media/libvorbis/lib/vorbis_lsp.c

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

     1 /********************************************************************
     2  *                                                                  *
     3  * THIS FILE IS PART OF THE OggVorbis SOFTWARE CODEC SOURCE CODE.   *
     4  * USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS     *
     5  * GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE *
     6  * IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING.       *
     7  *                                                                  *
     8  * THE OggVorbis SOURCE CODE IS (C) COPYRIGHT 1994-2009             *
     9  * by the Xiph.Org Foundation http://www.xiph.org/                  *
    10  *                                                                  *
    11  ********************************************************************
    13   function: LSP (also called LSF) conversion routines
    14   last mod: $Id: lsp.c 17538 2010-10-15 02:52:29Z tterribe $
    16   The LSP generation code is taken (with minimal modification and a
    17   few bugfixes) from "On the Computation of the LSP Frequencies" by
    18   Joseph Rothweiler (see http://www.rothweiler.us for contact info).
    19   The paper is available at:
    21   http://www.myown1.com/joe/lsf
    23  ********************************************************************/
    25 /* Note that the lpc-lsp conversion finds the roots of polynomial with
    26    an iterative root polisher (CACM algorithm 283).  It *is* possible
    27    to confuse this algorithm into not converging; that should only
    28    happen with absurdly closely spaced roots (very sharp peaks in the
    29    LPC f response) which in turn should be impossible in our use of
    30    the code.  If this *does* happen anyway, it's a bug in the floor
    31    finder; find the cause of the confusion (probably a single bin
    32    spike or accidental near-float-limit resolution problems) and
    33    correct it. */
    35 #include <math.h>
    36 #include <string.h>
    37 #include <stdlib.h>
    38 #include "lsp.h"
    39 #include "os.h"
    40 #include "misc.h"
    41 #include "lookup.h"
    42 #include "scales.h"
    44 /* three possible LSP to f curve functions; the exact computation
    45    (float), a lookup based float implementation, and an integer
    46    implementation.  The float lookup is likely the optimal choice on
    47    any machine with an FPU.  The integer implementation is *not* fixed
    48    point (due to the need for a large dynamic range and thus a
    49    separately tracked exponent) and thus much more complex than the
    50    relatively simple float implementations. It's mostly for future
    51    work on a fully fixed point implementation for processors like the
    52    ARM family. */
    54 /* define either of these (preferably FLOAT_LOOKUP) to have faster
    55    but less precise implementation. */
    56 #undef FLOAT_LOOKUP
    57 #undef INT_LOOKUP
    59 #ifdef FLOAT_LOOKUP
    60 #include "vorbis_lookup.c" /* catch this in the build system; we #include for
    61                        compilers (like gcc) that can't inline across
    62                        modules */
    64 /* side effect: changes *lsp to cosines of lsp */
    65 void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m,
    66                             float amp,float ampoffset){
    67   int i;
    68   float wdel=M_PI/ln;
    69   vorbis_fpu_control fpu;
    71   vorbis_fpu_setround(&fpu);
    72   for(i=0;i<m;i++)lsp[i]=vorbis_coslook(lsp[i]);
    74   i=0;
    75   while(i<n){
    76     int k=map[i];
    77     int qexp;
    78     float p=.7071067812f;
    79     float q=.7071067812f;
