netwerk/protocol/http/nsHttpConnection.cpp

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

     1 /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
     2 /* vim:set ts=4 sw=4 sts=4 et cin: */
     3 /* This Source Code Form is subject to the terms of the Mozilla Public
     4  * License, v. 2.0. If a copy of the MPL was not distributed with this
     5  * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
     7 // HttpLog.h should generally be included first
     8 #include "HttpLog.h"
    10 // Log on level :5, instead of default :4.
    11 #undef LOG
    12 #define LOG(args) LOG5(args)
    13 #undef LOG_ENABLED
    14 #define LOG_ENABLED() LOG5_ENABLED()
    16 #include "nsHttpConnection.h"
    17 #include "nsHttpRequestHead.h"
    18 #include "nsHttpResponseHead.h"
    19 #include "nsHttpHandler.h"
    20 #include "nsIOService.h"
    21 #include "nsISocketTransport.h"
    22 #include "nsSocketTransportService2.h"
    23 #include "nsISSLSocketControl.h"
    24 #include "sslt.h"
    25 #include "nsStringStream.h"
    26 #include "nsProxyRelease.h"
    27 #include "nsPreloadedStream.h"
    28 #include "ASpdySession.h"
    29 #include "mozilla/Telemetry.h"
    30 #include "nsISupportsPriority.h"
    31 #include "nsHttpPipeline.h"
    32 #include <algorithm>
    33 #include "mozilla/ChaosMode.h"
    35 #ifdef DEBUG
    36 // defined by the socket transport service while active
    37 extern PRThread *gSocketThread;
    38 #endif
    40 namespace mozilla {
    41 namespace net {
    43 //-----------------------------------------------------------------------------
    44 // nsHttpConnection <public>
    45 //-----------------------------------------------------------------------------
    47 nsHttpConnection::nsHttpConnection()
    48     : mTransaction(nullptr)
    49     , mHttpHandler(gHttpHandler)
    50     , mCallbacksLock("nsHttpConnection::mCallbacksLock")
    51     , mConsiderReusedAfterInterval(0)
    52     , mConsiderReusedAfterEpoch(0)
    53     , mCurrentBytesRead(0)
    54     , mMaxBytesRead(0)
    55     , mTotalBytesRead(0)
    56     , mTotalBytesWritten(0)
    57     , mKeepAlive(true) // assume to keep-alive by default
    58     , mKeepAliveMask(true)
    59     , mDontReuse(false)
    60     , mSupportsPipelining(false) // assume low-grade server
    61     , mIsReused(false)
    62     , mCompletedProxyConnect(false)
    63     , mLastTransactionExpectedNoContent(false)
    64     , mIdleMonitoring(false)
    65     , mProxyConnectInProgress(false)
    66     , mExperienced(false)
    67     , mHttp1xTransactionCount(0)
    68     , mRemainingConnectionUses(0xffffffff)
    69     , mClassification(nsAHttpTransaction::CLASS_GENERAL)
    70     , mNPNComplete(false)
    71     , mSetupSSLCalled(false)
    72     , mUsingSpdyVersion(0)
    73     , mPriority(nsISupportsPriority::PRIORITY_NORMAL)
    74     , mReportedSpdy(false)
    75     , mEverUsedSpdy(false)
    76     , mLastHttpResponseVersion(NS_HTTP_VERSION_1_1)
    77     , mTransactionCaps(0)
    78     , mResponseTimeoutEnabled(false)
    79     , mTCPKeepaliveConfig(kTCPKeepaliveDisabled)
    80 {
    81     LOG(("Creating nsHttpConnection @%x\n", this));
    83     // the default timeout is for when this connection has not yet processed a
    84     // transaction
    85     static const PRIntervalTime k5Sec = PR_SecondsToInterval(5);
    86     mIdleTimeout =
    87         (k5Sec < gHttpHandler->IdleTimeout()) ? k5Sec : gHttpHandler->IdleTimeout();
    88 }
    90 nsHttpConnection::~nsHttpConnection()
    91 {
    92     LOG(("Destroying nsHttpConnection @%x\n", this));
    94     if (!mEverUsedSpdy) {
    95         LOG(("nsHttpConnection %p performed %d HTTP/1.x transactions\n",
    96              this, mHttp1xTransactionCount));
    97         Telemetry::Accumulate(Telemetry::HTTP_REQUEST_PER_CONN,
    98                               mHttp1xTransactionCount);
    99     }
   101     if (mTotalBytesRead) {
   102         uint32_t totalKBRead = static_cast<uint32_t>(mTotalBytesRead >> 10);
   103         LOG(("nsHttpConnection %p read %dkb on connection spdy=%d\n",
   104              this, totalKBRead, mEverUsedSpdy));
   105         Telemetry::Accumulate(mEverUsedSpdy ?
   106                               Telemetry::SPDY_KBREAD_PER_CONN :
   107                               Telemetry::HTTP_KBREAD_PER_CONN,
   108                               totalKBRead);
   109     }
   110 }
   112 nsresult
   113 nsHttpConnection::Init(nsHttpConnectionInfo *info,
   114                        uint16_t maxHangTime,
   115                        nsISocketTransport *transport,
   116                        nsIAsyncInputStream *instream,
   117                        nsIAsyncOutputStream *outstream,
   118                        nsIInterfaceRequestor *callbacks,
   119                        PRIntervalTime rtt)
   120 {
   121     MOZ_ASSERT(transport && instream && outstream,
   122                "invalid socket information");
   123     LOG(("nsHttpConnection::Init [this=%p "
   124          "transport=%p instream=%p outstream=%p rtt=%d]\n",
   125          this, transport, instream, outstream,
   126          PR_IntervalToMilliseconds(rtt)));
   128     NS_ENSURE_ARG_POINTER(info);
   129     NS_ENSURE_TRUE(!mConnInfo, NS_ERROR_ALREADY_INITIALIZED);
   131     mConnInfo = info;
   132     mLastWriteTime = mLastReadTime = PR_IntervalNow();
   133     mSupportsPipelining =
   134         gHttpHandler->ConnMgr()->SupportsPipelining(mConnInfo);
   135     mRtt = rtt;
   136     mMaxHangTime = PR_SecondsToInterval(maxHangTime);
   138     mSocketTransport = transport;
   139     mSocketIn = instream;
   140     mSocketOut = outstream;
   141     nsresult rv = mSocketTransport->SetEventSink(this, nullptr);
   142     NS_ENSURE_SUCCESS(rv, rv);
   144     // See explanation for non-strictness of this operation in SetSecurityCallbacks.
   145     mCallbacks = new nsMainThreadPtrHolder<nsIInterfaceRequestor>(callbacks, false);
   146     rv = mSocketTransport->SetSecurityCallbacks(this);
   147     NS_ENSURE_SUCCESS(rv, rv);
   149     return NS_OK;
   150 }
   152 void
   153 nsHttpConnection::StartSpdy(uint8_t spdyVersion)
   154 {
   155     LOG(("nsHttpConnection::StartSpdy [this=%p]\n", this));
   157     MOZ_ASSERT(!mSpdySession);
   159     mUsingSpdyVersion = spdyVersion;
   160     mEverUsedSpdy = true;
   162     // Setting the connection as reused allows some transactions that fail
   163     // with NS_ERROR_NET_RESET to be restarted and SPDY uses that code
   164     // to handle clean rejections (such as those that arrived after
   165     // a server goaway was generated).
   166     mIsReused = true;
   168     // If mTransaction is a pipeline object it might represent
   169     // several requests. If so, we need to unpack that and
   170     // pack them all into a new spdy session.
   172     nsTArray<nsRefPtr<nsAHttpTransaction> > list;
   173     nsresult rv = mTransaction->TakeSubTransactions(list);
   175     if (rv == NS_ERROR_ALREADY_OPENED) {
   176         // Has the interface for TakeSubTransactions() changed?
   177         LOG(("TakeSubTranscations somehow called after "
   178              "nsAHttpTransaction began processing\n"));
   179         MOZ_ASSERT(false,
   180                    "TakeSubTranscations somehow called after "
   181                    "nsAHttpTransaction began processing");
   182         mTransaction->Close(NS_ERROR_ABORT);
   183         return;
   184     }
   186     if (NS_FAILED(rv) && rv != NS_ERROR_NOT_IMPLEMENTED) {
   187         // Has the interface for TakeSubTransactions() changed?
   188         LOG(("unexpected rv from nnsAHttpTransaction::TakeSubTransactions()"));
   189         MOZ_ASSERT(false,
   190                    "unexpected result from "
   191                    "nsAHttpTransaction::TakeSubTransactions()");
   192         mTransaction->Close(NS_ERROR_ABORT);
   193         return;
   194     }
   196     if (NS_FAILED(rv)) { // includes NS_ERROR_NOT_IMPLEMENTED
   197         MOZ_ASSERT(list.IsEmpty(), "sub transaction list not empty");
   199         // This is ok - treat mTransaction as a single real request.
