modules/zlib/src/trees.c

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

     1 /* trees.c -- output deflated data using Huffman coding
     2  * Copyright (C) 1995-2012 Jean-loup Gailly
     3  * detect_data_type() function provided freely by Cosmin Truta, 2006
     4  * For conditions of distribution and use, see copyright notice in zlib.h
     5  */
     7 /*
     8  *  ALGORITHM
     9  *
    10  *      The "deflation" process uses several Huffman trees. The more
    11  *      common source values are represented by shorter bit sequences.
    12  *
    13  *      Each code tree is stored in a compressed form which is itself
    14  * a Huffman encoding of the lengths of all the code strings (in
    15  * ascending order by source values).  The actual code strings are
    16  * reconstructed from the lengths in the inflate process, as described
    17  * in the deflate specification.
    18  *
    19  *  REFERENCES
    20  *
    21  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
    22  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
    23  *
    24  *      Storer, James A.
    25  *          Data Compression:  Methods and Theory, pp. 49-50.
    26  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
    27  *
    28  *      Sedgewick, R.
    29  *          Algorithms, p290.
    30  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
    31  */
    33 /* @(#) $Id$ */
    35 /* #define GEN_TREES_H */
    37 #include "deflate.h"
    39 #ifdef DEBUG
    40 #  include <ctype.h>
    41 #endif
    43 /* ===========================================================================
    44  * Constants
    45  */
    47 #define MAX_BL_BITS 7
    48 /* Bit length codes must not exceed MAX_BL_BITS bits */
    50 #define END_BLOCK 256
    51 /* end of block literal code */
    53 #define REP_3_6      16
    54 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
    56 #define REPZ_3_10    17
    57 /* repeat a zero length 3-10 times  (3 bits of repeat count) */
    59 #define REPZ_11_138  18
    60 /* repeat a zero length 11-138 times  (7 bits of repeat count) */
    62 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
    63    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
    65 local const int extra_dbits[D_CODES] /* extra bits for each distance code */
    66    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
    68 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
    69    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
    71 local const uch bl_order[BL_CODES]
    72    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
    73 /* The lengths of the bit length codes are sent in order of decreasing
    74  * probability, to avoid transmitting the lengths for unused bit length codes.
    75  */
    77 /* ===========================================================================
    78  * Local data. These are initialized only once.
    79  */
    81 #define DIST_CODE_LEN  512 /* see definition of array dist_code below */
    83 #if defined(GEN_TREES_H) || !defined(STDC)
    84 /* non ANSI compilers may not accept trees.h */
    86 local ct_data static_ltree[L_CODES+2];
    87 /* The static literal tree. Since the bit lengths are imposed, there is no
    88  * need for the L_CODES extra codes used during heap construction. However
    89  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
    90  * below).
    91  */
    93 local ct_data static_dtree[D_CODES];
    94 /* The static distance tree. (Actually a trivial tree since all codes use
    95  * 5 bits.)
    96  */
    98 uch _dist_code[DIST_CODE_LEN];
    99 /* Distance codes. The first 256 values correspond to the distances
   100  * 3 .. 258, the last 256 values correspond to the top 8 bits of
   101  * the 15 bit distances.
   102  */
   104 uch _length_code[MAX_MATCH-MIN_MATCH+1];
   105 /* length code for each normalized match length (0 == MIN_MATCH) */
   107 local int base_length[LENGTH_CODES];
   108 /* First normalized length for each code (0 = MIN_MATCH) */
   110 local int base_dist[D_CODES];
   111 /* First normalized distance for each code (0 = distance of 1) */
   113 #else
   114 #  include "trees.h"
   115 #endif /* GEN_TREES_H */
   117 struct static_tree_desc_s {
   118     const ct_data *static_tree;  /* static tree or NULL */
   119     const intf *extra_bits;      /* extra bits for each code or NULL */
   120     int     extra_base;          /* base index for extra_bits */
   121     int     elems;               /* max number of elements in the tree */
   122     int     max_length;          /* max bit length for the codes */
   123 };
   125 local static_tree_desc  static_l_desc =
   126 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
   128 local static_tree_desc  static_d_desc =
   129 {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
   131 local static_tree_desc  static_bl_desc =
   132 {(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
   134 /* ===========================================================================
   135  * Local (static) routines in this file.
   136  */
   138 local void tr_static_init OF((void));
   139 local void init_block     OF((deflate_state *s));
   140 local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
   141 local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
   142 local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
   143 local void build_tree     OF((deflate_state *s, tree_desc *desc));
   144 local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
   145 local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
   146 local int  build_bl_tree  OF((deflate_state *s));
   147 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
   148                               int blcodes));
   149 local void compress_block OF((deflate_state *s, const ct_data *ltree,
   150                               const ct_data *dtree));
   151 local int  detect_data_type OF((deflate_state *s));
   152 local unsigned bi_reverse OF((unsigned value, int length));
   153 local void bi_windup      OF((deflate_state *s));
   154 local void bi_flush       OF((deflate_state *s));
   155 local void copy_block     OF((deflate_state *s, charf *buf, unsigned len,
   156                               int header));
   158 #ifdef GEN_TREES_H
   159 local void gen_trees_header OF((void));
   160 #endif
   162 #ifndef DEBUG
   163 #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
   164    /* Send a code of the given tree. c and tree must not have side effects */
   166 #else /* DEBUG */
   167 #  define send_code(s, c, tree) \
   168      { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
   169        send_bits(s, tree[c].Code, tree[c].Len); }
   170 #endif
   172 /* ===========================================================================
   173  * Output a short LSB first on the stream.
