Wed, 31 Dec 2014 06:09:35 +0100
Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.
1 ;********************************************************************
2 ;* *
3 ;* THIS FILE IS PART OF THE OggTheora SOFTWARE CODEC SOURCE CODE. *
4 ;* USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS *
5 ;* GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE *
6 ;* IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. *
7 ;* *
8 ;* THE Theora SOURCE CODE IS COPYRIGHT (C) 2002-2010 *
9 ;* by the Xiph.Org Foundation and contributors http://www.xiph.org/ *
10 ;* *
11 ;********************************************************************
12 ; Original implementation:
13 ; Copyright (C) 2009 Robin Watts for Pinknoise Productions Ltd
14 ; last mod: $Id: armloop.s 17481 2010-10-03 22:49:42Z tterribe $
15 ;********************************************************************
17 AREA |.text|, CODE, READONLY
19 ; Explicitly specifying alignment here because some versions of
20 ; gas don't align code correctly. See
21 ; http://lists.gnu.org/archive/html/bug-binutils/2011-06/msg00199.html
22 ; https://bugzilla.mozilla.org/show_bug.cgi?id=920992
23 ALIGN
25 GET armopts.s
27 EXPORT oc_loop_filter_frag_rows_arm
29 ; Which bit this is depends on the order of packing within a bitfield.
30 ; Hopefully that doesn't change among any of the relevant compilers.
31 OC_FRAG_CODED_FLAG * 1
33 ; Vanilla ARM v4 version
34 loop_filter_h_arm PROC
35 ; r0 = unsigned char *_pix
36 ; r1 = int _ystride
37 ; r2 = int *_bv
38 ; preserves r0-r3
39 STMFD r13!,{r3-r6,r14}
40 MOV r14,#8
41 MOV r6, #255
42 lfh_arm_lp
43 LDRB r3, [r0, #-2] ; r3 = _pix[0]
44 LDRB r12,[r0, #1] ; r12= _pix[3]
45 LDRB r4, [r0, #-1] ; r4 = _pix[1]
46 LDRB r5, [r0] ; r5 = _pix[2]
47 SUB r3, r3, r12 ; r3 = _pix[0]-_pix[3]+4
48 ADD r3, r3, #4
49 SUB r12,r5, r4 ; r12= _pix[2]-_pix[1]
50 ADD r12,r12,r12,LSL #1 ; r12= 3*(_pix[2]-_pix[1])
51 ADD r12,r12,r3 ; r12= _pix[0]-_pix[3]+3*(_pix[2]-_pix[1])+4
52 MOV r12,r12,ASR #3
53 LDRSB r12,[r2, r12]
54 ; Stall (2 on Xscale)
55 ADDS r4, r4, r12
56 CMPGT r6, r4
57 EORLT r4, r6, r4, ASR #32
58 SUBS r5, r5, r12
59 CMPGT r6, r5
60 EORLT r5, r6, r5, ASR #32
61 STRB r4, [r0, #-1]
62 STRB r5, [r0], r1
63 SUBS r14,r14,#1
64 BGT lfh_arm_lp
65 SUB r0, r0, r1, LSL #3
66 LDMFD r13!,{r3-r6,PC}
67 ENDP
69 loop_filter_v_arm PROC
70 ; r0 = unsigned char *_pix
71 ; r1 = int _ystride
72 ; r2 = int *_bv
73 ; preserves r0-r3
74 STMFD r13!,{r3-r6,r14}
75 MOV r14,#8
76 MOV r6, #255
77 lfv_arm_lp
78 LDRB r3, [r0, -r1, LSL #1] ; r3 = _pix[0]
79 LDRB r12,[r0, r1] ; r12= _pix[3]
80 LDRB r4, [r0, -r1] ; r4 = _pix[1]
81 LDRB r5, [r0] ; r5 = _pix[2]
82 SUB r3, r3, r12 ; r3 = _pix[0]-_pix[3]+4
83 ADD r3, r3, #4
84 SUB r12,r5, r4 ; r12= _pix[2]-_pix[1]
85 ADD r12,r12,r12,LSL #1 ; r12= 3*(_pix[2]-_pix[1])
86 ADD r12,r12,r3 ; r12= _pix[0]-_pix[3]+3*(_pix[2]-_pix[1])+4
87 MOV r12,r12,ASR #3
88 LDRSB r12,[r2, r12]
89 ; Stall (2 on Xscale)
90 ADDS r4, r4, r12
91 CMPGT r6, r4
92 EORLT r4, r6, r4, ASR #32
93 SUBS r5, r5, r12
94 CMPGT r6, r5
95 EORLT r5, r6, r5, ASR #32
96 STRB r4, [r0, -r1]
97 STRB r5, [r0], #1
98 SUBS r14,r14,#1
99 BGT lfv_arm_lp
100 SUB r0, r0, #8
101 LDMFD r13!,{r3-r6,PC}
102 ENDP
104 oc_loop_filter_frag_rows_arm PROC