    80     float w=vorbis_coslook(wdel*k);
    81     float *ftmp=lsp;
    82     int c=m>>1;
    84     while(c--){
    85       q*=ftmp[0]-w;
    86       p*=ftmp[1]-w;
    87       ftmp+=2;
    88     }
    90     if(m&1){
    91       /* odd order filter; slightly assymetric */
    92       /* the last coefficient */
    93       q*=ftmp[0]-w;
    94       q*=q;
    95       p*=p*(1.f-w*w);
    96     }else{
    97       /* even order filter; still symmetric */
    98       q*=q*(1.f+w);
    99       p*=p*(1.f-w);
   100     }
   102     q=frexp(p+q,&qexp);
   103     q=vorbis_fromdBlook(amp*
   104                         vorbis_invsqlook(q)*
   105                         vorbis_invsq2explook(qexp+m)-
   106                         ampoffset);
   108     do{
   109       curve[i++]*=q;
   110     }while(map[i]==k);
   111   }
   112   vorbis_fpu_restore(fpu);
   113 }
   115 #else
   117 #ifdef INT_LOOKUP
   118 #include "vorbis_lookup.c" /* catch this in the build system; we #include for
   119                        compilers (like gcc) that can't inline across
   120                        modules */
   122 static const int MLOOP_1[64]={
   123    0,10,11,11, 12,12,12,12, 13,13,13,13, 13,13,13,13,
   124   14,14,14,14, 14,14,14,14, 14,14,14,14, 14,14,14,14,
   125   15,15,15,15, 15,15,15,15, 15,15,15,15, 15,15,15,15,
   126   15,15,15,15, 15,15,15,15, 15,15,15,15, 15,15,15,15,
   127 };
   129 static const int MLOOP_2[64]={
   130   0,4,5,5, 6,6,6,6, 7,7,7,7, 7,7,7,7,
   131   8,8,8,8, 8,8,8,8, 8,8,8,8, 8,8,8,8,
   132   9,9,9,9, 9,9,9,9, 9,9,9,9, 9,9,9,9,
   133   9,9,9,9, 9,9,9,9, 9,9,9,9, 9,9,9,9,
   134 };
   136 static const int MLOOP_3[8]={0,1,2,2,3,3,3,3};
   139 /* side effect: changes *lsp to cosines of lsp */
   140 void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m,
   141                             float amp,float ampoffset){
   143   /* 0 <= m < 256 */
   145   /* set up for using all int later */
   146   int i;
   147   int ampoffseti=rint(ampoffset*4096.f);
   148   int ampi=rint(amp*16.f);
   149   long *ilsp=alloca(m*sizeof(*ilsp));
   150   for(i=0;i<m;i++)ilsp[i]=vorbis_coslook_i(lsp[i]/M_PI*65536.f+.5f);
   152   i=0;
   153   while(i<n){
   154     int j,k=map[i];
   155     unsigned long pi=46341; /* 2**-.5 in 0.16 */
   156     unsigned long qi=46341;
   157     int qexp=0,shift;
   158     long wi=vorbis_coslook_i(k*65536/ln);
   160     qi*=labs(ilsp[0]-wi);
   161     pi*=labs(ilsp[1]-wi);
   163     for(j=3;j<m;j+=2){
   164       if(!(shift=MLOOP_1[(pi|qi)>>25]))
   165         if(!(shift=MLOOP_2[(pi|qi)>>19]))
   166           shift=MLOOP_3[(pi|qi)>>16];
   167       qi=(qi>>shift)*labs(ilsp[j-1]-wi);
   168       pi=(pi>>shift)*labs(ilsp[j]-wi);
   169       qexp+=shift;
   170     }
   171     if(!(shift=MLOOP_1[(pi|qi)>>25]))
   172       if(!(shift=MLOOP_2[(pi|qi)>>19]))
   173         shift=MLOOP_3[(pi|qi)>>16];
   175     /* pi,qi normalized collectively, both tracked using qexp */
   177     if(m&1){
   178       /* odd order filter; slightly assymetric */
   179       /* the last coefficient */
   180       qi=(qi>>shift)*labs(ilsp[j-1]-wi);
   181       pi=(pi>>shift)<<14;
   182       qexp+=shift;
   184       if(!(shift=MLOOP_1[(pi|qi)>>25]))
   185         if(!(shift=MLOOP_2[(pi|qi)>>19]))
   186           shift=MLOOP_3[(pi|qi)>>16];
   188       pi>>=shift;
   189       qi>>=shift;
   190       qexp+=shift-14*((m+1)>>1);
   192       pi=((pi*pi)>>16);
   193       qi=((qi*qi)>>16);
   194       qexp=qexp*2+m;
   196       pi*=(1<<14)-((wi*wi)>>14);
   197       qi+=pi>>14;
   199     }else{
   200       /* even order filter; still symmetric */
   202       /* p*=p(1-w), q*=q(1+w), let normalization drift because it isn't
