batchSize = S->Fs_in_kHz * RESAMPLER_MAX_BATCH_SIZE_MS;
   113     /* Find resampler with the right sampling ratio */
   114     up2x = 0;
   115     if( Fs_Hz_out > Fs_Hz_in ) {
   116         /* Upsample */
   117         if( Fs_Hz_out == silk_MUL( Fs_Hz_in, 2 ) ) {                            /* Fs_out : Fs_in = 2 : 1 */
   118             /* Special case: directly use 2x upsampler */
   119             S->resampler_function = USE_silk_resampler_private_up2_HQ_wrapper;
   120         } else {
   121             /* Default resampler */
   122             S->resampler_function = USE_silk_resampler_private_IIR_FIR;
   123             up2x = 1;
   124         }
   125     } else if ( Fs_Hz_out < Fs_Hz_in ) {
   126         /* Downsample */
   127          S->resampler_function = USE_silk_resampler_private_down_FIR;
   128         if( silk_MUL( Fs_Hz_out, 4 ) == silk_MUL( Fs_Hz_in, 3 ) ) {             /* Fs_out : Fs_in = 3 : 4 */
   129             S->FIR_Fracs = 3;
   130             S->FIR_Order = RESAMPLER_DOWN_ORDER_FIR0;
   131             S->Coefs = silk_Resampler_3_4_COEFS;
   132         } else if( silk_MUL( Fs_Hz_out, 3 ) == silk_MUL( Fs_Hz_in, 2 ) ) {      /* Fs_out : Fs_in = 2 : 3 */
   133             S->FIR_Fracs = 2;
   134             S->FIR_Order = RESAMPLER_DOWN_ORDER_FIR0;
   135             S->Coefs = silk_Resampler_2_3_COEFS;
   136         } else if( silk_MUL( Fs_Hz_out, 2 ) == Fs_Hz_in ) {                     /* Fs_out : Fs_in = 1 : 2 */
   137             S->FIR_Fracs = 1;
   138             S->FIR_Order = RESAMPLER_DOWN_ORDER_FIR1;
   139             S->Coefs = silk_Resampler_1_2_COEFS;
   140         } else if( silk_MUL( Fs_Hz_out, 3 ) == Fs_Hz_in ) {                     /* Fs_out : Fs_in = 1 : 3 */
   141             S->FIR_Fracs = 1;
   142             S->FIR_Order = RESAMPLER_DOWN_ORDER_FIR2;
   143             S->Coefs = silk_Resampler_1_3_COEFS;
   144         } else if( silk_MUL( Fs_Hz_out, 4 ) == Fs_Hz_in ) {                     /* Fs_out : Fs_in = 1 : 4 */
   145             S->FIR_Fracs = 1;
   146             S->FIR_Order = RESAMPLER_DOWN_ORDER_FIR2;
   147             S->Coefs = silk_Resampler_1_4_COEFS;
   148         } else if( silk_MUL( Fs_Hz_out, 6 ) == Fs_Hz_in ) {                     /* Fs_out : Fs_in = 1 : 6 */
   149             S->FIR_Fracs = 1;
   150             S->FIR_Order = RESAMPLER_DOWN_ORDER_FIR2;
   151             S->Coefs = silk_Resampler_1_6_COEFS;
   152         } else {
   153             /* None available */
   154             silk_assert( 0 );
   155             return -1;
   156         }
   157     } else {
   158         /* Input and output sampling rates are equal: copy */
   159         S->resampler_function = USE_silk_resampler_copy;
   160     }
   162     /* Ratio of input/output samples */
   163     S->invRatio_Q16 = silk_LSHIFT32( silk_DIV32( silk_LSHIFT32( Fs_Hz_in, 14 + up2x ), Fs_Hz_out ), 2 );
   164     /* Make sure the ratio is rounded up */
   165     while( silk_SMULWW( S->invRatio_Q16, Fs_Hz_out ) < silk_LSHIFT32( Fs_Hz_in, up2x ) ) {
   166         S->invRatio_Q16++;
   167     }
   169     return 0;
   170 }
   172 /* Resampler: convert from one sampling rate to another */
   173 /* Input and output sampling rate are at most 48000 Hz  */
   174 opus_int silk_resampler(
   175     silk_resampler_state_struct *S,                 /* I/O  Resampler state                                             */
   176     opus_int16                  out[],              /* O    Output signal                                               */
   177     const opus_int16            in[],               /* I    Input signal                                                */
   178     opus_int32                  inLen               /* I    Number of input samples                                     */
   179 )
   180 {
   181     opus_int nSamples;
   183     /* Need at least 1 ms of input data */
   184     silk_assert( inLen >= S->Fs_in_kHz );
   185     /* Delay can't exceed the 1 ms of buffering */
   186     silk_assert( S->inputDelay <= S->Fs_in_kHz );
   188     nSamples = S->Fs_in_kHz - S->inputDelay;
   190     /* Copy to delay buffer */
   191     silk_memcpy( &S->delayBuf[ S->inputDelay ], in, nSamples * sizeof( opus_int16 ) );
   193     switch( S->resampler_function ) {
   194         case USE_silk_resampler_private_up2_HQ_wrapper:
   195             silk_resampler_private_up2_HQ_wrapper( S, out, S->delayBuf, S->Fs_in_kHz );
   196             silk_resampler_private_up2_HQ_wrapper( S, &out[ S->Fs_out_kHz ], &in[ nSamples ], inLen - S->Fs_in_kHz );
   197             break;
   198         case USE_silk_resampler_private_IIR_FIR:
   199             silk_resampler_private_IIR_FIR( S, out, S->delayBuf, S->Fs_in_kHz );
   200             silk_resampler_private_IIR_FIR( S, &out[ S->Fs_out_kHz ], &in[ nSamples ], inLen - S->Fs_in_kHz );
   201             break;
   202         case USE_silk_resampler_private_down_FIR:
   203             silk_resampler_private_down_FIR( S, out, S->delayBuf, S->Fs_in_kHz );
   204             silk_resampler_private_down_FIR( S, &out[ S->Fs_out_kHz ], &in[ nSamples ], inLen - S->Fs_in_kHz );
   205             break;
   206         default:
   207             silk_memcpy( out, S->delayBuf, S->Fs_in_kHz * sizeof( opus_int16 ) );
   208             silk_memcpy( &out[ S->Fs_out_kHz ], &in[ nSamples ], ( inLen - S->Fs_in_kHz ) * sizeof( opus_int16 ) );
   209     }
   211     /* Copy to delay buffer */
   212     silk_memcpy( S->delayBuf, &in[ inLen - S->inputDelay ], S->inputDelay * sizeof( opus_int16 ) );
   214     return 0;
   215 }

mercurial