105 ; r0 = _ref_frame_data
106 ; r1 = _ystride
107 ; r2 = _bv
108 ; r3 = _frags
109 ; r4 = _fragi0
110 ; r5 = _fragi0_end
111 ; r6 = _fragi_top
112 ; r7 = _fragi_bot
113 ; r8 = _frag_buf_offs
114 ; r9 = _nhfrags
115 MOV r12,r13
116 STMFD r13!,{r0,r4-r11,r14}
117 LDMFD r12,{r4-r9}
118 ADD r2, r2, #127 ; _bv += 127
119 CMP r4, r5 ; if(_fragi0>=_fragi0_end)
120 BGE oslffri_arm_end ; bail
121 SUBS r9, r9, #1 ; r9 = _nhfrags-1 if (r9<=0)
122 BLE oslffri_arm_end ; bail
123 ADD r3, r3, r4, LSL #2 ; r3 = &_frags[fragi]
124 ADD r8, r8, r4, LSL #2 ; r8 = &_frag_buf_offs[fragi]
125 SUB r7, r7, r9 ; _fragi_bot -= _nhfrags;
126 oslffri_arm_lp1
127 MOV r10,r4 ; r10= fragi = _fragi0
128 ADD r11,r4, r9 ; r11= fragi_end-1=fragi+_nhfrags-1
129 oslffri_arm_lp2
130 LDR r14,[r3], #4 ; r14= _frags[fragi] _frags++
131 LDR r0, [r13] ; r0 = _ref_frame_data
132 LDR r12,[r8], #4 ; r12= _frag_buf_offs[fragi] _frag_buf_offs++
133 TST r14,#OC_FRAG_CODED_FLAG
134 BEQ oslffri_arm_uncoded
135 CMP r10,r4 ; if (fragi>_fragi0)
136 ADD r0, r0, r12 ; r0 = _ref_frame_data + _frag_buf_offs[fragi]
137 BLGT loop_filter_h_arm
138 CMP r4, r6 ; if (_fragi0>_fragi_top)
139 BLGT loop_filter_v_arm
140 CMP r10,r11 ; if(fragi+1<fragi_end)===(fragi<fragi_end-1)
141 LDRLT r12,[r3] ; r12 = _frags[fragi+1]
142 ADD r0, r0, #8
143 ADD r10,r10,#1 ; r10 = fragi+1;
144 ANDLT r12,r12,#OC_FRAG_CODED_FLAG
145 CMPLT r12,#OC_FRAG_CODED_FLAG ; && _frags[fragi+1].coded==0
146 BLLT loop_filter_h_arm
147 CMP r10,r7 ; if (fragi<_fragi_bot)
148 LDRLT r12,[r3, r9, LSL #2] ; r12 = _frags[fragi+1+_nhfrags-1]
149 SUB r0, r0, #8
150 ADD r0, r0, r1, LSL #3
151 ANDLT r12,r12,#OC_FRAG_CODED_FLAG
152 CMPLT r12,#OC_FRAG_CODED_FLAG
153 BLLT loop_filter_v_arm
154 CMP r10,r11 ; while(fragi<=fragi_end-1)
155 BLE oslffri_arm_lp2
156 MOV r4, r10 ; r4 = fragi0 += _nhfrags
157 CMP r4, r5
158 BLT oslffri_arm_lp1
159 oslffri_arm_end
160 LDMFD r13!,{r0,r4-r11,PC}
161 oslffri_arm_uncoded
162 ADD r10,r10,#1
163 CMP r10,r11
164 BLE oslffri_arm_lp2
165 MOV r4, r10 ; r4 = _fragi0 += _nhfrags
166 CMP r4, r5
167 BLT oslffri_arm_lp1
168 LDMFD r13!,{r0,r4-r11,PC}
169 ENDP
171 [ OC_ARM_ASM_MEDIA
172 EXPORT oc_loop_filter_init_v6
173 EXPORT oc_loop_filter_frag_rows_v6
175 oc_loop_filter_init_v6 PROC
176 ; r0 = _bv
177 ; r1 = _flimit (=L from the spec)
178 MVN r1, r1, LSL #1 ; r1 = <0xFFFFFF|255-2*L>
179 AND r1, r1, #255 ; r1 = ll=r1&0xFF
180 ORR r1, r1, r1, LSL #8 ; r1 = <ll|ll>
181 PKHBT r1, r1, r1, LSL #16 ; r1 = <ll|ll|ll|ll>
182 STR r1, [r0]
183 MOV PC,r14
184 ENDP
186 ; We could use the same strategy as the v filter below, but that would require
187 ; 40 instructions to load the data and transpose it into columns and another
188 ; 32 to write out the results at the end, plus the 52 instructions to do the
189 ; filtering itself.
190 ; This is slightly less, and less code, even assuming we could have shared the
191 ; 52 instructions in the middle with the other function.
192 ; It executes slightly fewer instructions than the ARMv6 approach David Conrad
193 ; proposed for FFmpeg, but not by much:
194 ; http://lists.mplayerhq.hu/pipermail/ffmpeg-devel/2010-February/083141.html
195 ; His is a lot less code, though, because it only does two rows at once instead
196 ; of four.