   174  * IN assertion: there is enough room in pendingBuf.
   175  */
   176 #define put_short(s, w) { \
   177     put_byte(s, (uch)((w) & 0xff)); \
   178     put_byte(s, (uch)((ush)(w) >> 8)); \
   179 }
   181 /* ===========================================================================
   182  * Send a value on a given number of bits.
   183  * IN assertion: length <= 16 and value fits in length bits.
   184  */
   185 #ifdef DEBUG
   186 local void send_bits      OF((deflate_state *s, int value, int length));
   188 local void send_bits(s, value, length)
   189     deflate_state *s;
   190     int value;  /* value to send */
   191     int length; /* number of bits */
   192 {
   193     Tracevv((stderr," l %2d v %4x ", length, value));
   194     Assert(length > 0 && length <= 15, "invalid length");
   195     s->bits_sent += (ulg)length;
   197     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
   198      * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
   199      * unused bits in value.
   200      */
   201     if (s->bi_valid > (int)Buf_size - length) {
   202         s->bi_buf |= (ush)value << s->bi_valid;
   203         put_short(s, s->bi_buf);
   204         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
   205         s->bi_valid += length - Buf_size;
   206     } else {
   207         s->bi_buf |= (ush)value << s->bi_valid;
   208         s->bi_valid += length;
   209     }
   210 }
   211 #else /* !DEBUG */
   213 #define send_bits(s, value, length) \
   214 { int len = length;\
   215   if (s->bi_valid > (int)Buf_size - len) {\
   216     int val = value;\
   217     s->bi_buf |= (ush)val << s->bi_valid;\
   218     put_short(s, s->bi_buf);\
   219     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
   220     s->bi_valid += len - Buf_size;\
   221   } else {\
   222     s->bi_buf |= (ush)(value) << s->bi_valid;\
   223     s->bi_valid += len;\
   224   }\
   225 }
   226 #endif /* DEBUG */
   229 /* the arguments must not have side effects */
   231 /* ===========================================================================
   232  * Initialize the various 'constant' tables.
   233  */
   234 local void tr_static_init()
   235 {
   236 #if defined(GEN_TREES_H) || !defined(STDC)
   237     static int static_init_done = 0;
   238     int n;        /* iterates over tree elements */
   239     int bits;     /* bit counter */
   240     int length;   /* length value */
   241     int code;     /* code value */
   242     int dist;     /* distance index */
   243     ush bl_count[MAX_BITS+1];
   244     /* number of codes at each bit length for an optimal tree */
   246     if (static_init_done) return;
   248     /* For some embedded targets, global variables are not initialized: */
   249 #ifdef NO_INIT_GLOBAL_POINTERS
   250     static_l_desc.static_tree = static_ltree;
   251     static_l_desc.extra_bits = extra_lbits;
   252     static_d_desc.static_tree = static_dtree;
   253     static_d_desc.extra_bits = extra_dbits;
   254     static_bl_desc.extra_bits = extra_blbits;
   255 #endif
   257     /* Initialize the mapping length (0..255) -> length code (0..28) */
   258     length = 0;
   259     for (code = 0; code < LENGTH_CODES-1; code++) {
   260         base_length[code] = length;
   261         for (n = 0; n < (1<<extra_lbits[code]); n++) {
   262             _length_code[length++] = (uch)code;
   263         }
   264     }
   265     Assert (length == 256, "tr_static_init: length != 256");
   266     /* Note that the length 255 (match length 258) can be represented
   267      * in two different ways: code 284 + 5 bits or code 285, so we
   268      * overwrite length_code[255] to use the best encoding:
   269      */
   270     _length_code[length-1] = (uch)code;
   272     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
   273     dist = 0;
   274     for (code = 0 ; code < 16; code++) {
   275         base_dist[code] = dist;
   276         for (n = 0; n < (1<<extra_dbits[code]); n++) {
   277             _dist_code[dist++] = (uch)code;
   278         }
   279     }
   280     Assert (dist == 256, "tr_static_init: dist != 256");
   281     dist >>= 7; /* from now on, all distances are divided by 128 */
   282     for ( ; code < D_CODES; code++) {
   283         base_dist[code] = dist << 7;
   284         for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
   285             _dist_code[256 + dist++] = (uch)code;
   286         }
   287     }
   288     Assert (dist == 256, "tr_static_init: 256+dist != 512");
   290     /* Construct the codes of the static literal tree */
   291     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
   292     n = 0;
   293     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
   294     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
   295     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
   296     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
   297     /* Codes 286 and 287 do not exist, but we must include them in the
   298      * tree construction to get a canonical Huffman tree (longest code
   299      * all ones)
   300      */
   301     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
   303     /* The static distance tree is trivial: */
   304     for (n = 0; n < D_CODES; n++) {
   305         static_dtree[n].Len = 5;
   306         static_dtree[n].Code = bi_reverse((unsigned)n, 5);
   307     }
   308     static_init_done = 1;
   310 #  ifdef GEN_TREES_H
   311     gen_trees_header();
   312 #  endif
   313 #endif /* defined(GEN_TREES_H) || !defined(STDC) */
   314 }
   316 /* ===========================================================================
   317  * Genererate the file trees.h describing the static trees.