   200         // Wrap the old http transaction into the new spdy session
   201         // as the first stream.
   202         mSpdySession = ASpdySession::NewSpdySession(spdyVersion,
   203                                                     mTransaction, mSocketTransport,
   204                                                     mPriority);
   205         LOG(("nsHttpConnection::StartSpdy moves single transaction %p "
   206              "into SpdySession %p\n", mTransaction.get(), mSpdySession.get()));
   207     }
   208     else {
   209         int32_t count = list.Length();
   211         LOG(("nsHttpConnection::StartSpdy moving transaction list len=%d "
   212              "into SpdySession %p\n", count, mSpdySession.get()));
   214         if (!count) {
   215             mTransaction->Close(NS_ERROR_ABORT);
   216             return;
   217         }
   219         for (int32_t index = 0; index < count; ++index) {
   220             if (!mSpdySession) {
   221                 mSpdySession = ASpdySession::NewSpdySession(spdyVersion,
   222                                                             list[index], mSocketTransport,
   223                                                             mPriority);
   224             }
   225             else {
   226                 // AddStream() cannot fail
   227                 if (!mSpdySession->AddStream(list[index], mPriority)) {
   228                     MOZ_ASSERT(false, "SpdySession::AddStream failed");
   229                     LOG(("SpdySession::AddStream failed\n"));
   230                     mTransaction->Close(NS_ERROR_ABORT);
   231                     return;
   232                 }
   233             }
   234         }
   235     }
   237     // Disable TCP Keepalives - use SPDY ping instead.
   238     rv = DisableTCPKeepalives();
   239     if (NS_WARN_IF(NS_FAILED(rv))) {
   240         LOG(("nsHttpConnection::StartSpdy [%p] DisableTCPKeepalives failed "
   241              "rv[0x%x]", this, rv));
   242     }
   244     mSupportsPipelining = false; // dont use http/1 pipelines with spdy
   245     mTransaction = mSpdySession;
   246     mIdleTimeout = gHttpHandler->SpdyTimeout();
   247 }
   249 bool
   250 nsHttpConnection::EnsureNPNComplete()
   251 {
   252     // If for some reason the components to check on NPN aren't available,
   253     // this function will just return true to continue on and disable SPDY
   255     MOZ_ASSERT(mSocketTransport);
   256     if (!mSocketTransport) {
   257         // this cannot happen
   258         mNPNComplete = true;
   259         return true;
   260     }
   262     if (mNPNComplete)
   263         return true;
   265     nsresult rv;
   267     nsCOMPtr<nsISupports> securityInfo;
   268     nsCOMPtr<nsISSLSocketControl> ssl;
   269     nsAutoCString negotiatedNPN;
   271     rv = mSocketTransport->GetSecurityInfo(getter_AddRefs(securityInfo));
   272     if (NS_FAILED(rv))
   273         goto npnComplete;
   275     ssl = do_QueryInterface(securityInfo, &rv);
   276     if (NS_FAILED(rv))
   277         goto npnComplete;
   279     rv = ssl->GetNegotiatedNPN(negotiatedNPN);
   280     if (rv == NS_ERROR_NOT_CONNECTED) {
   282         // By writing 0 bytes to the socket the SSL handshake machine is
   283         // pushed forward.
   284         uint32_t count = 0;
   285         rv = mSocketOut->Write("", 0, &count);
   287         if (NS_FAILED(rv) && rv != NS_BASE_STREAM_WOULD_BLOCK)
   288             goto npnComplete;
   289         return false;
   290     }
   292     if (NS_FAILED(rv))
   293         goto npnComplete;
   295     LOG(("nsHttpConnection::EnsureNPNComplete %p [%s] negotiated to '%s'\n",
   296          this, mConnInfo->Host(), negotiatedNPN.get()));
   298     uint8_t spdyVersion;
   299     rv = gHttpHandler->SpdyInfo()->GetNPNVersionIndex(negotiatedNPN,
   300                                                       &spdyVersion);
   301     if (NS_SUCCEEDED(rv))
   302         StartSpdy(spdyVersion);
   304     Telemetry::Accumulate(Telemetry::SPDY_NPN_CONNECT, UsingSpdy());
   306 npnComplete:
   307     LOG(("nsHttpConnection::EnsureNPNComplete setting complete to true"));
   308     mNPNComplete = true;
   309     return true;
   310 }
   312 // called on the socket thread
   313 nsresult
   314 nsHttpConnection::Activate(nsAHttpTransaction *trans, uint32_t caps, int32_t pri)
   315 {
   316     MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread);
   317     LOG(("nsHttpConnection::Activate [this=%p trans=%x caps=%x]\n",
   318          this, trans, caps));
   320     if (!trans->IsNullTransaction())
   321         mExperienced = true;
   323     mTransactionCaps = caps;
   324     mPriority = pri;
   325     if (mTransaction && mUsingSpdyVersion)
   326         return AddTransaction(trans, pri);
   328     NS_ENSURE_ARG_POINTER(trans);
   329     NS_ENSURE_TRUE(!mTransaction, NS_ERROR_IN_PROGRESS);
   331     // reset the read timers to wash away any idle time
   332     mLastWriteTime = mLastReadTime = PR_IntervalNow();
   334     // Update security callbacks
   335     nsCOMPtr<nsIInterfaceRequestor> callbacks;
   336     trans->GetSecurityCallbacks(getter_AddRefs(callbacks));
   337     SetSecurityCallbacks(callbacks);
   339     SetupSSL(caps);
   341     // take ownership of the transaction
   342     mTransaction = trans;
   344     MOZ_ASSERT(!mIdleMonitoring, "Activating a connection with an Idle Monitor");
   345     mIdleMonitoring = false;
   347     // set mKeepAlive according to what will be requested
   348     mKeepAliveMask = mKeepAlive = (caps & NS_HTTP_ALLOW_KEEPALIVE);
   350     // need to handle HTTP CONNECT tunnels if this is the first time if
   351     // we are tunneling through a proxy
   352     nsresult rv = NS_OK;
   353     if (mConnInfo->UsingConnect() && !mCompletedProxyConnect) {
   354         rv = SetupProxyConnect();
   355         if (NS_FAILED(rv))
   356             goto failed_activation;
   357         mProxyConnectInProgress = true;
   358     }
   360     // Clear the per activation counter
   361     mCurrentBytesRead = 0;
   363     // The overflow state is not needed between activations
   364     mInputOverflow = nullptr;
   366     mResponseTimeoutEnabled = gHttpHandler->ResponseTimeoutEnabled() &&
   367                               mTransaction->ResponseTimeout() > 0 &&
   368                               mTransaction->ResponseTimeoutEnabled();
   370     rv = StartShortLivedTCPKeepalives();
   371     if (NS_WARN_IF(NS_FAILED(rv))) {
   372         LOG(("nsHttpConnection::Activate [%p] "
   373              "StartShortLivedTCPKeepalives failed rv[0x%x]",
   374              this, rv));
   375     }
   377     rv = OnOutputStreamReady(mSocketOut);
   379 failed_activation:
   380     if (NS_FAILED(rv)) {
   381         mTransaction = nullptr;
   382     }
   384     return rv;
   385 }
   387 void
   388 nsHttpConnection::SetupSSL(uint32_t caps)
   389 {
   390     LOG(("nsHttpConnection::SetupSSL %p caps=0x%X\n", this, caps));
   392     if (mSetupSSLCalled) // do only once
   393         return;
   394     mSetupSSLCalled = true;
   396     if (mNPNComplete)
   397         return;
   399     // we flip this back to false if SetNPNList succeeds at the end
   400     // of this function
   401     mNPNComplete = true;
   403     if (!mConnInfo->UsingSSL())
   404         return;
   406     LOG(("nsHttpConnection::SetupSSL Setting up "
   407          "Next Protocol Negotiation"));
   408     nsCOMPtr<nsISupports> securityInfo;
   409     nsresult rv =
   410         mSocketTransport->GetSecurityInfo(getter_AddRefs(securityInfo));
   411     if (NS_FAILED(rv))
   412         return;
   414     nsCOMPtr<nsISSLSocketControl> ssl = do_QueryInterface(securityInfo, &rv);
   415     if (NS_FAILED(rv))
   416         return;
   418     if (caps & NS_HTTP_ALLOW_RSA_FALSESTART) {
   419         LOG(("nsHttpConnection::SetupSSL %p "
   420              ">= RSA Key Exchange Expected\n", this));
   421         ssl->SetKEAExpected(ssl_kea_rsa);
   422     }
   424     nsTArray<nsCString> protocolArray;
   426     // The first protocol is used as the fallback if none of the
   427     // protocols supported overlap with the server's list.