197 loop_filter_h_v6 PROC
198 ; r0 = unsigned char *_pix
199 ; r1 = int _ystride
200 ; r2 = int _ll
201 ; preserves r0-r3
202 STMFD r13!,{r4-r11,r14}
203 LDR r12,=0x10003
204 BL loop_filter_h_core_v6
205 ADD r0, r0, r1, LSL #2
206 BL loop_filter_h_core_v6
207 SUB r0, r0, r1, LSL #2
208 LDMFD r13!,{r4-r11,PC}
209 ENDP
211 loop_filter_h_core_v6 PROC
212 ; r0 = unsigned char *_pix
213 ; r1 = int _ystride
214 ; r2 = int _ll
215 ; r12= 0x10003
216 ; Preserves r0-r3, r12; Clobbers r4-r11.
217 LDR r4,[r0, #-2]! ; r4 = <p3|p2|p1|p0>
218 ; Single issue
219 LDR r5,[r0, r1]! ; r5 = <q3|q2|q1|q0>
220 UXTB16 r6, r4, ROR #16 ; r6 = <p0|p2>
221 UXTB16 r4, r4, ROR #8 ; r4 = <p3|p1>
222 UXTB16 r7, r5, ROR #16 ; r7 = <q0|q2>
223 UXTB16 r5, r5, ROR #8 ; r5 = <q3|q1>
224 PKHBT r8, r4, r5, LSL #16 ; r8 = <__|q1|__|p1>
225 PKHBT r9, r6, r7, LSL #16 ; r9 = <__|q2|__|p2>
226 SSUB16 r6, r4, r6 ; r6 = <p3-p0|p1-p2>
227 SMLAD r6, r6, r12,r12 ; r6 = <????|(p3-p0)+3*(p1-p2)+3>
228 SSUB16 r7, r5, r7 ; r7 = <q3-q0|q1-q2>
229 SMLAD r7, r7, r12,r12 ; r7 = <????|(q0-q3)+3*(q2-q1)+4>
230 LDR r4,[r0, r1]! ; r4 = <r3|r2|r1|r0>
231 MOV r6, r6, ASR #3 ; r6 = <??????|(p3-p0)+3*(p1-p2)+3>>3>
232 LDR r5,[r0, r1]! ; r5 = <s3|s2|s1|s0>
233 PKHBT r11,r6, r7, LSL #13 ; r11= <??|-R_q|??|-R_p>
234 UXTB16 r6, r4, ROR #16 ; r6 = <r0|r2>
235 UXTB16 r11,r11 ; r11= <__|-R_q|__|-R_p>
236 UXTB16 r4, r4, ROR #8 ; r4 = <r3|r1>
237 UXTB16 r7, r5, ROR #16 ; r7 = <s0|s2>
238 PKHBT r10,r6, r7, LSL #16 ; r10= <__|s2|__|r2>
239 SSUB16 r6, r4, r6 ; r6 = <r3-r0|r1-r2>
240 UXTB16 r5, r5, ROR #8 ; r5 = <s3|s1>
241 SMLAD r6, r6, r12,r12 ; r6 = <????|(r3-r0)+3*(r2-r1)+3>
242 SSUB16 r7, r5, r7 ; r7 = <r3-r0|r1-r2>
243 SMLAD r7, r7, r12,r12 ; r7 = <????|(s0-s3)+3*(s2-s1)+4>
244 ORR r9, r9, r10, LSL #8 ; r9 = <s2|q2|r2|p2>
245 MOV r6, r6, ASR #3 ; r6 = <??????|(r0-r3)+3*(r2-r1)+4>>3>
246 PKHBT r10,r4, r5, LSL #16 ; r10= <__|s1|__|r1>
247 PKHBT r6, r6, r7, LSL #13 ; r6 = <??|-R_s|??|-R_r>
248 ORR r8, r8, r10, LSL #8 ; r8 = <s1|q1|r1|p1>
249 UXTB16 r6, r6 ; r6 = <__|-R_s|__|-R_r>
250 MOV r10,#0
251 ORR r6, r11,r6, LSL #8 ; r6 = <-R_s|-R_q|-R_r|-R_p>
252 ; Single issue
253 ; There's no min, max or abs instruction.
254 ; SSUB8 and SEL will work for abs, and we can do all the rest with
255 ; unsigned saturated adds, which means the GE flags are still all
256 ; set when we're done computing lflim(abs(R_i),L).
257 ; This allows us to both add and subtract, and split the results by
258 ; the original sign of R_i.