   318  */
   319 #ifdef GEN_TREES_H
   320 #  ifndef DEBUG
   321 #    include <stdio.h>
   322 #  endif
   324 #  define SEPARATOR(i, last, width) \
   325       ((i) == (last)? "\n};\n\n" :    \
   326        ((i) % (width) == (width)-1 ? ",\n" : ", "))
   328 void gen_trees_header()
   329 {
   330     FILE *header = fopen("trees.h", "w");
   331     int i;
   333     Assert (header != NULL, "Can't open trees.h");
   334     fprintf(header,
   335             "/* header created automatically with -DGEN_TREES_H */\n\n");
   337     fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
   338     for (i = 0; i < L_CODES+2; i++) {
   339         fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
   340                 static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
   341     }
   343     fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
   344     for (i = 0; i < D_CODES; i++) {
   345         fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
   346                 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
   347     }
   349     fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
   350     for (i = 0; i < DIST_CODE_LEN; i++) {
   351         fprintf(header, "%2u%s", _dist_code[i],
   352                 SEPARATOR(i, DIST_CODE_LEN-1, 20));
   353     }
   355     fprintf(header,
   356         "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
   357     for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
   358         fprintf(header, "%2u%s", _length_code[i],
   359                 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
   360     }
   362     fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
   363     for (i = 0; i < LENGTH_CODES; i++) {
   364         fprintf(header, "%1u%s", base_length[i],
   365                 SEPARATOR(i, LENGTH_CODES-1, 20));
   366     }
   368     fprintf(header, "local const int base_dist[D_CODES] = {\n");
   369     for (i = 0; i < D_CODES; i++) {
   370         fprintf(header, "%5u%s", base_dist[i],
   371                 SEPARATOR(i, D_CODES-1, 10));
   372     }
   374     fclose(header);
   375 }
   376 #endif /* GEN_TREES_H */
   378 /* ===========================================================================
   379  * Initialize the tree data structures for a new zlib stream.
   380  */
   381 void ZLIB_INTERNAL _tr_init(s)
   382     deflate_state *s;
   383 {
   384     tr_static_init();
   386     s->l_desc.dyn_tree = s->dyn_ltree;
   387     s->l_desc.stat_desc = &static_l_desc;
   389     s->d_desc.dyn_tree = s->dyn_dtree;
   390     s->d_desc.stat_desc = &static_d_desc;
   392     s->bl_desc.dyn_tree = s->bl_tree;
   393     s->bl_desc.stat_desc = &static_bl_desc;
   395     s->bi_buf = 0;
   396     s->bi_valid = 0;
   397 #ifdef DEBUG
   398     s->compressed_len = 0L;
   399     s->bits_sent = 0L;
   400 #endif
   402     /* Initialize the first block of the first file: */
   403     init_block(s);
   404 }
   406 /* ===========================================================================
   407  * Initialize a new block.
   408  */
   409 local void init_block(s)
   410     deflate_state *s;
   411 {
   412     int n; /* iterates over tree elements */
   414     /* Initialize the trees. */
   415     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
   416     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
   417     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
   419     s->dyn_ltree[END_BLOCK].Freq = 1;
   420     s->opt_len = s->static_len = 0L;
   421     s->last_lit = s->matches = 0;
   422 }
   424 #define SMALLEST 1
   425 /* Index within the heap array of least frequent node in the Huffman tree */
   428 /* ===========================================================================
   429  * Remove the smallest element from the heap and recreate the heap with
   430  * one less element. Updates heap and heap_len.
   431  */
   432 #define pqremove(s, tree, top) \
   433 {\
   434     top = s->heap[SMALLEST]; \
   435     s->heap[SMALLEST] = s->heap[s->heap_len--]; \
   436     pqdownheap(s, tree, SMALLEST); \
   437 }
   439 /* ===========================================================================
   440  * Compares to subtrees, using the tree depth as tie breaker when
   441  * the subtrees have equal frequency. This minimizes the worst case length.
   442  */
   443 #define smaller(tree, n, m, depth) \
   444    (tree[n].Freq < tree[m].Freq || \
   445    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
   447 /* ===========================================================================
   448  * Restore the heap property by moving down the tree starting at node k,
   449  * exchanging a node with the smallest of its two sons if necessary, stopping
   450  * when the heap property is re-established (each father smaller than its
   451  * two sons).
   452  */
   453 local void pqdownheap(s, tree, k)
   454     deflate_state *s;
   455     ct_data *tree;  /* the tree to restore */
   456     int k;               /* node to move down */
   457 {
   458     int v = s->heap[k];
   459     int j = k << 1;  /* left son of k */
   460     while (j <= s->heap_len) {
   461         /* Set j to the smallest of the two sons: */
   462         if (j < s->heap_len &&
   463             smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
   464             j++;
   465         }
   466         /* Exit if v is smaller than both sons */
   467         if (smaller(tree, v, s->heap[j], s->depth)) break;
   469         /* Exchange v with the smallest son */
   470         s->heap[k] = s->heap[j];  k = j;
   472         /* And continue down the tree, setting j to the left son of k */
   473         j <<= 1;
   474     }
   475     s->heap[k] = v;
   476 }
   478 /* ===========================================================================
   479  * Compute the optimal bit lengths for a tree and update the total bit length
   480  * for the current block.