   428     // In the case of overlap, matching priority is driven by
   429     // the order of the server's advertisement.
   430     protocolArray.AppendElement(NS_LITERAL_CSTRING("http/1.1"));
   432     if (gHttpHandler->IsSpdyEnabled() &&
   433         !(caps & NS_HTTP_DISALLOW_SPDY)) {
   434         LOG(("nsHttpConnection::SetupSSL Allow SPDY NPN selection"));
   435         for (uint32_t index = 0; index < SpdyInformation::kCount; ++index) {
   436             if (gHttpHandler->SpdyInfo()->ProtocolEnabled(index))
   437                 protocolArray.AppendElement(
   438                     gHttpHandler->SpdyInfo()->VersionString[index]);
   439         }
   440     }
   442     if (NS_SUCCEEDED(ssl->SetNPNList(protocolArray))) {
   443         LOG(("nsHttpConnection::Init Setting up SPDY Negotiation OK"));
   444         mNPNComplete = false;
   445     }
   446 }
   448 nsresult
   449 nsHttpConnection::AddTransaction(nsAHttpTransaction *httpTransaction,
   450                                  int32_t priority)
   451 {
   452     LOG(("nsHttpConnection::AddTransaction for SPDY"));
   454     MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread);
   455     MOZ_ASSERT(mSpdySession && mUsingSpdyVersion,
   456                "AddTransaction to live http connection without spdy");
   457     MOZ_ASSERT(mTransaction,
   458                "AddTransaction to idle http connection");
   460     if (!mSpdySession->AddStream(httpTransaction, priority)) {
   461         MOZ_ASSERT(false, "AddStream should never fail due to"
   462                    "RoomForMore() admission check");
   463         return NS_ERROR_FAILURE;
   464     }
   466     ResumeSend();
   468     return NS_OK;
   469 }
   471 void
   472 nsHttpConnection::Close(nsresult reason)
   473 {
   474     LOG(("nsHttpConnection::Close [this=%p reason=%x]\n", this, reason));
   476     MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread);
   478     // Ensure TCP keepalive timer is stopped.
   479     if (mTCPKeepaliveTransitionTimer) {
   480         mTCPKeepaliveTransitionTimer->Cancel();
   481         mTCPKeepaliveTransitionTimer = nullptr;
   482     }
   484     if (NS_FAILED(reason)) {
   485         if (mIdleMonitoring)
   486             EndIdleMonitoring();
   488         if (mSocketTransport) {
   489             mSocketTransport->SetEventSink(nullptr, nullptr);
   491             // If there are bytes sitting in the input queue then read them
   492             // into a junk buffer to avoid generating a tcp rst by closing a
   493             // socket with data pending. TLS is a classic case of this where
   494             // a Alert record might be superfulous to a clean HTTP/SPDY shutdown.
   495             // Never block to do this and limit it to a small amount of data.
   496             if (mSocketIn) {
   497                 char buffer[4000];
   498                 uint32_t count, total = 0;
   499                 nsresult rv;
   500                 do {
   501                     rv = mSocketIn->Read(buffer, 4000, &count);
   502                     if (NS_SUCCEEDED(rv))
   503                         total += count;
   504                 }
   505                 while (NS_SUCCEEDED(rv) && count > 0 && total < 64000);
   506                 LOG(("nsHttpConnection::Close drained %d bytes\n", total));
   507             }
   509             mSocketTransport->SetSecurityCallbacks(nullptr);
   510             mSocketTransport->Close(reason);
   511             if (mSocketOut)
   512                 mSocketOut->AsyncWait(nullptr, 0, 0, nullptr);
   513         }
   514         mKeepAlive = false;
   515     }
   516 }
   518 // called on the socket thread
   519 nsresult
   520 nsHttpConnection::ProxyStartSSL()
   521 {
   522     LOG(("nsHttpConnection::ProxyStartSSL [this=%p]\n", this));
   523     MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread);
   525     nsCOMPtr<nsISupports> securityInfo;
   526     nsresult rv = mSocketTransport->GetSecurityInfo(getter_AddRefs(securityInfo));
   527     if (NS_FAILED(rv)) return rv;
   529     nsCOMPtr<nsISSLSocketControl> ssl = do_QueryInterface(securityInfo, &rv);
   530     if (NS_FAILED(rv)) return rv;
   532     return ssl->ProxyStartSSL();
   533 }
   535 void
   536 nsHttpConnection::DontReuse()
   537 {
   538     mKeepAliveMask = false;
   539     mKeepAlive = false;
   540     mDontReuse = true;
   541     mIdleTimeout = 0;
   542     if (mSpdySession)
   543         mSpdySession->DontReuse();
   544 }
   546 // Checked by the Connection Manager before scheduling a pipelined transaction
   547 bool
   548 nsHttpConnection::SupportsPipelining()
   549 {
   550     if (mTransaction &&
   551         mTransaction->PipelineDepth() >= mRemainingConnectionUses) {
   552         LOG(("nsHttpConnection::SupportsPipelining this=%p deny pipeline "
   553              "because current depth %d exceeds max remaining uses %d\n",
   554              this, mTransaction->PipelineDepth(), mRemainingConnectionUses));
   555         return false;
   556     }
   557     return mSupportsPipelining && IsKeepAlive() && !mDontReuse;
   558 }
   560 bool
   561 nsHttpConnection::CanReuse()
   562 {
   563     if (mDontReuse)
   564         return false;
   566     if ((mTransaction ? mTransaction->PipelineDepth() : 0) >=
   567         mRemainingConnectionUses) {
   568         return false;
   569     }
   571     bool canReuse;
   573     if (mSpdySession)
   574         canReuse = mSpdySession->CanReuse();
   575     else
   576         canReuse = IsKeepAlive();
   578     canReuse = canReuse && (IdleTime() < mIdleTimeout) && IsAlive();
   580     // An idle persistent connection should not have data waiting to be read
   581     // before a request is sent. Data here is likely a 408 timeout response
   582     // which we would deal with later on through the restart logic, but that
   583     // path is more expensive than just closing the socket now.
   585     uint64_t dataSize;
   586     if (canReuse && mSocketIn && !mUsingSpdyVersion && mHttp1xTransactionCount &&
   587         NS_SUCCEEDED(mSocketIn->Available(&dataSize)) && dataSize) {
   588         LOG(("nsHttpConnection::CanReuse %p %s"
   589              "Socket not reusable because read data pending (%llu) on it.\n",
   590              this, mConnInfo->Host(), dataSize));
   591         canReuse = false;
   592     }
   593     return canReuse;
   594 }
   596 bool
   597 nsHttpConnection::CanDirectlyActivate()
   598 {
   599     // return true if a new transaction can be addded to ths connection at any
   600     // time through Activate(). In practice this means this is a healthy SPDY
   601     // connection with room for more concurrent streams.
   603     return UsingSpdy() && CanReuse() &&
   604         mSpdySession && mSpdySession->RoomForMoreStreams();
   605 }
   607 PRIntervalTime
   608 nsHttpConnection::IdleTime()
   609 {
   610     return mSpdySession ?
   611         mSpdySession->IdleTime() : (PR_IntervalNow() - mLastReadTime);
   612 }
   614 // returns the number of seconds left before the allowable idle period
   615 // expires, or 0 if the period has already expied.
   616 uint32_t
   617 nsHttpConnection::TimeToLive()
   618 {
   619     if (IdleTime() >= mIdleTimeout)
   620         return 0;
   621     uint32_t timeToLive = PR_IntervalToSeconds(mIdleTimeout - IdleTime());
   623     // a positive amount of time can be rounded to 0. Because 0 is used
   624     // as the expiration signal, round all values from 0 to 1 up to 1.
   625     if (!timeToLive)
   626         timeToLive = 1;
   627     return timeToLive;
   628 }
   630 bool
   631 nsHttpConnection::IsAlive()
   632 {
   633     if (!mSocketTransport)
   634         return false;
   636     // SocketTransport::IsAlive can run the SSL state machine, so make sure
   637     // the NPN options are set before that happens.
   638     SetupSSL(mTransactionCaps);
   640     bool alive;
   641     nsresult rv = mSocketTransport->IsAlive(&alive);
   642     if (NS_FAILED(rv))
   643         alive = false;
   645 //#define TEST_RESTART_LOGIC
   646 #ifdef TEST_RESTART_LOGIC
   647     if (!alive) {
   648         LOG(("pretending socket is still alive to test restart logic\n"));
   649         alive = true;
   650     }
   651 #endif
   653     return alive;
   654 }
   656 bool
   657 nsHttpConnection::SupportsPipelining(nsHttpResponseHead *responseHead)
   658 {
   659     // SPDY supports infinite parallelism, so no need to pipeline.
