modules/zlib/src/adler32.c

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

     1 /* adler32.c -- compute the Adler-32 checksum of a data stream
     2  * Copyright (C) 1995-2011 Mark Adler
     3  * For conditions of distribution and use, see copyright notice in zlib.h
     4  */
     6 /* @(#) $Id$ */
     8 #include "zutil.h"
    10 #define local static
    12 local uLong adler32_combine_ OF((uLong adler1, uLong adler2, z_off64_t len2));
    14 #define BASE 65521      /* largest prime smaller than 65536 */
    15 #define NMAX 5552
    16 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
    18 #define DO1(buf,i)  {adler += (buf)[i]; sum2 += adler;}
    19 #define DO2(buf,i)  DO1(buf,i); DO1(buf,i+1);
    20 #define DO4(buf,i)  DO2(buf,i); DO2(buf,i+2);
    21 #define DO8(buf,i)  DO4(buf,i); DO4(buf,i+4);
    22 #define DO16(buf)   DO8(buf,0); DO8(buf,8);
    24 /* use NO_DIVIDE if your processor does not do division in hardware --
    25    try it both ways to see which is faster */
    26 #ifdef NO_DIVIDE
    27 /* note that this assumes BASE is 65521, where 65536 % 65521 == 15
    28    (thank you to John Reiser for pointing this out) */
    29 #  define CHOP(a) \
    30     do { \
    31         unsigned long tmp = a >> 16; \
    32         a &= 0xffffUL; \
    33         a += (tmp << 4) - tmp; \
    34     } while (0)
    35 #  define MOD28(a) \
    36     do { \
    37         CHOP(a); \
    38         if (a >= BASE) a -= BASE; \
    39     } while (0)
    40 #  define MOD(a) \
    41     do { \
    42         CHOP(a); \
    43         MOD28(a); \
    44     } while (0)
    45 #  define MOD63(a) \
    46     do { /* this assumes a is not negative */ \
    47         z_off64_t tmp = a >> 32; \
    48         a &= 0xffffffffL; \
    49         a += (tmp << 8) - (tmp << 5) + tmp; \
    50         tmp = a >> 16; \
    51         a &= 0xffffL; \
    52         a += (tmp << 4) - tmp; \
    53         tmp = a >> 16; \
    54         a &= 0xffffL; \
    55         a += (tmp << 4) - tmp; \
    56         if (a >= BASE) a -= BASE; \
    57     } while (0)
    58 #else
    59 #  define MOD(a) a %= BASE
    60 #  define MOD28(a) a %= BASE
    61 #  define MOD63(a) a %= BASE
    62 #endif
    64 /* ========================================================================= */
    65 uLong ZEXPORT adler32(adler, buf, len)
    66     uLong adler;
    67     const Bytef *buf;
    68     uInt len;
    69 {
    70     unsigned long sum2;
    71     unsigned n;
    73     /* split Adler-32 into component sums */
    74     sum2 = (adler >> 16) & 0xffff;
    75     adler &= 0xffff;
    77     /* in case user likes doing a byte at a time, keep it fast */
    78     if (len == 1) {
    79         adler += buf[0];
    80         if (adler >= BASE)
    81             adler -= BASE;
    82         sum2 += adler;
    83         if (sum2 >= BASE)
    84             sum2 -= BASE;
    85         return adler | (sum2 << 16);
    86     }
    88     /* initial Adler-32 value (deferred check for len == 1 speed) */
    89     if (buf == Z_NULL)
    90         return 1L;
    92     /* in case short lengths are provided, keep it somewhat fast */
    93     if (len < 16) {
    94         while (len--) {
    95             adler += *buf++;
    96             sum2 += adler;
    97         }
    98         if (adler >= BASE)
    99             adler -= BASE;
   100         MOD28(sum2);            /* only added so many BASE's */
   101         return adler | (sum2 << 16);
   102     }
   104     /* do length NMAX blocks -- requires just one modulo operation */
   105     while (len >= NMAX) {
   106         len -= NMAX;
   107         n = NMAX / 16;          /* NMAX is divisible by 16 */
   108         do {
   109             DO16(buf);          /* 16 sums unrolled */
   110             buf += 16;
   111         } while (--n);
   112         MOD(adler);
   113         MOD(sum2);
   114     }
   116     /* do remaining bytes (less than NMAX, still just one modulo) */
   117     if (len) {                  /* avoid modulos if none remaining */
   118         while (len >= 16) {
   119             len -= 16;
   120             DO16(buf);
   121             buf += 16;
   122         }
   123         while (len--) {
   124             adler += *buf++;
   125             sum2 += adler;
   126         }
   127         MOD(adler);
   128         MOD(sum2);
   129     }
   131     /* return recombined sums */
   132     return adler | (sum2 << 16);
   133 }
   135 /* ========================================================================= */
   136 local uLong adler32_combine_(adler1, adler2, len2)
   137     uLong adler1;
   138     uLong adler2;
   139     z_off64_t len2;
   140 {
   141     unsigned long sum1;
   142     unsigned long sum2;
   143     unsigned rem;
   145     /* for negative len, return invalid adler32 as a clue for debugging */
   146     if (len2 < 0)
   147         return 0xffffffffUL;
   149     /* the derivation of this formula is left as an exercise for the reader */
   150     MOD63(len2);                /* assumes len2 >= 0 */
   151     rem = (unsigned)len2;
   152     sum1 = adler1 & 0xffff;
   153     sum2 = rem * sum1;
   154     MOD(sum2);
   155     sum1 += (adler2 & 0xffff) + BASE - 1;
   156     sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem;
   157     if (sum1 >= BASE) sum1 -= BASE;
   158     if (sum1 >= BASE) sum1 -= BASE;
   159     if (sum2 >= (BASE << 1)) sum2 -= (BASE << 1);
   160     if (sum2 >= BASE) sum2 -= BASE;
   161     return sum1 | (sum2 << 16);
   162 }
   164 /* ========================================================================= */
   165 uLong ZEXPORT adler32_combine(adler1, adler2, len2)
   166     uLong adler1;
   167     uLong adler2;
   168     z_off_t len2;
   169 {
   170     return adler32_combine_(adler1, adler2, len2);
   171 }
   173 uLong ZEXPORT adler32_combine64(adler1, adler2, len2)
   174     uLong adler1;
   175     uLong adler2;
   176     z_off64_t len2;
   177 {
   178     return adler32_combine_(adler1, adler2, len2);
   179 }

mercurial