259 SSUB8 r7, r10,r6
260 ; Single issue
261 SEL r7, r7, r6 ; r7 = abs(R_i)
262 ; Single issue
263 UQADD8 r4, r7, r2 ; r4 = 255-max(2*L-abs(R_i),0)
264 ; Single issue
265 UQADD8 r7, r7, r4
266 ; Single issue
267 UQSUB8 r7, r7, r4 ; r7 = min(abs(R_i),max(2*L-abs(R_i),0))
268 ; Single issue
269 UQSUB8 r4, r8, r7
270 UQADD8 r5, r9, r7
271 UQADD8 r8, r8, r7
272 UQSUB8 r9, r9, r7
273 SEL r8, r8, r4 ; r8 = p1+lflim(R_i,L)
274 SEL r9, r9, r5 ; r9 = p2-lflim(R_i,L)
275 MOV r5, r9, LSR #24 ; r5 = s2
276 STRB r5, [r0,#2]!
277 MOV r4, r8, LSR #24 ; r4 = s1
278 STRB r4, [r0,#-1]
279 MOV r5, r9, LSR #8 ; r5 = r2
280 STRB r5, [r0,-r1]!
281 MOV r4, r8, LSR #8 ; r4 = r1
282 STRB r4, [r0,#-1]
283 MOV r5, r9, LSR #16 ; r5 = q2
284 STRB r5, [r0,-r1]!
285 MOV r4, r8, LSR #16 ; r4 = q1
286 STRB r4, [r0,#-1]
287 ; Single issue
288 STRB r9, [r0,-r1]!
289 ; Single issue
290 STRB r8, [r0,#-1]
291 MOV PC,r14
292 ENDP
294 ; This uses the same strategy as the MMXEXT version for x86, except that UHADD8
295 ; computes (a+b>>1) instead of (a+b+1>>1) like PAVGB.
296 ; This works just as well, with the following procedure for computing the
297 ; filter value, f:
298 ; u = ~UHADD8(p1,~p2);
299 ; v = UHADD8(~p1,p2);
300 ; m = v-u;
301 ; a = m^UHADD8(m^p0,m^~p3);
302 ; f = UHADD8(UHADD8(a,u1),v1);
303 ; where f = 127+R, with R in [-127,128] defined as in the spec.
304 ; This is exactly the same amount of arithmetic as the version that uses PAVGB
305 ; as the basic operator.
306 ; It executes about 2/3 the number of instructions of David Conrad's approach,
307 ; but requires more code, because it does all eight columns at once, instead
308 ; of four at a time.
309 loop_filter_v_v6 PROC
310 ; r0 = unsigned char *_pix
311 ; r1 = int _ystride
312 ; r2 = int _ll
313 ; preserves r0-r11
314 STMFD r13!,{r4-r11,r14}
315 LDRD r6, [r0, -r1]! ; r7, r6 = <p5|p1>
316 LDRD r4, [r0, -r1] ; r5, r4 = <p4|p0>
317 LDRD r8, [r0, r1]! ; r9, r8 = <p6|p2>
318 MVN r14,r6 ; r14= ~p1
319 LDRD r10,[r0, r1] ; r11,r10= <p7|p3>
320 ; Filter the first four columns.
321 MVN r12,r8 ; r12= ~p2
322 UHADD8 r14,r14,r8 ; r14= v1=~p1+p2>>1
323 UHADD8 r12,r12,r6 ; r12= p1+~p2>>1
324 MVN r10, r10 ; r10=~p3
325 MVN r12,r12 ; r12= u1=~p1+p2+1>>1
326 SSUB8 r14,r14,r12 ; r14= m1=v1-u1
327 ; Single issue
328 EOR r4, r4, r14 ; r4 = m1^p0
329 EOR r10,r10,r14 ; r10= m1^~p3
330 UHADD8 r4, r4, r10 ; r4 = (m1^p0)+(m1^~p3)>>1
331 ; Single issue
332 EOR r4, r4, r14 ; r4 = a1=m1^((m1^p0)+(m1^~p3)>>1)
333 SADD8 r14,r14,r12 ; r14= v1=m1+u1
334 UHADD8 r4, r4, r12 ; r4 = a1+u1>>1
335 MVN r12,r9 ; r12= ~p6
336 UHADD8 r4, r4, r14 ; r4 = f1=(a1+u1>>1)+v1>>1
337 ; Filter the second four columns.
338 MVN r14,r7 ; r14= ~p5
339 UHADD8 r12,r12,r7 ; r12= p5+~p6>>1
340 UHADD8 r14,r14,r9 ; r14= v2=~p5+p6>>1
341 MVN r12,r12 ; r12= u2=~p5+p6+1>>1
342 MVN r11,r11 ; r11=~p7
343 SSUB8 r10,r14,r12 ; r10= m2=v2-u2
344 ; Single issue
345 EOR r5, r5, r10 ; r5 = m2^p4
346 EOR r11,r11,r10 ; r11= m2^~p7
347 UHADD8 r5, r5, r11 ; r5 = (m2^p4)+(m2^~p7)>>1
348 ; Single issue
349 EOR r5, r5, r10 ; r5 = a2=m2^((m2^p4)+(m2^~p7)>>1)
350 ; Single issue
351 UHADD8 r5, r5, r12 ; r5 = a2+u2>>1
352 LDR r12,=0x7F7F7F7F ; r12 = {127}x4
353 UHADD8 r5, r5, r14 ; r5 = f2=(a2+u2>>1)+v2>>1
354 ; Now split f[i] by sign.
355 ; There's no min or max instruction.
356 ; We could use SSUB8 and SEL, but this is just as many instructions and
357 ; dual issues more (for v7 without NEON).