   481  * IN assertion: the fields freq and dad are set, heap[heap_max] and
   482  *    above are the tree nodes sorted by increasing frequency.
   483  * OUT assertions: the field len is set to the optimal bit length, the
   484  *     array bl_count contains the frequencies for each bit length.
   485  *     The length opt_len is updated; static_len is also updated if stree is
   486  *     not null.
   487  */
   488 local void gen_bitlen(s, desc)
   489     deflate_state *s;
   490     tree_desc *desc;    /* the tree descriptor */
   491 {
   492     ct_data *tree        = desc->dyn_tree;
   493     int max_code         = desc->max_code;
   494     const ct_data *stree = desc->stat_desc->static_tree;
   495     const intf *extra    = desc->stat_desc->extra_bits;
   496     int base             = desc->stat_desc->extra_base;
   497     int max_length       = desc->stat_desc->max_length;
   498     int h;              /* heap index */
   499     int n, m;           /* iterate over the tree elements */
   500     int bits;           /* bit length */
   501     int xbits;          /* extra bits */
   502     ush f;              /* frequency */
   503     int overflow = 0;   /* number of elements with bit length too large */
   505     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
   507     /* In a first pass, compute the optimal bit lengths (which may
   508      * overflow in the case of the bit length tree).
   509      */
   510     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
   512     for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
   513         n = s->heap[h];
   514         bits = tree[tree[n].Dad].Len + 1;
   515         if (bits > max_length) bits = max_length, overflow++;
   516         tree[n].Len = (ush)bits;
   517         /* We overwrite tree[n].Dad which is no longer needed */
   519         if (n > max_code) continue; /* not a leaf node */
   521         s->bl_count[bits]++;
   522         xbits = 0;
   523         if (n >= base) xbits = extra[n-base];
   524         f = tree[n].Freq;
   525         s->opt_len += (ulg)f * (bits + xbits);
   526         if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
   527     }
   528     if (overflow == 0) return;
   530     Trace((stderr,"\nbit length overflow\n"));
   531     /* This happens for example on obj2 and pic of the Calgary corpus */
   533     /* Find the first bit length which could increase: */
   534     do {
   535         bits = max_length-1;
   536         while (s->bl_count[bits] == 0) bits--;
   537         s->bl_count[bits]--;      /* move one leaf down the tree */
   538         s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
   539         s->bl_count[max_length]--;
   540         /* The brother of the overflow item also moves one step up,
   541          * but this does not affect bl_count[max_length]
   542          */
   543         overflow -= 2;
   544     } while (overflow > 0);
   546     /* Now recompute all bit lengths, scanning in increasing frequency.
   547      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
   548      * lengths instead of fixing only the wrong ones. This idea is taken
   549      * from 'ar' written by Haruhiko Okumura.)
   550      */
   551     for (bits = max_length; bits != 0; bits--) {
   552         n = s->bl_count[bits];
   553         while (n != 0) {
   554             m = s->heap[--h];
   555             if (m > max_code) continue;
   556             if ((unsigned) tree[m].Len != (unsigned) bits) {
   557                 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
   558                 s->opt_len += ((long)bits - (long)tree[m].Len)
   559                               *(long)tree[m].Freq;
   560                 tree[m].Len = (ush)bits;
   561             }
   562             n--;
   563         }
   564     }
   565 }
   567 /* ===========================================================================
   568  * Generate the codes for a given tree and bit counts (which need not be
   569  * optimal).
   570  * IN assertion: the array bl_count contains the bit length statistics for
   571  * the given tree and the field len is set for all tree elements.
   572  * OUT assertion: the field code is set for all tree elements of non
   573  *     zero code length.
   574  */
   575 local void gen_codes (tree, max_code, bl_count)
   576     ct_data *tree;             /* the tree to decorate */
   577     int max_code;              /* largest code with non zero frequency */
   578     ushf *bl_count;            /* number of codes at each bit length */
   579 {
   580     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
   581     ush code = 0;              /* running code value */
   582     int bits;                  /* bit index */
   583     int n;                     /* code index */
   585     /* The distribution counts are first used to generate the code values
   586      * without bit reversal.
   587      */
   588     for (bits = 1; bits <= MAX_BITS; bits++) {
   589         next_code[bits] = code = (code + bl_count[bits-1]) << 1;
   590     }
   591     /* Check that the bit counts in bl_count are consistent. The last code
   592      * must be all ones.
   593      */
   594     Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
   595             "inconsistent bit counts");
   596     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
   598     for (n = 0;  n <= max_code; n++) {
   599         int len = tree[n].Len;
   600         if (len == 0) continue;
   601         /* Now reverse the bits */
   602         tree[n].Code = bi_reverse(next_code[len]++, len);
   604         Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
   605              n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
   606     }
   607 }
   609 /* ===========================================================================
   610  * Construct one Huffman tree and assigns the code bit strings and lengths.
   611  * Update the total bit length for the current block.
   612  * IN assertion: the field freq is set for all tree elements.
   613  * OUT assertions: the fields len and code are set to the optimal bit length
   614  *     and corresponding code. The length opt_len is updated; static_len is
   615  *     also updated if stree is not null. The field max_code is set.