   203          worth tracking step by step */
   205       pi>>=shift;
   206       qi>>=shift;
   207       qexp+=shift-7*m;
   209       pi=((pi*pi)>>16);
   210       qi=((qi*qi)>>16);
   211       qexp=qexp*2+m;
   213       pi*=(1<<14)-wi;
   214       qi*=(1<<14)+wi;
   215       qi=(qi+pi)>>14;
   217     }
   220     /* we've let the normalization drift because it wasn't important;
   221        however, for the lookup, things must be normalized again.  We
   222        need at most one right shift or a number of left shifts */
   224     if(qi&0xffff0000){ /* checks for 1.xxxxxxxxxxxxxxxx */
   225       qi>>=1; qexp++;
   226     }else
   227       while(qi && !(qi&0x8000)){ /* checks for 0.0xxxxxxxxxxxxxxx or less*/
   228         qi<<=1; qexp--;
   229       }
   231     amp=vorbis_fromdBlook_i(ampi*                     /*  n.4         */
   232                             vorbis_invsqlook_i(qi,qexp)-
   233                                                       /*  m.8, m+n<=8 */
   234                             ampoffseti);              /*  8.12[0]     */
   236     curve[i]*=amp;
   237     while(map[++i]==k)curve[i]*=amp;
   238   }
   239 }
   241 #else
   243 /* old, nonoptimized but simple version for any poor sap who needs to
   244    figure out what the hell this code does, or wants the other
   245    fraction of a dB precision */
   247 /* side effect: changes *lsp to cosines of lsp */
   248 void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m,
   249                             float amp,float ampoffset){
   250   int i;
   251   float wdel=M_PI/ln;
   252   for(i=0;i<m;i++)lsp[i]=2.f*cos(lsp[i]);
   254   i=0;
   255   while(i<n){
   256     int j,k=map[i];
   257     float p=.5f;
   258     float q=.5f;
   259     float w=2.f*cos(wdel*k);
   260     for(j=1;j<m;j+=2){
   261       q *= w-lsp[j-1];
   262       p *= w-lsp[j];
   263     }
   264     if(j==m){
   265       /* odd order filter; slightly assymetric */
   266       /* the last coefficient */
   267       q*=w-lsp[j-1];
   268       p*=p*(4.f-w*w);
   269       q*=q;
   270     }else{
   271       /* even order filter; still symmetric */
   272       p*=p*(2.f-w);
   273       q*=q*(2.f+w);
   274     }
   276     q=fromdB(amp/sqrt(p+q)-ampoffset);
   278     curve[i]*=q;
   279     while(map[++i]==k)curve[i]*=q;
   280   }
   281 }
   283 #endif
   284 #endif
   286 static void cheby(float *g, int ord) {
   287   int i, j;
   289   g[0] *= .5f;
   290   for(i=2; i<= ord; i++) {
   291     for(j=ord; j >= i; j--) {
   292       g[j-2] -= g[j];
   293       g[j] += g[j];
   294     }
   295   }
   296 }
   298 static int comp(const void *a,const void *b){
   299   return (*(float *)a<*(float *)b)-(*(float *)a>*(float *)b);
   300 }
   302 /* Newton-Raphson-Maehly actually functioned as a decent root finder,
   303    but there are root sets for which it gets into limit cycles
   304    (exacerbated by zero suppression) and fails.  We can't afford to
   305    fail, even if the failure is 1 in 100,000,000, so we now use
   306    Laguerre and later polish with Newton-Raphson (which can then
   307    afford to fail) */
   309 #define EPSILON 10e-7
   310 static int Laguerre_With_Deflation(float *a,int ord,float *r){
   311   int i,m;
   312   double lastdelta=0.f;
   313   double *defl=alloca(sizeof(*defl)*(ord+1));
   314   for(i=0;i<=ord;i++)defl[i]=a[i];
   316   for(m=ord;m>0;m--){
   317     double new=0.f,delta;
   319     /* iterate a root */
   320     while(1){
   321       double p=defl[m],pp=0.f,ppp=0.f,denom;
   323       /* eval the polynomial and its first two derivatives */
   324       for(i=m;i>0;i--){
   325         ppp = new*ppp + pp;
   326         pp  = new*pp  + p;
   327         p   = new*p   + defl[i-1];
   328       }