358 UQSUB8 r10,r4, r12 ; r10= R_i>0?R_i:0
359 UQSUB8 r4, r12,r4 ; r4 = R_i<0?-R_i:0
360 UQADD8 r11,r10,r2 ; r11= 255-max(2*L-abs(R_i<0),0)
361 UQADD8 r14,r4, r2 ; r14= 255-max(2*L-abs(R_i>0),0)
362 UQADD8 r10,r10,r11
363 UQADD8 r4, r4, r14
364 UQSUB8 r10,r10,r11 ; r10= min(abs(R_i<0),max(2*L-abs(R_i<0),0))
365 UQSUB8 r4, r4, r14 ; r4 = min(abs(R_i>0),max(2*L-abs(R_i>0),0))
366 UQSUB8 r11,r5, r12 ; r11= R_i>0?R_i:0
367 UQADD8 r6, r6, r10
368 UQSUB8 r8, r8, r10
369 UQSUB8 r5, r12,r5 ; r5 = R_i<0?-R_i:0
370 UQSUB8 r6, r6, r4 ; r6 = p1+lflim(R_i,L)
371 UQADD8 r8, r8, r4 ; r8 = p2-lflim(R_i,L)
372 UQADD8 r10,r11,r2 ; r10= 255-max(2*L-abs(R_i<0),0)
373 UQADD8 r14,r5, r2 ; r14= 255-max(2*L-abs(R_i>0),0)
374 UQADD8 r11,r11,r10
375 UQADD8 r5, r5, r14
376 UQSUB8 r11,r11,r10 ; r11= min(abs(R_i<0),max(2*L-abs(R_i<0),0))
377 UQSUB8 r5, r5, r14 ; r5 = min(abs(R_i>0),max(2*L-abs(R_i>0),0))
378 UQADD8 r7, r7, r11
379 UQSUB8 r9, r9, r11
380 UQSUB8 r7, r7, r5 ; r7 = p5+lflim(R_i,L)
381 STRD r6, [r0, -r1] ; [p5:p1] = [r7: r6]
382 UQADD8 r9, r9, r5 ; r9 = p6-lflim(R_i,L)
383 STRD r8, [r0] ; [p6:p2] = [r9: r8]
384 LDMFD r13!,{r4-r11,PC}
385 ENDP
387 oc_loop_filter_frag_rows_v6 PROC
388 ; r0 = _ref_frame_data
389 ; r1 = _ystride
390 ; r2 = _bv
391 ; r3 = _frags
392 ; r4 = _fragi0
393 ; r5 = _fragi0_end
394 ; r6 = _fragi_top
395 ; r7 = _fragi_bot
396 ; r8 = _frag_buf_offs
397 ; r9 = _nhfrags
398 MOV r12,r13
399 STMFD r13!,{r0,r4-r11,r14}
400 LDMFD r12,{r4-r9}
401 LDR r2, [r2] ; ll = *(int *)_bv
402 CMP r4, r5 ; if(_fragi0>=_fragi0_end)
403 BGE oslffri_v6_end ; bail
404 SUBS r9, r9, #1 ; r9 = _nhfrags-1 if (r9<=0)
405 BLE oslffri_v6_end ; bail
406 ADD r3, r3, r4, LSL #2 ; r3 = &_frags[fragi]
407 ADD r8, r8, r4, LSL #2 ; r8 = &_frag_buf_offs[fragi]
408 SUB r7, r7, r9 ; _fragi_bot -= _nhfrags;
409 oslffri_v6_lp1
410 MOV r10,r4 ; r10= fragi = _fragi0
411 ADD r11,r4, r9 ; r11= fragi_end-1=fragi+_nhfrags-1
412 oslffri_v6_lp2
413 LDR r14,[r3], #4 ; r14= _frags[fragi] _frags++
414 LDR r0, [r13] ; r0 = _ref_frame_data
415 LDR r12,[r8], #4 ; r12= _frag_buf_offs[fragi] _frag_buf_offs++
416 TST r14,#OC_FRAG_CODED_FLAG
417 BEQ oslffri_v6_uncoded
418 CMP r10,r4 ; if (fragi>_fragi0)
419 ADD r0, r0, r12 ; r0 = _ref_frame_data + _frag_buf_offs[fragi]
420 BLGT loop_filter_h_v6
421 CMP r4, r6 ; if (fragi0>_fragi_top)
422 BLGT loop_filter_v_v6
423 CMP r10,r11 ; if(fragi+1<fragi_end)===(fragi<fragi_end-1)
424 LDRLT r12,[r3] ; r12 = _frags[fragi+1]
425 ADD r0, r0, #8
426 ADD r10,r10,#1 ; r10 = fragi+1;
427 ANDLT r12,r12,#OC_FRAG_CODED_FLAG
428 CMPLT r12,#OC_FRAG_CODED_FLAG ; && _frags[fragi+1].coded==0
429 BLLT loop_filter_h_v6
430 CMP r10,r7 ; if (fragi<_fragi_bot)
431 LDRLT r12,[r3, r9, LSL #2] ; r12 = _frags[fragi+1+_nhfrags-1]
432 SUB r0, r0, #8
433 ADD r0, r0, r1, LSL #3
434 ANDLT r12,r12,#OC_FRAG_CODED_FLAG
435 CMPLT r12,#OC_FRAG_CODED_FLAG
436 BLLT loop_filter_v_v6
437 CMP r10,r11 ; while(fragi<=fragi_end-1)
438 BLE oslffri_v6_lp2
439 MOV r4, r10 ; r4 = fragi0 += nhfrags
440 CMP r4, r5
441 BLT oslffri_v6_lp1
442 oslffri_v6_end
443 LDMFD r13!,{r0,r4-r11,PC}
444 oslffri_v6_uncoded
445 ADD r10,r10,#1
446 CMP r10,r11
447 BLE oslffri_v6_lp2
448 MOV r4, r10 ; r4 = fragi0 += nhfrags
449 CMP r4, r5
450 BLT oslffri_v6_lp1
451 LDMFD r13!,{r0,r4-r11,PC}
452 ENDP
453 ]
455 [ OC_ARM_ASM_NEON
456 EXPORT oc_loop_filter_init_neon
457 EXPORT oc_loop_filter_frag_rows_neon
459 oc_loop_filter_init_neon PROC
460 ; r0 = _bv
461 ; r1 = _flimit (=L from the spec)
462 MOV r1, r1, LSL #1 ; r1 = 2*L
463 VDUP.S16 Q15, r1 ; Q15= 2L in U16s
464 VST1.64 {D30,D31}, [r0@128]
465 MOV PC,r14
466 ENDP
468 loop_filter_h_neon PROC
469 ; r0 = unsigned char *_pix
470 ; r1 = int _ystride
471 ; r2 = int *_bv
472 ; preserves r0-r3
473 ; We assume Q15= 2*L in U16s
474 ; My best guesses at cycle counts (and latency)--vvv
475 SUB r12,r0, #2
476 ; Doing a 2-element structure load saves doing two VTRN's below, at the
477 ; cost of using two more slower single-lane loads vs. the faster
478 ; all-lane loads.