   616  */
   617 local void build_tree(s, desc)
   618     deflate_state *s;
   619     tree_desc *desc; /* the tree descriptor */
   620 {
   621     ct_data *tree         = desc->dyn_tree;
   622     const ct_data *stree  = desc->stat_desc->static_tree;
   623     int elems             = desc->stat_desc->elems;
   624     int n, m;          /* iterate over heap elements */
   625     int max_code = -1; /* largest code with non zero frequency */
   626     int node;          /* new node being created */
   628     /* Construct the initial heap, with least frequent element in
   629      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
   630      * heap[0] is not used.
   631      */
   632     s->heap_len = 0, s->heap_max = HEAP_SIZE;
   634     for (n = 0; n < elems; n++) {
   635         if (tree[n].Freq != 0) {
   636             s->heap[++(s->heap_len)] = max_code = n;
   637             s->depth[n] = 0;
   638         } else {
   639             tree[n].Len = 0;
   640         }
   641     }
   643     /* The pkzip format requires that at least one distance code exists,
   644      * and that at least one bit should be sent even if there is only one
   645      * possible code. So to avoid special checks later on we force at least
   646      * two codes of non zero frequency.
   647      */
   648     while (s->heap_len < 2) {
   649         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
   650         tree[node].Freq = 1;
   651         s->depth[node] = 0;
   652         s->opt_len--; if (stree) s->static_len -= stree[node].Len;
   653         /* node is 0 or 1 so it does not have extra bits */
   654     }
   655     desc->max_code = max_code;
   657     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
   658      * establish sub-heaps of increasing lengths:
   659      */
   660     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
   662     /* Construct the Huffman tree by repeatedly combining the least two
   663      * frequent nodes.
   664      */
   665     node = elems;              /* next internal node of the tree */
   666     do {
   667         pqremove(s, tree, n);  /* n = node of least frequency */
   668         m = s->heap[SMALLEST]; /* m = node of next least frequency */
   670         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
   671         s->heap[--(s->heap_max)] = m;
   673         /* Create a new node father of n and m */
   674         tree[node].Freq = tree[n].Freq + tree[m].Freq;
   675         s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
   676                                 s->depth[n] : s->depth[m]) + 1);
   677         tree[n].Dad = tree[m].Dad = (ush)node;
   678 #ifdef DUMP_BL_TREE
   679         if (tree == s->bl_tree) {
   680             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
   681                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
   682         }
   683 #endif
   684         /* and insert the new node in the heap */
   685         s->heap[SMALLEST] = node++;
   686         pqdownheap(s, tree, SMALLEST);
   688     } while (s->heap_len >= 2);
   690     s->heap[--(s->heap_max)] = s->heap[SMALLEST];
   692     /* At this point, the fields freq and dad are set. We can now
   693      * generate the bit lengths.
   694      */
   695     gen_bitlen(s, (tree_desc *)desc);
   697     /* The field len is now set, we can generate the bit codes */
   698     gen_codes ((ct_data *)tree, max_code, s->bl_count);
   699 }
   701 /* ===========================================================================
   702  * Scan a literal or distance tree to determine the frequencies of the codes
   703  * in the bit length tree.
   704  */
   705 local void scan_tree (s, tree, max_code)
   706     deflate_state *s;
   707     ct_data *tree;   /* the tree to be scanned */
   708     int max_code;    /* and its largest code of non zero frequency */
   709 {
   710     int n;                     /* iterates over all tree elements */
   711     int prevlen = -1;          /* last emitted length */
   712     int curlen;                /* length of current code */
   713     int nextlen = tree[0].Len; /* length of next code */
   714     int count = 0;             /* repeat count of the current code */
   715     int max_count = 7;         /* max repeat count */
   716     int min_count = 4;         /* min repeat count */
   718     if (nextlen == 0) max_count = 138, min_count = 3;
   719     tree[max_code+1].Len = (ush)0xffff; /* guard */
   721     for (n = 0; n <= max_code; n++) {
   722         curlen = nextlen; nextlen = tree[n+1].Len;
   723         if (++count < max_count && curlen == nextlen) {
   724             continue;
   725         } else if (count < min_count) {
   726             s->bl_tree[curlen].Freq += count;
   727         } else if (curlen != 0) {
   728             if (curlen != prevlen) s->bl_tree[curlen].Freq++;
   729             s->bl_tree[REP_3_6].Freq++;
   730         } else if (count <= 10) {
   731             s->bl_tree[REPZ_3_10].Freq++;
   732         } else {
   733             s->bl_tree[REPZ_11_138].Freq++;
   734         }
   735         count = 0; prevlen = curlen;
   736         if (nextlen == 0) {
   737             max_count = 138, min_count = 3;
   738         } else if (curlen == nextlen) {
   739             max_count = 6, min_count = 3;
   740         } else {
   741             max_count = 7, min_count = 4;
   742         }
   743     }
   744 }
   746 /* ===========================================================================
   747  * Send a literal or distance tree in compressed form, using the codes in
   748  * bl_tree.