   660     if (mUsingSpdyVersion)
   661         return false;
   663     // assuming connection is HTTP/1.1 with keep-alive enabled
   664     if (mConnInfo->UsingHttpProxy() && !mConnInfo->UsingConnect()) {
   665         // XXX check for bad proxy servers...
   666         return true;
   667     }
   669     // check for bad origin servers
   670     const char *val = responseHead->PeekHeader(nsHttp::Server);
   672     // If there is no server header we will assume it should not be banned
   673     // as facebook and some other prominent sites do this
   674     if (!val)
   675         return true;
   677     // The blacklist is indexed by the first character. All of these servers are
   678     // known to return their identifier as the first thing in the server string,
   679     // so we can do a leading match.
   681     static const char *bad_servers[26][6] = {
   682         { nullptr }, { nullptr }, { nullptr }, { nullptr },                 // a - d
   683         { "EFAServer/", nullptr },                                       // e
   684         { nullptr }, { nullptr }, { nullptr }, { nullptr },                 // f - i
   685         { nullptr }, { nullptr }, { nullptr },                             // j - l
   686         { "Microsoft-IIS/4.", "Microsoft-IIS/5.", nullptr },             // m
   687         { "Netscape-Enterprise/3.", "Netscape-Enterprise/4.",
   688           "Netscape-Enterprise/5.", "Netscape-Enterprise/6.", nullptr }, // n
   689         { nullptr }, { nullptr }, { nullptr }, { nullptr },                 // o - r
   690         { nullptr }, { nullptr }, { nullptr }, { nullptr },                 // s - v
   691         { "WebLogic 3.", "WebLogic 4.","WebLogic 5.", "WebLogic 6.",
   692           "Winstone Servlet Engine v0.", nullptr },                      // w
   693         { nullptr }, { nullptr }, { nullptr }                              // x - z
   694     };
   696     int index = val[0] - 'A'; // the whole table begins with capital letters
   697     if ((index >= 0) && (index <= 25))
   698     {
   699         for (int i = 0; bad_servers[index][i] != nullptr; i++) {
   700             if (!PL_strncmp (val, bad_servers[index][i], strlen (bad_servers[index][i]))) {
   701                 LOG(("looks like this server does not support pipelining"));
   702                 gHttpHandler->ConnMgr()->PipelineFeedbackInfo(
   703                     mConnInfo, nsHttpConnectionMgr::RedBannedServer, this , 0);
   704                 return false;
   705             }
   706         }
   707     }
   709     // ok, let's allow pipelining to this server
   710     return true;
   711 }
   713 //----------------------------------------------------------------------------
   714 // nsHttpConnection::nsAHttpConnection compatible methods
   715 //----------------------------------------------------------------------------
   717 nsresult
   718 nsHttpConnection::OnHeadersAvailable(nsAHttpTransaction *trans,
   719                                      nsHttpRequestHead *requestHead,
   720                                      nsHttpResponseHead *responseHead,
   721                                      bool *reset)
   722 {
   723     LOG(("nsHttpConnection::OnHeadersAvailable [this=%p trans=%p response-head=%p]\n",
   724         this, trans, responseHead));
   726     MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread);
   727     NS_ENSURE_ARG_POINTER(trans);
   728     MOZ_ASSERT(responseHead, "No response head?");
   730     // we won't change our keep-alive policy unless the server has explicitly
   731     // told us to do so.
   733     // inspect the connection headers for keep-alive info provided the
   734     // transaction completed successfully. In the case of a non-sensical close
   735     // and keep-alive favor the close out of conservatism.
   737     bool explicitKeepAlive = false;
   738     bool explicitClose = responseHead->HasHeaderValue(nsHttp::Connection, "close") ||
   739         responseHead->HasHeaderValue(nsHttp::Proxy_Connection, "close");
   740     if (!explicitClose)
   741         explicitKeepAlive = responseHead->HasHeaderValue(nsHttp::Connection, "keep-alive") ||
   742             responseHead->HasHeaderValue(nsHttp::Proxy_Connection, "keep-alive");
   744     // deal with 408 Server Timeouts
   745     uint16_t responseStatus = responseHead->Status();
   746     static const PRIntervalTime k1000ms  = PR_MillisecondsToInterval(1000);
   747     if (responseStatus == 408) {
   748         // If this error could be due to a persistent connection reuse then
   749         // we pass an error code of NS_ERROR_NET_RESET to
   750         // trigger the transaction 'restart' mechanism.  We tell it to reset its
   751         // response headers so that it will be ready to receive the new response.
   752         if (mIsReused && ((PR_IntervalNow() - mLastWriteTime) < k1000ms)) {
   753             Close(NS_ERROR_NET_RESET);
   754             *reset = true;
   755             return NS_OK;
   756         }
   758         // timeouts that are not caused by persistent connection reuse should
   759         // not be retried for browser compatibility reasons. bug 907800. The
   760         // server driven close is implicit in the 408.
   761         explicitClose = true;
   762         explicitKeepAlive = false;
   763     }
   765     // reset to default (the server may have changed since we last checked)
   766     mSupportsPipelining = false;
   768     if ((responseHead->Version() < NS_HTTP_VERSION_1_1) ||
   769         (requestHead->Version() < NS_HTTP_VERSION_1_1)) {
   770         // HTTP/1.0 connections are by default NOT persistent
   771         if (explicitKeepAlive)
   772             mKeepAlive = true;
   773         else
   774             mKeepAlive = false;
   776         // We need at least version 1.1 to use pipelines
   777         gHttpHandler->ConnMgr()->PipelineFeedbackInfo(
   778             mConnInfo, nsHttpConnectionMgr::RedVersionTooLow, this, 0);
   779     }
   780     else {
   781         // HTTP/1.1 connections are by default persistent
   782         if (explicitClose) {
   783             mKeepAlive = false;
   785             // persistent connections are required for pipelining to work - if
   786             // this close was not pre-announced then generate the negative
   787             // BadExplicitClose feedback
   788             if (mRemainingConnectionUses > 1)
   789                 gHttpHandler->ConnMgr()->PipelineFeedbackInfo(
   790                     mConnInfo, nsHttpConnectionMgr::BadExplicitClose, this, 0);
   791         }
   792         else {
   793             mKeepAlive = true;
   795             // Do not support pipelining when we are establishing
   796             // an SSL tunnel though an HTTP proxy. Pipelining support
   797             // determination must be based on comunication with the
   798             // target server in this case. See bug 422016 for futher
   799             // details.
   800             if (!mProxyConnectStream)
   801               mSupportsPipelining = SupportsPipelining(responseHead);
   802         }
   803     }
   804     mKeepAliveMask = mKeepAlive;
   806     // Update the pipelining status in the connection info object
   807     // and also read it back. It is possible the ci status is
   808     // locked to false if pipelining has been banned on this ci due to
   809     // some kind of observed flaky behavior
   810     if (mSupportsPipelining) {
   811         // report the pipelining-compatible header to the connection manager
   812         // as positive feedback. This will undo 1 penalty point the host
   813         // may have accumulated in the past.
   815         gHttpHandler->ConnMgr()->PipelineFeedbackInfo(
   816             mConnInfo, nsHttpConnectionMgr::NeutralExpectedOK, this, 0);
   818         mSupportsPipelining =
   819             gHttpHandler->ConnMgr()->SupportsPipelining(mConnInfo);
   820     }
   822     // If this connection is reserved for revalidations and we are
   823     // receiving a document that failed revalidation then switch the
   824     // classification to general to avoid pipelining more revalidations behind
   825     // it.
   826     if (mClassification == nsAHttpTransaction::CLASS_REVALIDATION &&
   827         responseStatus != 304) {
   828         mClassification = nsAHttpTransaction::CLASS_GENERAL;
   829     }
   831     // if this connection is persistent, then the server may send a "Keep-Alive"
   832     // header specifying the maximum number of times the connection can be
   833     // reused as well as the maximum amount of time the connection can be idle
   834     // before the server will close it.  we ignore the max reuse count, because
   835     // a "keep-alive" connection is by definition capable of being reused, and
   836     // we only care about being able to reuse it once.  if a timeout is not
   837     // specified then we use our advertized timeout value.