479 ; It's less code this way, though, and benches a hair faster, but it
480 ; leaves D2 and D4 swapped.
481 VLD2.16 {D0[],D2[]}, [r12], r1 ; D0 = ____________1100 2,1
482 ; D2 = ____________3322
483 VLD2.16 {D4[],D6[]}, [r12], r1 ; D4 = ____________5544 2,1
484 ; D6 = ____________7766
485 VLD2.16 {D0[1],D2[1]},[r12], r1 ; D0 = ________99881100 3,1
486 ; D2 = ________BBAA3322
487 VLD2.16 {D4[1],D6[1]},[r12], r1 ; D4 = ________DDCC5544 3,1
488 ; D6 = ________FFEE7766
489 VLD2.16 {D0[2],D2[2]},[r12], r1 ; D0 = ____GGHH99881100 3,1
490 ; D2 = ____JJIIBBAA3322
491 VLD2.16 {D4[2],D6[2]},[r12], r1 ; D4 = ____KKLLDDCC5544 3,1
492 ; D6 = ____NNMMFFEE7766
493 VLD2.16 {D0[3],D2[3]},[r12], r1 ; D0 = PPOOGGHH99881100 3,1
494 ; D2 = RRQQJJIIBBAA3322
495 VLD2.16 {D4[3],D6[3]},[r12], r1 ; D4 = TTSSKKLLDDCC5544 3,1
496 ; D6 = VVUUNNMMFFEE7766
497 VTRN.8 D0, D4 ; D0 = SSOOKKGGCC884400 D4 = TTPPLLHHDD995511 1,1
498 VTRN.8 D2, D6 ; D2 = UUQQMMIIEEAA6622 D6 = VVRRNNJJFFBB7733 1,1
499 VSUBL.U8 Q0, D0, D6 ; Q0 = 00 - 33 in S16s 1,3
500 VSUBL.U8 Q8, D2, D4 ; Q8 = 22 - 11 in S16s 1,3
501 ADD r12,r0, #8
502 VADD.S16 Q0, Q0, Q8 ; 1,3
503 PLD [r12]
504 VADD.S16 Q0, Q0, Q8 ; 1,3
505 PLD [r12,r1]
506 VADD.S16 Q0, Q0, Q8 ; Q0 = [0-3]+3*[2-1] 1,3
507 PLD [r12,r1, LSL #1]
508 VRSHR.S16 Q0, Q0, #3 ; Q0 = f = ([0-3]+3*[2-1]+4)>>3 1,4
509 ADD r12,r12,r1, LSL #2
510 ; We want to do
511 ; f = CLAMP(MIN(-2L-f,0), f, MAX(2L-f,0))
512 ; = ((f >= 0) ? MIN( f ,MAX(2L- f ,0)) : MAX( f , MIN(-2L- f ,0)))
513 ; = ((f >= 0) ? MIN(|f|,MAX(2L-|f|,0)) : MAX(-|f|, MIN(-2L+|f|,0)))
514 ; = ((f >= 0) ? MIN(|f|,MAX(2L-|f|,0)) :-MIN( |f|,-MIN(-2L+|f|,0)))
515 ; = ((f >= 0) ? MIN(|f|,MAX(2L-|f|,0)) :-MIN( |f|, MAX( 2L-|f|,0)))
516 ; So we've reduced the left and right hand terms to be the same, except
517 ; for a negation.
518 ; Stall x3
519 VABS.S16 Q9, Q0 ; Q9 = |f| in U16s 1,4
520 PLD [r12,-r1]
521 VSHR.S16 Q0, Q0, #15 ; Q0 = -1 or 0 according to sign 1,3
522 PLD [r12]
523 VQSUB.U16 Q10,Q15,Q9 ; Q10= MAX(2L-|f|,0) in U16s 1,4
524 PLD [r12,r1]
525 VMOVL.U8 Q1, D2 ; Q2 = __UU__QQ__MM__II__EE__AA__66__22 2,3
526 PLD [r12,r1,LSL #1]
527 VMIN.U16 Q9, Q10,Q9 ; Q9 = MIN(|f|,MAX(2L-|f|)) 1,4
528 ADD r12,r12,r1, LSL #2
529 ; Now we need to correct for the sign of f.