   749  */
   750 local void send_tree (s, tree, max_code)
   751     deflate_state *s;
   752     ct_data *tree; /* the tree to be scanned */
   753     int max_code;       /* and its largest code of non zero frequency */
   754 {
   755     int n;                     /* iterates over all tree elements */
   756     int prevlen = -1;          /* last emitted length */
   757     int curlen;                /* length of current code */
   758     int nextlen = tree[0].Len; /* length of next code */
   759     int count = 0;             /* repeat count of the current code */
   760     int max_count = 7;         /* max repeat count */
   761     int min_count = 4;         /* min repeat count */
   763     /* tree[max_code+1].Len = -1; */  /* guard already set */
   764     if (nextlen == 0) max_count = 138, min_count = 3;
   766     for (n = 0; n <= max_code; n++) {
   767         curlen = nextlen; nextlen = tree[n+1].Len;
   768         if (++count < max_count && curlen == nextlen) {
   769             continue;
   770         } else if (count < min_count) {
   771             do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
   773         } else if (curlen != 0) {
   774             if (curlen != prevlen) {
   775                 send_code(s, curlen, s->bl_tree); count--;
   776             }
   777             Assert(count >= 3 && count <= 6, " 3_6?");
   778             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
   780         } else if (count <= 10) {
   781             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
   783         } else {
   784             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
   785         }
   786         count = 0; prevlen = curlen;
   787         if (nextlen == 0) {
   788             max_count = 138, min_count = 3;
   789         } else if (curlen == nextlen) {
   790             max_count = 6, min_count = 3;
   791         } else {
   792             max_count = 7, min_count = 4;
   793         }
   794     }
   795 }
   797 /* ===========================================================================
   798  * Construct the Huffman tree for the bit lengths and return the index in
   799  * bl_order of the last bit length code to send.
   800  */
   801 local int build_bl_tree(s)
   802     deflate_state *s;
   803 {
   804     int max_blindex;  /* index of last bit length code of non zero freq */
   806     /* Determine the bit length frequencies for literal and distance trees */
   807     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
   808     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
   810     /* Build the bit length tree: */
   811     build_tree(s, (tree_desc *)(&(s->bl_desc)));
   812     /* opt_len now includes the length of the tree representations, except
   813      * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
   814      */
   816     /* Determine the number of bit length codes to send. The pkzip format
   817      * requires that at least 4 bit length codes be sent. (appnote.txt says
   818      * 3 but the actual value used is 4.)
   819      */
   820     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
   821         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
   822     }
   823     /* Update opt_len to include the bit length tree and counts */
   824     s->opt_len += 3*(max_blindex+1) + 5+5+4;
   825     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
   826             s->opt_len, s->static_len));
   828     return max_blindex;
   829 }
   831 /* ===========================================================================
   832  * Send the header for a block using dynamic Huffman trees: the counts, the
   833  * lengths of the bit length codes, the literal tree and the distance tree.
   834  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
   835  */
   836 local void send_all_trees(s, lcodes, dcodes, blcodes)
   837     deflate_state *s;
   838     int lcodes, dcodes, blcodes; /* number of codes for each tree */
   839 {
   840     int rank;                    /* index in bl_order */
   842     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
   843     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
   844             "too many codes");
   845     Tracev((stderr, "\nbl counts: "));
   846     send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
   847     send_bits(s, dcodes-1,   5);
   848     send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
   849     for (rank = 0; rank < blcodes; rank++) {
   850         Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
   851         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
   852     }
   853     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
   855     send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
   856     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
   858     send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
   859     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
   860 }
   862 /* ===========================================================================
   863  * Send a stored block
   864  */
   865 void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last)
   866     deflate_state *s;
   867     charf *buf;       /* input block */
   868     ulg stored_len;   /* length of input block */
   869     int last;         /* one if this is the last block for a file */
   870 {
   871     send_bits(s, (STORED_BLOCK<<1)+last, 3);    /* send block type */
   872 #ifdef DEBUG
   873     s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
   874     s->compressed_len += (stored_len + 4) << 3;
   875 #endif
   876     copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
   877 }
   879 /* ===========================================================================
   880  * Flush the bits in the bit buffer to pending output (leaves at most 7 bits)
   881  */
   882 void ZLIB_INTERNAL _tr_flush_bits(s)
   883     deflate_state *s;
   884 {
   885     bi_flush(s);
   886 }
   888 /* ===========================================================================
   889  * Send one empty static block to give enough lookahead for inflate.
   890  * This takes 10 bits, of which 7 may remain in the bit buffer.
   891  */
   892 void ZLIB_INTERNAL _tr_align(s)
   893     deflate_state *s;
   894 {
   895     send_bits(s, STATIC_TREES<<1, 3);
   896     send_code(s, END_BLOCK, static_ltree);
   897 #ifdef DEBUG
   898     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
   899 #endif
   900     bi_flush(s);
   901 }
   903 /* ===========================================================================
   904  * Determine the best encoding for the current block: dynamic trees, static
   905  * trees or store, and output the encoded block to the zip file.
   906  */
   907 void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last)
   908     deflate_state *s;
   909     charf *buf;       /* input block, or NULL if too old */
   910     ulg stored_len;   /* length of input block */
   911     int last;         /* one if this is the last block for a file */
   912 {
   913     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
   914     int max_blindex = 0;  /* index of last bit length code of non zero freq */
   916     /* Build the Huffman trees unless a stored block is forced */
   917     if (s->level > 0) {
   919         /* Check if the file is binary or text */
   920         if (s->strm->data_type == Z_UNKNOWN)
   921             s->strm->data_type = detect_data_type(s);
   923         /* Construct the literal and distance trees */
   924         build_tree(s, (tree_desc *)(&(s->l_desc)));
   925         Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
   926                 s->static_len));
   928         build_tree(s, (tree_desc *)(&(s->d_desc)));
   929         Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
   930                 s->static_len));
   931         /* At this point, opt_len and static_len are the total bit lengths of
   932          * the compressed block data, excluding the tree representations.