   838     bool foundKeepAliveMax = false;
   839     if (mKeepAlive) {
   840         const char *val = responseHead->PeekHeader(nsHttp::Keep_Alive);
   842         if (!mUsingSpdyVersion) {
   843             const char *cp = PL_strcasestr(val, "timeout=");
   844             if (cp)
   845                 mIdleTimeout = PR_SecondsToInterval((uint32_t) atoi(cp + 8));
   846             else
   847                 mIdleTimeout = gHttpHandler->IdleTimeout();
   849             cp = PL_strcasestr(val, "max=");
   850             if (cp) {
   851                 int val = atoi(cp + 4);
   852                 if (val > 0) {
   853                     foundKeepAliveMax = true;
   854                     mRemainingConnectionUses = static_cast<uint32_t>(val);
   855                 }
   856             }
   857         }
   858         else {
   859             mIdleTimeout = gHttpHandler->SpdyTimeout();
   860         }
   862         LOG(("Connection can be reused [this=%p idle-timeout=%usec]\n",
   863              this, PR_IntervalToSeconds(mIdleTimeout)));
   864     }
   866     if (!foundKeepAliveMax && mRemainingConnectionUses && !mUsingSpdyVersion)
   867         --mRemainingConnectionUses;
   869     // If we're doing a proxy connect, we need to check whether or not
   870     // it was successful.  If so, we have to reset the transaction and step-up
   871     // the socket connection if using SSL. Finally, we have to wake up the
   872     // socket write request.
   873     if (mProxyConnectStream) {
   874         MOZ_ASSERT(!mUsingSpdyVersion,
   875                    "SPDY NPN Complete while using proxy connect stream");
   876         mProxyConnectStream = 0;
   877         if (responseStatus == 200) {
   878             LOG(("proxy CONNECT succeeded! ssl=%s\n",
   879                  mConnInfo->UsingSSL() ? "true" :"false"));
   880             *reset = true;
   881             nsresult rv;
   882             if (mConnInfo->UsingSSL()) {
   883                 rv = ProxyStartSSL();
   884                 if (NS_FAILED(rv)) // XXX need to handle this for real
   885                     LOG(("ProxyStartSSL failed [rv=%x]\n", rv));
   886             }
   887             mCompletedProxyConnect = true;
   888             mProxyConnectInProgress = false;
   889             rv = mSocketOut->AsyncWait(this, 0, 0, nullptr);
   890             // XXX what if this fails -- need to handle this error
   891             MOZ_ASSERT(NS_SUCCEEDED(rv), "mSocketOut->AsyncWait failed");
   892         }
   893         else {
   894             LOG(("proxy CONNECT failed! ssl=%s\n",
   895                  mConnInfo->UsingSSL() ? "true" :"false"));
   896             mTransaction->SetProxyConnectFailed();
   897         }
   898     }
   900     const char *upgradeReq = requestHead->PeekHeader(nsHttp::Upgrade);
   901     // Don't use persistent connection for Upgrade unless there's an auth failure:
   902     // some proxies expect to see auth response on persistent connection.
   903     if (upgradeReq && responseStatus != 401 && responseStatus != 407) {
   904         LOG(("HTTP Upgrade in play - disable keepalive\n"));
   905         DontReuse();
   906     }
   908     if (responseStatus == 101) {
   909         const char *upgradeResp = responseHead->PeekHeader(nsHttp::Upgrade);
   910         if (!upgradeReq || !upgradeResp ||
   911             !nsHttp::FindToken(upgradeResp, upgradeReq,
   912                                HTTP_HEADER_VALUE_SEPS)) {
   913             LOG(("HTTP 101 Upgrade header mismatch req = %s, resp = %s\n",
   914                  upgradeReq, upgradeResp));
   915             Close(NS_ERROR_ABORT);
   916         }
   917         else {
   918             LOG(("HTTP Upgrade Response to %s\n", upgradeResp));
   919         }
   920     }
   922     mLastHttpResponseVersion = responseHead->Version();
   924     return NS_OK;
   925 }
   927 bool
   928 nsHttpConnection::IsReused()
   929 {
   930     if (mIsReused)
   931         return true;
   932     if (!mConsiderReusedAfterInterval)
   933         return false;
   935     // ReusedAfter allows a socket to be consider reused only after a certain
   936     // interval of time has passed
   937     return (PR_IntervalNow() - mConsiderReusedAfterEpoch) >=
   938         mConsiderReusedAfterInterval;
   939 }
   941 void
   942 nsHttpConnection::SetIsReusedAfter(uint32_t afterMilliseconds)
   943 {
   944     mConsiderReusedAfterEpoch = PR_IntervalNow();
   945     mConsiderReusedAfterInterval = PR_MillisecondsToInterval(afterMilliseconds);
   946 }
   948 nsresult
   949 nsHttpConnection::TakeTransport(nsISocketTransport  **aTransport,
   950                                 nsIAsyncInputStream **aInputStream,
   951                                 nsIAsyncOutputStream **aOutputStream)
   952 {
   953     if (mUsingSpdyVersion)
   954         return NS_ERROR_FAILURE;
   955     if (mTransaction && !mTransaction->IsDone())
   956         return NS_ERROR_IN_PROGRESS;
   957     if (!(mSocketTransport && mSocketIn && mSocketOut))
   958         return NS_ERROR_NOT_INITIALIZED;
   960     if (mInputOverflow)
   961         mSocketIn = mInputOverflow.forget();
   963     // Change TCP Keepalive frequency to long-lived if currently short-lived.
   964     if (mTCPKeepaliveConfig == kTCPKeepaliveShortLivedConfig) {
   965         if (mTCPKeepaliveTransitionTimer) {
   966             mTCPKeepaliveTransitionTimer->Cancel();
   967             mTCPKeepaliveTransitionTimer = nullptr;
   968         }
   969         nsresult rv = StartLongLivedTCPKeepalives();
   970         LOG(("nsHttpConnection::TakeTransport [%p] calling "
   971              "StartLongLivedTCPKeepalives", this));
   972         if (NS_WARN_IF(NS_FAILED(rv))) {
   973             LOG(("nsHttpConnection::TakeTransport [%p] "
   974                  "StartLongLivedTCPKeepalives failed rv[0x%x]", this, rv));
   975         }
   976     }
   978     NS_IF_ADDREF(*aTransport = mSocketTransport);
   979     NS_IF_ADDREF(*aInputStream = mSocketIn);
   980     NS_IF_ADDREF(*aOutputStream = mSocketOut);
   982     mSocketTransport->SetSecurityCallbacks(nullptr);
   983     mSocketTransport->SetEventSink(nullptr, nullptr);
   984     mSocketTransport = nullptr;
   985     mSocketIn = nullptr;
   986     mSocketOut = nullptr;
   988     return NS_OK;
   989 }
   991 uint32_t
   992 nsHttpConnection::ReadTimeoutTick(PRIntervalTime now)
   993 {
   994     MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread);
   996     // make sure timer didn't tick before Activate()
   997     if (!mTransaction)
   998         return UINT32_MAX;
  1000     // Spdy implements some timeout handling using the SPDY ping frame.
  1001     if (mSpdySession) {
  1002         return mSpdySession->ReadTimeoutTick(now);
  1005     uint32_t nextTickAfter = UINT32_MAX;
  1006     // Timeout if the response is taking too long to arrive.
  1007     if (mResponseTimeoutEnabled) {
  1008         NS_WARN_IF_FALSE(gHttpHandler->ResponseTimeoutEnabled(),
  1009                          "Timing out a response, but response timeout is disabled!");
  1011         PRIntervalTime initialResponseDelta = now - mLastWriteTime;
  1013         if (initialResponseDelta > mTransaction->ResponseTimeout()) {
  1014             LOG(("canceling transaction: no response for %ums: timeout is %dms\n",
  1015                  PR_IntervalToMilliseconds(initialResponseDelta),
  1016                  PR_IntervalToMilliseconds(mTransaction->ResponseTimeout())));
  1018             mResponseTimeoutEnabled = false;
  1020             // This will also close the connection
  1021             CloseTransaction(mTransaction, NS_ERROR_NET_TIMEOUT);
  1022             return UINT32_MAX;
  1024         nextTickAfter = PR_IntervalToSeconds(mTransaction->ResponseTimeout()) -
  1025                         PR_IntervalToSeconds(initialResponseDelta);
  1026         nextTickAfter = std::max(nextTickAfter, 1U);
  1029     if (!gHttpHandler->GetPipelineRescheduleOnTimeout())
  1030         return nextTickAfter;
  1032     PRIntervalTime delta = now - mLastReadTime;
  1034     // we replicate some of the checks both here and in OnSocketReadable() as
  1035     // they will be discovered under different conditions. The ones here
  1036     // will generally be discovered if we are totally hung and OSR does
  1037     // not get called at all, however OSR discovers them with lower latency
  1038     // if the issue is just very slow (but not stalled) reading.
  1039     //
  1040     // Right now we only take action if pipelining is involved, but this would
  1041     // be the place to add general read timeout handling if it is desired.