   330       /* Laguerre's method */
   331       denom=(m-1) * ((m-1)*pp*pp - m*p*ppp);
   332       if(denom<0)
   333         return(-1);  /* complex root!  The LPC generator handed us a bad filter */
   335       if(pp>0){
   336         denom = pp + sqrt(denom);
   337         if(denom<EPSILON)denom=EPSILON;
   338       }else{
   339         denom = pp - sqrt(denom);
   340         if(denom>-(EPSILON))denom=-(EPSILON);
   341       }
   343       delta  = m*p/denom;
   344       new   -= delta;
   346       if(delta<0.f)delta*=-1;
   348       if(fabs(delta/new)<10e-12)break;
   349       lastdelta=delta;
   350     }
   352     r[m-1]=new;
   354     /* forward deflation */
   356     for(i=m;i>0;i--)
   357       defl[i-1]+=new*defl[i];
   358     defl++;
   360   }
   361   return(0);
   362 }
   365 /* for spit-and-polish only */
   366 static int Newton_Raphson(float *a,int ord,float *r){
   367   int i, k, count=0;
   368   double error=1.f;
   369   double *root=alloca(ord*sizeof(*root));
   371   for(i=0; i<ord;i++) root[i] = r[i];
   373   while(error>1e-20){
   374     error=0;
   376     for(i=0; i<ord; i++) { /* Update each point. */
   377       double pp=0.,delta;
   378       double rooti=root[i];
   379       double p=a[ord];
   380       for(k=ord-1; k>= 0; k--) {
   382         pp= pp* rooti + p;
   383         p = p * rooti + a[k];
   384       }
   386       delta = p/pp;
   387       root[i] -= delta;
   388       error+= delta*delta;
   389     }
   391     if(count>40)return(-1);
   393     count++;
   394   }
   396   /* Replaced the original bubble sort with a real sort.  With your
   397      help, we can eliminate the bubble sort in our lifetime. --Monty */
   399   for(i=0; i<ord;i++) r[i] = root[i];
   400   return(0);
   401 }
   404 /* Convert lpc coefficients to lsp coefficients */
   405 int vorbis_lpc_to_lsp(float *lpc,float *lsp,int m){
   406   int order2=(m+1)>>1;
   407   int g1_order,g2_order;
   408   float *g1=alloca(sizeof(*g1)*(order2+1));
   409   float *g2=alloca(sizeof(*g2)*(order2+1));
   410   float *g1r=alloca(sizeof(*g1r)*(order2+1));
   411   float *g2r=alloca(sizeof(*g2r)*(order2+1));
   412   int i;
   414   /* even and odd are slightly different base cases */
   415   g1_order=(m+1)>>1;
   416   g2_order=(m)  >>1;
   418   /* Compute the lengths of the x polynomials. */
   419   /* Compute the first half of K & R F1 & F2 polynomials. */
   420   /* Compute half of the symmetric and antisymmetric polynomials. */
   421   /* Remove the roots at +1 and -1. */
   423   g1[g1_order] = 1.f;
   424   for(i=1;i<=g1_order;i++) g1[g1_order-i] = lpc[i-1]+lpc[m-i];
   425   g2[g2_order] = 1.f;
   426   for(i=1;i<=g2_order;i++) g2[g2_order-i] = lpc[i-1]-lpc[m-i];
   428   if(g1_order>g2_order){
   429     for(i=2; i<=g2_order;i++) g2[g2_order-i] += g2[g2_order-i+2];
   430   }else{
   431     for(i=1; i<=g1_order;i++) g1[g1_order-i] -= g1[g1_order-i+1];
   432     for(i=1; i<=g2_order;i++) g2[g2_order-i] += g2[g2_order-i+1];
   433   }
   435   /* Convert into polynomials in cos(alpha) */
   436   cheby(g1,g1_order);
   437   cheby(g2,g2_order);
   439   /* Find the roots of the 2 even polynomials.*/
   440   if(Laguerre_With_Deflation(g1,g1_order,g1r) ||
   441      Laguerre_With_Deflation(g2,g2_order,g2r))
   442     return(-1);
   444   Newton_Raphson(g1,g1_order,g1r); /* if it fails, it leaves g1r alone */
   445   Newton_Raphson(g2,g2_order,g2r); /* if it fails, it leaves g2r alone */
   447   qsort(g1r,g1_order,sizeof(*g1r),comp);
   448   qsort(g2r,g2_order,sizeof(*g2r),comp);
   450   for(i=0;i<g1_order;i++)
   451     lsp[i*2] = acos(g1r[i]);
   453   for(i=0;i<g2_order;i++)
   454     lsp[i*2+1] = acos(g2r[i]);
   455   return(0);
   456 }

mercurial