   933          */
   935         /* Build the bit length tree for the above two trees, and get the index
   936          * in bl_order of the last bit length code to send.
   937          */
   938         max_blindex = build_bl_tree(s);
   940         /* Determine the best encoding. Compute the block lengths in bytes. */
   941         opt_lenb = (s->opt_len+3+7)>>3;
   942         static_lenb = (s->static_len+3+7)>>3;
   944         Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
   945                 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
   946                 s->last_lit));
   948         if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
   950     } else {
   951         Assert(buf != (char*)0, "lost buf");
   952         opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
   953     }
   955 #ifdef FORCE_STORED
   956     if (buf != (char*)0) { /* force stored block */
   957 #else
   958     if (stored_len+4 <= opt_lenb && buf != (char*)0) {
   959                        /* 4: two words for the lengths */
   960 #endif
   961         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
   962          * Otherwise we can't have processed more than WSIZE input bytes since
   963          * the last block flush, because compression would have been
   964          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
   965          * transform a block into a stored block.
   966          */
   967         _tr_stored_block(s, buf, stored_len, last);
   969 #ifdef FORCE_STATIC
   970     } else if (static_lenb >= 0) { /* force static trees */
   971 #else
   972     } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
   973 #endif
   974         send_bits(s, (STATIC_TREES<<1)+last, 3);
   975         compress_block(s, (const ct_data *)static_ltree,
   976                        (const ct_data *)static_dtree);
   977 #ifdef DEBUG
   978         s->compressed_len += 3 + s->static_len;
   979 #endif
   980     } else {
   981         send_bits(s, (DYN_TREES<<1)+last, 3);
   982         send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
   983                        max_blindex+1);
   984         compress_block(s, (const ct_data *)s->dyn_ltree,
   985                        (const ct_data *)s->dyn_dtree);
   986 #ifdef DEBUG
   987         s->compressed_len += 3 + s->opt_len;
   988 #endif
   989     }
   990     Assert (s->compressed_len == s->bits_sent, "bad compressed size");
   991     /* The above check is made mod 2^32, for files larger than 512 MB
   992      * and uLong implemented on 32 bits.
   993      */
   994     init_block(s);
   996     if (last) {
   997         bi_windup(s);
   998 #ifdef DEBUG
   999         s->compressed_len += 7;  /* align on byte boundary */
  1000 #endif
  1002     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
  1003            s->compressed_len-7*last));
  1006 /* ===========================================================================
  1007  * Save the match info and tally the frequency counts. Return true if
  1008  * the current block must be flushed.
  1009  */
  1010 int ZLIB_INTERNAL _tr_tally (s, dist, lc)
  1011     deflate_state *s;
  1012     unsigned dist;  /* distance of matched string */
  1013     unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
  1015     s->d_buf[s->last_lit] = (ush)dist;
  1016     s->l_buf[s->last_lit++] = (uch)lc;
  1017     if (dist == 0) {
  1018         /* lc is the unmatched char */
  1019         s->dyn_ltree[lc].Freq++;
  1020     } else {
  1021         s->matches++;
  1022         /* Here, lc is the match length - MIN_MATCH */
  1023         dist--;             /* dist = match distance - 1 */
  1024         Assert((ush)dist < (ush)MAX_DIST(s) &&
  1025                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
  1026                (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
  1028         s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
  1029         s->dyn_dtree[d_code(dist)].Freq++;
  1032 #ifdef TRUNCATE_BLOCK
  1033     /* Try to guess if it is profitable to stop the current block here */
  1034     if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
  1035         /* Compute an upper bound for the compressed length */
  1036         ulg out_length = (ulg)s->last_lit*8L;
  1037         ulg in_length = (ulg)((long)s->strstart - s->block_start);
  1038         int dcode;
  1039         for (dcode = 0; dcode < D_CODES; dcode++) {
  1040             out_length += (ulg)s->dyn_dtree[dcode].Freq *
  1041                 (5L+extra_dbits[dcode]);
  1043         out_length >>= 3;
  1044         Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
  1045                s->last_lit, in_length, out_length,
  1046                100L - out_length*100L/in_length));
  1047         if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
  1049 #endif
  1050     return (s->last_lit == s->lit_bufsize-1);
  1051     /* We avoid equality with lit_bufsize because of wraparound at 64K
  1052      * on 16 bit machines and because stored blocks are restricted to
  1053      * 64K-1 bytes.