  1043     uint32_t pipelineDepth = mTransaction->PipelineDepth();
  1044     if (pipelineDepth > 1) {
  1045         // if we have pipelines outstanding (not just an idle connection)
  1046         // then get a fairly quick tick
  1047         nextTickAfter = 1;
  1050     if (delta >= gHttpHandler->GetPipelineRescheduleTimeout() &&
  1051         pipelineDepth > 1) {
  1053         // this just reschedules blocked transactions. no transaction
  1054         // is aborted completely.
  1055         LOG(("cancelling pipeline due to a %ums stall - depth %d\n",
  1056              PR_IntervalToMilliseconds(delta), pipelineDepth));
  1058         nsHttpPipeline *pipeline = mTransaction->QueryPipeline();
  1059         MOZ_ASSERT(pipeline, "pipelinedepth > 1 without pipeline");
  1060         // code this defensively for the moment and check for null in opt build
  1061         // This will reschedule blocked members of the pipeline, but the
  1062         // blocking transaction (i.e. response 0) will not be changed.
  1063         if (pipeline) {
  1064             pipeline->CancelPipeline(NS_ERROR_NET_TIMEOUT);
  1065             LOG(("Rescheduling the head of line blocked members of a pipeline "
  1066                  "because reschedule-timeout idle interval exceeded"));
  1070     if (delta < gHttpHandler->GetPipelineTimeout())
  1071         return nextTickAfter;
  1073     if (pipelineDepth <= 1 && !mTransaction->PipelinePosition())
  1074         return nextTickAfter;
  1076     // nothing has transpired on this pipelined socket for many
  1077     // seconds. Call that a total stall and close the transaction.
  1078     // There is a chance the transaction will be restarted again
  1079     // depending on its state.. that will come back araound
  1080     // without pipelining on, so this won't loop.
  1082     LOG(("canceling transaction stalled for %ums on a pipeline "
  1083          "of depth %d and scheduled originally at pos %d\n",
  1084          PR_IntervalToMilliseconds(delta),
  1085          pipelineDepth, mTransaction->PipelinePosition()));
  1087     // This will also close the connection
  1088     CloseTransaction(mTransaction, NS_ERROR_NET_TIMEOUT);
  1089     return UINT32_MAX;
  1092 void
  1093 nsHttpConnection::UpdateTCPKeepalive(nsITimer *aTimer, void *aClosure)
  1095     MOZ_ASSERT(aTimer);
  1096     MOZ_ASSERT(aClosure);
  1098     nsHttpConnection *self = static_cast<nsHttpConnection*>(aClosure);
  1100     if (NS_WARN_IF(self->mUsingSpdyVersion)) {
  1101         return;
  1104     // Do not reduce keepalive probe frequency for idle connections.
  1105     if (self->mIdleMonitoring) {
  1106         return;
  1109     nsresult rv = self->StartLongLivedTCPKeepalives();
  1110     if (NS_WARN_IF(NS_FAILED(rv))) {
  1111         LOG(("nsHttpConnection::UpdateTCPKeepalive [%p] "
  1112              "StartLongLivedTCPKeepalives failed rv[0x%x]",
  1113              self, rv));
  1117 void
  1118 nsHttpConnection::GetSecurityInfo(nsISupports **secinfo)
  1120     MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread);
  1122     if (mSocketTransport) {
  1123         if (NS_FAILED(mSocketTransport->GetSecurityInfo(secinfo)))
  1124             *secinfo = nullptr;
  1128 void
  1129 nsHttpConnection::SetSecurityCallbacks(nsIInterfaceRequestor* aCallbacks)
  1131     MutexAutoLock lock(mCallbacksLock);
  1132     // This is called both on and off the main thread. For JS-implemented
  1133     // callbacks, we requires that the call happen on the main thread, but
  1134     // for C++-implemented callbacks we don't care. Use a pointer holder with
  1135     // strict checking disabled.
  1136     mCallbacks = new nsMainThreadPtrHolder<nsIInterfaceRequestor>(aCallbacks, false);
  1139 nsresult
  1140 nsHttpConnection::PushBack(const char *data, uint32_t length)
  1142     LOG(("nsHttpConnection::PushBack [this=%p, length=%d]\n", this, length));
  1144     if (mInputOverflow) {
  1145         NS_ERROR("nsHttpConnection::PushBack only one buffer supported");
  1146         return NS_ERROR_UNEXPECTED;
  1149     mInputOverflow = new nsPreloadedStream(mSocketIn, data, length);
  1150     return NS_OK;
  1153 nsresult
  1154 nsHttpConnection::ResumeSend()
  1156     LOG(("nsHttpConnection::ResumeSend [this=%p]\n", this));
  1158     MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread);
  1160     if (mSocketOut)
  1161         return mSocketOut->AsyncWait(this, 0, 0, nullptr);
  1163     NS_NOTREACHED("no socket output stream");
  1164     return NS_ERROR_UNEXPECTED;
  1167 nsresult
  1168 nsHttpConnection::ResumeRecv()
  1170     LOG(("nsHttpConnection::ResumeRecv [this=%p]\n", this));
  1172     MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread);
  1174     // the mLastReadTime timestamp is used for finding slowish readers
  1175     // and can be pretty sensitive. For that reason we actually reset it
  1176     // when we ask to read (resume recv()) so that when we get called back
  1177     // with actual read data in OnSocketReadable() we are only measuring
  1178     // the latency between those two acts and not all the processing that
  1179     // may get done before the ResumeRecv() call
  1180     mLastReadTime = PR_IntervalNow();
  1182     if (mSocketIn)
  1183         return mSocketIn->AsyncWait(this, 0, 0, nullptr);
  1185     NS_NOTREACHED("no socket input stream");
  1186     return NS_ERROR_UNEXPECTED;
  1190 class nsHttpConnectionForceRecv : public nsRunnable
  1192 public:
  1193     nsHttpConnectionForceRecv(nsHttpConnection *aConn)
  1194         : mConn(aConn) {}
  1196     NS_IMETHOD Run()
  1198         MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread);
  1200         if (!mConn->mSocketIn)
  1201             return NS_OK;
  1202         return mConn->OnInputStreamReady(mConn->mSocketIn);
  1204 private:
  1205     nsRefPtr<nsHttpConnection> mConn;
  1206 };
  1208 // trigger an asynchronous read
  1209 nsresult
  1210 nsHttpConnection::ForceRecv()
  1212     LOG(("nsHttpConnection::ForceRecv [this=%p]\n", this));
  1213     MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread);
  1215     return NS_DispatchToCurrentThread(new nsHttpConnectionForceRecv(this));
  1218 void
  1219 nsHttpConnection::BeginIdleMonitoring()
  1221     LOG(("nsHttpConnection::BeginIdleMonitoring [this=%p]\n", this));
  1222     MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread);
  1223     MOZ_ASSERT(!mTransaction, "BeginIdleMonitoring() while active");
  1224     MOZ_ASSERT(!mUsingSpdyVersion, "Idle monitoring of spdy not allowed");
  1226     LOG(("Entering Idle Monitoring Mode [this=%p]", this));
  1227     mIdleMonitoring = true;
  1228     if (mSocketIn)
  1229         mSocketIn->AsyncWait(this, 0, 0, nullptr);
  1232 void
  1233 nsHttpConnection::EndIdleMonitoring()
  1235     LOG(("nsHttpConnection::EndIdleMonitoring [this=%p]\n", this));
  1236     MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread);
  1237     MOZ_ASSERT(!mTransaction, "EndIdleMonitoring() while active");
  1239     if (mIdleMonitoring) {
  1240         LOG(("Leaving Idle Monitoring Mode [this=%p]", this));
  1241         mIdleMonitoring = false;
  1242         if (mSocketIn)
  1243             mSocketIn->AsyncWait(nullptr, 0, 0, nullptr);
  1247 //-----------------------------------------------------------------------------
  1248 // nsHttpConnection <private>
  1249 //-----------------------------------------------------------------------------
  1251 void
  1252 nsHttpConnection::CloseTransaction(nsAHttpTransaction *trans, nsresult reason)
  1254     LOG(("nsHttpConnection::CloseTransaction[this=%p trans=%x reason=%x]\n",
  1255         this, trans, reason));
  1257     MOZ_ASSERT(trans == mTransaction, "wrong transaction");
  1258     MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread);
  1260     if (mCurrentBytesRead > mMaxBytesRead)
  1261         mMaxBytesRead = mCurrentBytesRead;
  1263     // mask this error code because its not a real error.