530 ; For negative elements of Q0, we want to subtract the appropriate
531 ; element of Q9. For positive elements we want to add them. No NEON
532 ; instruction exists to do this, so we need to negate the negative
533 ; elements, and we can then just add them. a-b = a-(1+!b) = a-1+!b
534 VADD.S16 Q9, Q9, Q0 ; 1,3
535 PLD [r12,-r1]
536 VEOR.S16 Q9, Q9, Q0 ; Q9 = real value of f 1,3
537 ; Bah. No VRSBW.U8
538 ; Stall (just 1 as Q9 not needed to second pipeline stage. I think.)
539 VADDW.U8 Q2, Q9, D4 ; Q1 = xxTTxxPPxxLLxxHHxxDDxx99xx55xx11 1,3
540 VSUB.S16 Q1, Q1, Q9 ; Q2 = xxUUxxQQxxMMxxIIxxEExxAAxx66xx22 1,3
541 VQMOVUN.S16 D4, Q2 ; D4 = TTPPLLHHDD995511 1,1
542 VQMOVUN.S16 D2, Q1 ; D2 = UUQQMMIIEEAA6622 1,1
543 SUB r12,r0, #1
544 VTRN.8 D4, D2 ; D4 = QQPPIIHHAA992211 D2 = MMLLEEDD6655 1,1
545 VST1.16 {D4[0]}, [r12], r1
546 VST1.16 {D2[0]}, [r12], r1
547 VST1.16 {D4[1]}, [r12], r1
548 VST1.16 {D2[1]}, [r12], r1
549 VST1.16 {D4[2]}, [r12], r1
550 VST1.16 {D2[2]}, [r12], r1
551 VST1.16 {D4[3]}, [r12], r1
552 VST1.16 {D2[3]}, [r12], r1
553 MOV PC,r14
554 ENDP
556 loop_filter_v_neon PROC
557 ; r0 = unsigned char *_pix
558 ; r1 = int _ystride
559 ; r2 = int *_bv
560 ; preserves r0-r3
561 ; We assume Q15= 2*L in U16s
562 ; My best guesses at cycle counts (and latency)--vvv
563 SUB r12,r0, r1, LSL #1
564 VLD1.64 {D0}, [r12@64], r1 ; D0 = SSOOKKGGCC884400 2,1
565 VLD1.64 {D2}, [r12@64], r1 ; D2 = TTPPLLHHDD995511 2,1
566 VLD1.64 {D4}, [r12@64], r1 ; D4 = UUQQMMIIEEAA6622 2,1
567 VLD1.64 {D6}, [r12@64] ; D6 = VVRRNNJJFFBB7733 2,1
568 VSUBL.U8 Q8, D4, D2 ; Q8 = 22 - 11 in S16s 1,3
569 VSUBL.U8 Q0, D0, D6 ; Q0 = 00 - 33 in S16s 1,3
570 ADD r12, #8
571 VADD.S16 Q0, Q0, Q8 ; 1,3
572 PLD [r12]
573 VADD.S16 Q0, Q0, Q8 ; 1,3
574 PLD [r12,r1]
575 VADD.S16 Q0, Q0, Q8 ; Q0 = [0-3]+3*[2-1] 1,3
576 SUB r12, r0, r1
577 VRSHR.S16 Q0, Q0, #3 ; Q0 = f = ([0-3]+3*[2-1]+4)>>3 1,4
578 ; We want to do
579 ; f = CLAMP(MIN(-2L-f,0), f, MAX(2L-f,0))
580 ; = ((f >= 0) ? MIN( f ,MAX(2L- f ,0)) : MAX( f , MIN(-2L- f ,0)))
581 ; = ((f >= 0) ? MIN(|f|,MAX(2L-|f|,0)) : MAX(-|f|, MIN(-2L+|f|,0)))
582 ; = ((f >= 0) ? MIN(|f|,MAX(2L-|f|,0)) :-MIN( |f|,-MIN(-2L+|f|,0)))
583 ; = ((f >= 0) ? MIN(|f|,MAX(2L-|f|,0)) :-MIN( |f|, MAX( 2L-|f|,0)))
584 ; So we've reduced the left and right hand terms to be the same, except
585 ; for a negation.
586 ; Stall x3
587 VABS.S16 Q9, Q0 ; Q9 = |f| in U16s 1,4
588 VSHR.S16 Q0, Q0, #15 ; Q0 = -1 or 0 according to sign 1,3
589 ; Stall x2
590 VQSUB.U16 Q10,Q15,Q9 ; Q10= MAX(2L-|f|,0) in U16s 1,4
591 VMOVL.U8 Q2, D4 ; Q2 = __UU__QQ__MM__II__EE__AA__66__22 2,3
592 ; Stall x2
593 VMIN.U16 Q9, Q10,Q9 ; Q9 = MIN(|f|,MAX(2L-|f|)) 1,4
594 ; Now we need to correct for the sign of f.