  1054      */
  1057 /* ===========================================================================
  1058  * Send the block data compressed using the given Huffman trees
  1059  */
  1060 local void compress_block(s, ltree, dtree)
  1061     deflate_state *s;
  1062     const ct_data *ltree; /* literal tree */
  1063     const ct_data *dtree; /* distance tree */
  1065     unsigned dist;      /* distance of matched string */
  1066     int lc;             /* match length or unmatched char (if dist == 0) */
  1067     unsigned lx = 0;    /* running index in l_buf */
  1068     unsigned code;      /* the code to send */
  1069     int extra;          /* number of extra bits to send */
  1071     if (s->last_lit != 0) do {
  1072         dist = s->d_buf[lx];
  1073         lc = s->l_buf[lx++];
  1074         if (dist == 0) {
  1075             send_code(s, lc, ltree); /* send a literal byte */
  1076             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
  1077         } else {
  1078             /* Here, lc is the match length - MIN_MATCH */
  1079             code = _length_code[lc];
  1080             send_code(s, code+LITERALS+1, ltree); /* send the length code */
  1081             extra = extra_lbits[code];
  1082             if (extra != 0) {
  1083                 lc -= base_length[code];
  1084                 send_bits(s, lc, extra);       /* send the extra length bits */
  1086             dist--; /* dist is now the match distance - 1 */
  1087             code = d_code(dist);
  1088             Assert (code < D_CODES, "bad d_code");
  1090             send_code(s, code, dtree);       /* send the distance code */
  1091             extra = extra_dbits[code];
  1092             if (extra != 0) {
  1093                 dist -= base_dist[code];
  1094                 send_bits(s, dist, extra);   /* send the extra distance bits */
  1096         } /* literal or match pair ? */
  1098         /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
  1099         Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
  1100                "pendingBuf overflow");
  1102     } while (lx < s->last_lit);
  1104     send_code(s, END_BLOCK, ltree);
  1107 /* ===========================================================================
  1108  * Check if the data type is TEXT or BINARY, using the following algorithm:
  1109  * - TEXT if the two conditions below are satisfied:
  1110  *    a) There are no non-portable control characters belonging to the
  1111  *       "black list" (0..6, 14..25, 28..31).
  1112  *    b) There is at least one printable character belonging to the
  1113  *       "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
  1114  * - BINARY otherwise.
  1115  * - The following partially-portable control characters form a
  1116  *   "gray list" that is ignored in this detection algorithm:
  1117  *   (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
  1118  * IN assertion: the fields Freq of dyn_ltree are set.
  1119  */
  1120 local int detect_data_type(s)
  1121     deflate_state *s;
  1123     /* black_mask is the bit mask of black-listed bytes
  1124      * set bits 0..6, 14..25, and 28..31
  1125      * 0xf3ffc07f = binary 11110011111111111100000001111111
  1126      */
  1127     unsigned long black_mask = 0xf3ffc07fUL;
  1128     int n;
  1130     /* Check for non-textual ("black-listed") bytes. */
  1131     for (n = 0; n <= 31; n++, black_mask >>= 1)
  1132         if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0))
  1133             return Z_BINARY;
  1135     /* Check for textual ("white-listed") bytes. */
  1136     if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
  1137             || s->dyn_ltree[13].Freq != 0)
  1138         return Z_TEXT;
  1139     for (n = 32; n < LITERALS; n++)
  1140         if (s->dyn_ltree[n].Freq != 0)
  1141             return Z_TEXT;
  1143     /* There are no "black-listed" or "white-listed" bytes:
  1144      * this stream either is empty or has tolerated ("gray-listed") bytes only.
  1145      */
  1146     return Z_BINARY;
  1149 /* ===========================================================================
  1150  * Reverse the first len bits of a code, using straightforward code (a faster
  1151  * method would use a table)
  1152  * IN assertion: 1 <= len <= 15
  1153  */
  1154 local unsigned bi_reverse(code, len)
  1155     unsigned code; /* the value to invert */
  1156     int len;       /* its bit length */
  1158     register unsigned res = 0;
  1159     do {
  1160         res |= code & 1;
  1161         code >>= 1, res <<= 1;
  1162     } while (--len > 0);
  1163     return res >> 1;
  1166 /* ===========================================================================
  1167  * Flush the bit buffer, keeping at most 7 bits in it.
  1168  */
  1169 local void bi_flush(s)
  1170     deflate_state *s;
  1172     if (s->bi_valid == 16) {
  1173         put_short(s, s->bi_buf);
  1174         s->bi_buf = 0;
  1175         s->bi_valid = 0;
  1176     } else if (s->bi_valid >= 8) {
  1177         put_byte(s, (Byte)s->bi_buf);
  1178         s->bi_buf >>= 8;
  1179         s->bi_valid -= 8;
  1183 /* ===========================================================================
  1184  * Flush the bit buffer and align the output on a byte boundary
  1185  */
  1186 local void bi_windup(s)
  1187     deflate_state *s;
  1189     if (s->bi_valid > 8) {
  1190         put_short(s, s->bi_buf);
  1191     } else if (s->bi_valid > 0) {
  1192         put_byte(s, (Byte)s->bi_buf);
  1194     s->bi_buf = 0;
  1195     s->bi_valid = 0;
  1196 #ifdef DEBUG
  1197     s->bits_sent = (s->bits_sent+7) & ~7;
  1198 #endif
  1201 /* ===========================================================================
  1202  * Copy a stored block, storing first the length and its
  1203  * one's complement if requested.
  1204  */
  1205 local void copy_block(s, buf, len, header)
  1206     deflate_state *s;
  1207     charf    *buf;    /* the input data */
  1208     unsigned len;     /* its length */
  1209     int      header;  /* true if block header must be written */
  1211     bi_windup(s);        /* align on byte boundary */
  1213     if (header) {
  1214         put_short(s, (ush)len);
  1215         put_short(s, (ush)~len);
  1216 #ifdef DEBUG
  1217         s->bits_sent += 2*16;
  1218 #endif
  1220 #ifdef DEBUG
  1221     s->bits_sent += (ulg)len<<3;
  1222 #endif
  1223     while (len--) {
  1224         put_byte(s, *buf++);

mercurial