  1264     if (reason == NS_BASE_STREAM_CLOSED)
  1265         reason = NS_OK;
  1267     if (mUsingSpdyVersion) {
  1268         DontReuse();
  1269         // if !mSpdySession then mUsingSpdyVersion must be false for canreuse()
  1270         mUsingSpdyVersion = 0;
  1271         mSpdySession = nullptr;
  1274     if (mTransaction) {
  1275         mHttp1xTransactionCount += mTransaction->Http1xTransactionCount();
  1277         mTransaction->Close(reason);
  1278         mTransaction = nullptr;
  1282         MutexAutoLock lock(mCallbacksLock);
  1283         mCallbacks = nullptr;
  1286     if (NS_FAILED(reason))
  1287         Close(reason);
  1289     // flag the connection as reused here for convenience sake.  certainly
  1290     // it might be going away instead ;-)
  1291     mIsReused = true;
  1294 NS_METHOD
  1295 nsHttpConnection::ReadFromStream(nsIInputStream *input,
  1296                                  void *closure,
  1297                                  const char *buf,
  1298                                  uint32_t offset,
  1299                                  uint32_t count,
  1300                                  uint32_t *countRead)
  1302     // thunk for nsIInputStream instance
  1303     nsHttpConnection *conn = (nsHttpConnection *) closure;
  1304     return conn->OnReadSegment(buf, count, countRead);
  1307 nsresult
  1308 nsHttpConnection::OnReadSegment(const char *buf,
  1309                                 uint32_t count,
  1310                                 uint32_t *countRead)
  1312     if (count == 0) {
  1313         // some ReadSegments implementations will erroneously call the writer
  1314         // to consume 0 bytes worth of data.  we must protect against this case
  1315         // or else we'd end up closing the socket prematurely.
  1316         NS_ERROR("bad ReadSegments implementation");
  1317         return NS_ERROR_FAILURE; // stop iterating
  1320     nsresult rv = mSocketOut->Write(buf, count, countRead);
  1321     if (NS_FAILED(rv))
  1322         mSocketOutCondition = rv;
  1323     else if (*countRead == 0)
  1324         mSocketOutCondition = NS_BASE_STREAM_CLOSED;
  1325     else {
  1326         mLastWriteTime = PR_IntervalNow();
  1327         mSocketOutCondition = NS_OK; // reset condition
  1328         if (!mProxyConnectInProgress)
  1329             mTotalBytesWritten += *countRead;
  1332     return mSocketOutCondition;
  1335 nsresult
  1336 nsHttpConnection::OnSocketWritable()
  1338     LOG(("nsHttpConnection::OnSocketWritable [this=%p] host=%s\n",
  1339          this, mConnInfo->Host()));
  1341     nsresult rv;
  1342     uint32_t n;
  1343     bool again = true;
  1345     do {
  1346         mSocketOutCondition = NS_OK;
  1348         // If we're doing a proxy connect, then we need to bypass calling into
  1349         // the transaction.
  1350         //
  1351         // NOTE: this code path can't be shared since the transaction doesn't
  1352         // implement nsIInputStream.  doing so is not worth the added cost of
  1353         // extra indirections during normal reading.
  1354         //
  1355         if (mProxyConnectStream) {
  1356             LOG(("  writing CONNECT request stream\n"));
  1357             rv = mProxyConnectStream->ReadSegments(ReadFromStream, this,
  1358                                                       nsIOService::gDefaultSegmentSize,
  1359                                                       &n);
  1361         else if (!EnsureNPNComplete()) {
  1362             // When SPDY is disabled this branch is not executed because Activate()
  1363             // sets mNPNComplete to true in that case.
  1365             // We are ready to proceed with SSL but the handshake is not done.
  1366             // When using NPN to negotiate between HTTPS and SPDY, we need to
  1367             // see the results of the handshake to know what bytes to send, so
  1368             // we cannot proceed with the request headers.
  1370             rv = NS_OK;
  1371             mSocketOutCondition = NS_BASE_STREAM_WOULD_BLOCK;
  1372             n = 0;
  1374         else {
  1375             if (!mReportedSpdy) {
  1376                 mReportedSpdy = true;
  1377                 gHttpHandler->ConnMgr()->ReportSpdyConnection(this, mEverUsedSpdy);
  1380             LOG(("  writing transaction request stream\n"));
  1381             mProxyConnectInProgress = false;
  1382             rv = mTransaction->ReadSegments(this, nsIOService::gDefaultSegmentSize, &n);
  1385         LOG(("  ReadSegments returned [rv=%x read=%u sock-cond=%x]\n",
  1386             rv, n, mSocketOutCondition));
  1388         // XXX some streams return NS_BASE_STREAM_CLOSED to indicate EOF.
  1389         if (rv == NS_BASE_STREAM_CLOSED && !mTransaction->IsDone()) {
  1390             rv = NS_OK;
  1391             n = 0;
  1394         if (NS_FAILED(rv)) {
  1395             // if the transaction didn't want to write any more data, then
  1396             // wait for the transaction to call ResumeSend.
  1397             if (rv == NS_BASE_STREAM_WOULD_BLOCK)
  1398                 rv = NS_OK;
  1399             again = false;
  1401         else if (NS_FAILED(mSocketOutCondition)) {
  1402             if (mSocketOutCondition == NS_BASE_STREAM_WOULD_BLOCK)
  1403                 rv = mSocketOut->AsyncWait(this, 0, 0, nullptr); // continue writing
  1404             else
  1405                 rv = mSocketOutCondition;
  1406             again = false;
  1408         else if (n == 0) {
  1409             rv = NS_OK;
  1411             if (mTransaction) { // in case the ReadSegments stack called CloseTransaction()
  1412                 //
  1413                 // at this point we've written out the entire transaction, and now we
  1414                 // must wait for the server's response.  we manufacture a status message
  1415                 // here to reflect the fact that we are waiting.  this message will be
  1416                 // trumped (overwritten) if the server responds quickly.
  1417                 //
  1418                 mTransaction->OnTransportStatus(mSocketTransport,
  1419                                                 NS_NET_STATUS_WAITING_FOR,
  1420                                                 0);
  1422                 rv = ResumeRecv(); // start reading
  1424             again = false;
  1426         // write more to the socket until error or end-of-request...
  1427     } while (again);
  1429     return rv;
  1432 nsresult
  1433 nsHttpConnection::OnWriteSegment(char *buf,
  1434                                  uint32_t count,
  1435                                  uint32_t *countWritten)
  1437     if (count == 0) {
  1438         // some WriteSegments implementations will erroneously call the reader
  1439         // to provide 0 bytes worth of data.  we must protect against this case
  1440         // or else we'd end up closing the socket prematurely.
  1441         NS_ERROR("bad WriteSegments implementation");
  1442         return NS_ERROR_FAILURE; // stop iterating
  1445     if (ChaosMode::isActive() && ChaosMode::randomUint32LessThan(2)) {
  1446         // read 1...count bytes
  1447         count = ChaosMode::randomUint32LessThan(count) + 1;
  1450     nsresult rv = mSocketIn->Read(buf, count, countWritten);
  1451     if (NS_FAILED(rv))
  1452         mSocketInCondition = rv;
  1453     else if (*countWritten == 0)
  1454         mSocketInCondition = NS_BASE_STREAM_CLOSED;
  1455     else
  1456         mSocketInCondition = NS_OK; // reset condition
  1458     return mSocketInCondition;
  1461 nsresult
  1462 nsHttpConnection::OnSocketReadable()
  1464     LOG(("nsHttpConnection::OnSocketReadable [this=%p]\n", this));
  1466     PRIntervalTime now = PR_IntervalNow();
  1467     PRIntervalTime delta = now - mLastReadTime;
  1469     // Reset mResponseTimeoutEnabled to stop response timeout checks.
  1470     mResponseTimeoutEnabled = false;
  1472     if (mKeepAliveMask && (delta >= mMaxHangTime)) {
  1473         LOG(("max hang time exceeded!\n"));
  1474         // give the handler a chance to create a new persistent connection to
  1475         // this host if we've been busy for too long.
  1476         mKeepAliveMask = false;
  1477         gHttpHandler->ProcessPendingQ(mConnInfo);
  1480     // Look for data being sent in bursts with large pauses. If the pauses
  1481     // are caused by server bottlenecks such as think-time, disk i/o, or
  1482     // cpu exhaustion (as opposed to network latency) then we generate negative
  1483     // pipelining feedback to prevent head of line problems
  1485     // Reduce the estimate of the time since last read by up to 1 RTT to
  1486     // accommodate exhausted sender TCP congestion windows or minor I/O delays.
  1488     if (delta > mRtt)
  1489         delta -= mRtt;
  1490     else
  1491         delta = 0;
  1493     static const PRIntervalTime k400ms  = PR_MillisecondsToInterval(400);
  1495     if (delta >= (mRtt + gHttpHandler->GetPipelineRescheduleTimeout())) {
  1496         LOG(("Read delta ms of %u causing slow read major "
  1497              "event and pipeline cancellation",
  1498              PR_IntervalToMilliseconds(delta)));
  1500         gHttpHandler->ConnMgr()->PipelineFeedbackInfo(
  1501             mConnInfo, nsHttpConnectionMgr::BadSlowReadMajor, this, 0);
  1503         if (gHttpHandler->GetPipelineRescheduleOnTimeout() &&
  1504             mTransaction->PipelineDepth() > 1) {
  1505             nsHttpPipeline *pipeline = mTransaction->QueryPipeline();
  1506             MOZ_ASSERT(pipeline, "pipelinedepth > 1 without pipeline");
  1507             // code this defensively for the moment and check for null
  1508             // This will reschedule blocked members of the pipeline, but the
  1509             // blocking transaction (i.e. response 0) will not be changed.