595 ; For negative elements of Q0, we want to subtract the appropriate
596 ; element of Q9. For positive elements we want to add them. No NEON
597 ; instruction exists to do this, so we need to negate the negative
598 ; elements, and we can then just add them. a-b = a-(1+!b) = a-1+!b
599 ; Stall x3
600 VADD.S16 Q9, Q9, Q0 ; 1,3
601 ; Stall x2
602 VEOR.S16 Q9, Q9, Q0 ; Q9 = real value of f 1,3
603 ; Bah. No VRSBW.U8
604 ; Stall (just 1 as Q9 not needed to second pipeline stage. I think.)
605 VADDW.U8 Q1, Q9, D2 ; Q1 = xxTTxxPPxxLLxxHHxxDDxx99xx55xx11 1,3
606 VSUB.S16 Q2, Q2, Q9 ; Q2 = xxUUxxQQxxMMxxIIxxEExxAAxx66xx22 1,3
607 VQMOVUN.S16 D2, Q1 ; D2 = TTPPLLHHDD995511 1,1
608 VQMOVUN.S16 D4, Q2 ; D4 = UUQQMMIIEEAA6622 1,1
609 VST1.64 {D2}, [r12@64], r1
610 VST1.64 {D4}, [r12@64], r1
611 MOV PC,r14
612 ENDP
614 oc_loop_filter_frag_rows_neon PROC
615 ; r0 = _ref_frame_data
616 ; r1 = _ystride
617 ; r2 = _bv
618 ; r3 = _frags
619 ; r4 = _fragi0
620 ; r5 = _fragi0_end
621 ; r6 = _fragi_top
622 ; r7 = _fragi_bot
623 ; r8 = _frag_buf_offs
624 ; r9 = _nhfrags
625 MOV r12,r13
626 STMFD r13!,{r0,r4-r11,r14}
627 LDMFD r12,{r4-r9}
628 CMP r4, r5 ; if(_fragi0>=_fragi0_end)
629 BGE oslffri_neon_end; bail
630 SUBS r9, r9, #1 ; r9 = _nhfrags-1 if (r9<=0)
631 BLE oslffri_neon_end ; bail
632 VLD1.64 {D30,D31}, [r2@128] ; Q15= 2L in U16s
633 ADD r3, r3, r4, LSL #2 ; r3 = &_frags[fragi]
634 ADD r8, r8, r4, LSL #2 ; r8 = &_frag_buf_offs[fragi]
635 SUB r7, r7, r9 ; _fragi_bot -= _nhfrags;
636 oslffri_neon_lp1
637 MOV r10,r4 ; r10= fragi = _fragi0
638 ADD r11,r4, r9 ; r11= fragi_end-1=fragi+_nhfrags-1
639 oslffri_neon_lp2
640 LDR r14,[r3], #4 ; r14= _frags[fragi] _frags++
641 LDR r0, [r13] ; r0 = _ref_frame_data
642 LDR r12,[r8], #4 ; r12= _frag_buf_offs[fragi] _frag_buf_offs++
643 TST r14,#OC_FRAG_CODED_FLAG
644 BEQ oslffri_neon_uncoded
645 CMP r10,r4 ; if (fragi>_fragi0)
646 ADD r0, r0, r12 ; r0 = _ref_frame_data + _frag_buf_offs[fragi]
647 BLGT loop_filter_h_neon
648 CMP r4, r6 ; if (_fragi0>_fragi_top)
649 BLGT loop_filter_v_neon
650 CMP r10,r11 ; if(fragi+1<fragi_end)===(fragi<fragi_end-1)
651 LDRLT r12,[r3] ; r12 = _frags[fragi+1]
652 ADD r0, r0, #8
653 ADD r10,r10,#1 ; r10 = fragi+1;
654 ANDLT r12,r12,#OC_FRAG_CODED_FLAG
655 CMPLT r12,#OC_FRAG_CODED_FLAG ; && _frags[fragi+1].coded==0
656 BLLT loop_filter_h_neon
657 CMP r10,r7 ; if (fragi<_fragi_bot)
658 LDRLT r12,[r3, r9, LSL #2] ; r12 = _frags[fragi+1+_nhfrags-1]
659 SUB r0, r0, #8
660 ADD r0, r0, r1, LSL #3
661 ANDLT r12,r12,#OC_FRAG_CODED_FLAG
662 CMPLT r12,#OC_FRAG_CODED_FLAG
663 BLLT loop_filter_v_neon
664 CMP r10,r11 ; while(fragi<=fragi_end-1)
665 BLE oslffri_neon_lp2
666 MOV r4, r10 ; r4 = _fragi0 += _nhfrags
667 CMP r4, r5
668 BLT oslffri_neon_lp1
669 oslffri_neon_end
670 LDMFD r13!,{r0,r4-r11,PC}
671 oslffri_neon_uncoded
672 ADD r10,r10,#1
673 CMP r10,r11
674 BLE oslffri_neon_lp2
675 MOV r4, r10 ; r4 = _fragi0 += _nhfrags
676 CMP r4, r5
677 BLT oslffri_neon_lp1
678 LDMFD r13!,{r0,r4-r11,PC}
679 ENDP
680 ]
682 END