  1510             if (pipeline) {
  1511                 pipeline->CancelPipeline(NS_ERROR_NET_TIMEOUT);
  1512                 LOG(("Rescheduling the head of line blocked members of a "
  1513                      "pipeline because reschedule-timeout idle interval "
  1514                      "exceeded"));
  1518     else if (delta > k400ms) {
  1519         gHttpHandler->ConnMgr()->PipelineFeedbackInfo(
  1520             mConnInfo, nsHttpConnectionMgr::BadSlowReadMinor, this, 0);
  1523     mLastReadTime = now;
  1525     nsresult rv;
  1526     uint32_t n;
  1527     bool again = true;
  1529     do {
  1530         if (!mProxyConnectInProgress && !mNPNComplete) {
  1531             // Unless we are setting up a tunnel via CONNECT, prevent reading
  1532             // from the socket until the results of NPN
  1533             // negotiation are known (which is determined from the write path).
  1534             // If the server speaks SPDY it is likely the readable data here is
  1535             // a spdy settings frame and without NPN it would be misinterpreted
  1536             // as HTTP/*
  1538             LOG(("nsHttpConnection::OnSocketReadable %p return due to inactive "
  1539                  "tunnel setup but incomplete NPN state\n", this));
  1540             rv = NS_OK;
  1541             break;
  1544         rv = mTransaction->WriteSegments(this, nsIOService::gDefaultSegmentSize, &n);
  1545         if (NS_FAILED(rv)) {
  1546             // if the transaction didn't want to take any more data, then
  1547             // wait for the transaction to call ResumeRecv.
  1548             if (rv == NS_BASE_STREAM_WOULD_BLOCK)
  1549                 rv = NS_OK;
  1550             again = false;
  1552         else {
  1553             mCurrentBytesRead += n;
  1554             mTotalBytesRead += n;
  1555             if (NS_FAILED(mSocketInCondition)) {
  1556                 // continue waiting for the socket if necessary...
  1557                 if (mSocketInCondition == NS_BASE_STREAM_WOULD_BLOCK)
  1558                     rv = ResumeRecv();
  1559                 else
  1560                     rv = mSocketInCondition;
  1561                 again = false;
  1564         // read more from the socket until error...
  1565     } while (again);
  1567     return rv;
  1570 nsresult
  1571 nsHttpConnection::SetupProxyConnect()
  1573     const char *val;
  1575     LOG(("nsHttpConnection::SetupProxyConnect [this=%p]\n", this));
  1577     NS_ENSURE_TRUE(!mProxyConnectStream, NS_ERROR_ALREADY_INITIALIZED);
  1578     MOZ_ASSERT(!mUsingSpdyVersion,
  1579                "SPDY NPN Complete while using proxy connect stream");
  1581     nsAutoCString buf;
  1582     nsresult rv = nsHttpHandler::GenerateHostPort(
  1583             nsDependentCString(mConnInfo->Host()), mConnInfo->Port(), buf);
  1584     if (NS_FAILED(rv))
  1585         return rv;
  1587     // CONNECT host:port HTTP/1.1
  1588     nsHttpRequestHead request;
  1589     request.SetMethod(NS_LITERAL_CSTRING("CONNECT"));
  1590     request.SetVersion(gHttpHandler->HttpVersion());
  1591     request.SetRequestURI(buf);
  1592     request.SetHeader(nsHttp::User_Agent, gHttpHandler->UserAgent());
  1594     // a CONNECT is always persistent
  1595     request.SetHeader(nsHttp::Proxy_Connection, NS_LITERAL_CSTRING("keep-alive"));
  1596     request.SetHeader(nsHttp::Connection, NS_LITERAL_CSTRING("keep-alive"));
  1598     // all HTTP/1.1 requests must include a Host header (even though it
  1599     // may seem redundant in this case; see bug 82388).
  1600     request.SetHeader(nsHttp::Host, buf);
  1602     val = mTransaction->RequestHead()->PeekHeader(nsHttp::Proxy_Authorization);
  1603     if (val) {
  1604         // we don't know for sure if this authorization is intended for the
  1605         // SSL proxy, so we add it just in case.
  1606         request.SetHeader(nsHttp::Proxy_Authorization, nsDependentCString(val));
  1609     buf.Truncate();
  1610     request.Flatten(buf, false);
  1611     buf.AppendLiteral("\r\n");
  1613     return NS_NewCStringInputStream(getter_AddRefs(mProxyConnectStream), buf);
  1616 nsresult
  1617 nsHttpConnection::StartShortLivedTCPKeepalives()
  1619     if (mUsingSpdyVersion) {
  1620         return NS_OK;
  1622     MOZ_ASSERT(mSocketTransport);
  1623     if (!mSocketTransport) {
  1624         return NS_ERROR_NOT_INITIALIZED;
  1627     nsresult rv = NS_OK;
  1628     int32_t idleTimeS = -1;
  1629     int32_t retryIntervalS = -1;
  1630     if (gHttpHandler->TCPKeepaliveEnabledForShortLivedConns()) {
  1631         // Set the idle time.
  1632         idleTimeS = gHttpHandler->GetTCPKeepaliveShortLivedIdleTime();
  1633         LOG(("nsHttpConnection::StartShortLivedTCPKeepalives[%p] "
  1634              "idle time[%ds].", this, idleTimeS));
  1636         retryIntervalS =
  1637             std::max<int32_t>((int32_t)PR_IntervalToSeconds(mRtt), 1);
  1638         rv = mSocketTransport->SetKeepaliveVals(idleTimeS, retryIntervalS);
  1639         if (NS_WARN_IF(NS_FAILED(rv))) {
  1640             return rv;
  1642         rv = mSocketTransport->SetKeepaliveEnabled(true);
  1643         mTCPKeepaliveConfig = kTCPKeepaliveShortLivedConfig;
  1644     } else {
  1645         rv = mSocketTransport->SetKeepaliveEnabled(false);
  1646         mTCPKeepaliveConfig = kTCPKeepaliveDisabled;
  1648     if (NS_WARN_IF(NS_FAILED(rv))) {
  1649         return rv;
  1652     // Start a timer to move to long-lived keepalive config.
  1653     if(!mTCPKeepaliveTransitionTimer) {
  1654         mTCPKeepaliveTransitionTimer =
  1655             do_CreateInstance("@mozilla.org/timer;1");
  1658     if (mTCPKeepaliveTransitionTimer) {
  1659         int32_t time = gHttpHandler->GetTCPKeepaliveShortLivedTime();
  1661         // Adjust |time| to ensure a full set of keepalive probes can be sent
  1662         // at the end of the short-lived phase.
  1663         if (gHttpHandler->TCPKeepaliveEnabledForShortLivedConns()) {
  1664             if (NS_WARN_IF(!gSocketTransportService)) {
  1665                 return NS_ERROR_NOT_INITIALIZED;
  1667             int32_t probeCount = -1;
  1668             rv = gSocketTransportService->GetKeepaliveProbeCount(&probeCount);
  1669             if (NS_WARN_IF(NS_FAILED(rv))) {
  1670                 return rv;
  1672             if (NS_WARN_IF(probeCount <= 0)) {
  1673                 return NS_ERROR_UNEXPECTED;
  1675             // Add time for final keepalive probes, and 2 seconds for a buffer.
  1676             time += ((probeCount) * retryIntervalS) - (time % idleTimeS) + 2;
  1678         mTCPKeepaliveTransitionTimer->InitWithFuncCallback(
  1679                                           nsHttpConnection::UpdateTCPKeepalive,
  1680                                           this,
  1681                                           (uint32_t)time*1000,
  1682                                           nsITimer::TYPE_ONE_SHOT);
  1683     } else {
  1684         NS_WARNING("nsHttpConnection::StartShortLivedTCPKeepalives failed to "
  1685                    "create timer.");
  1688     return NS_OK;
  1691 nsresult
  1692 nsHttpConnection::StartLongLivedTCPKeepalives()
  1694     MOZ_ASSERT(!mUsingSpdyVersion, "Don't use TCP Keepalive with SPDY!");
  1695     if (NS_WARN_IF(mUsingSpdyVersion)) {
  1696         return NS_OK;
  1698     MOZ_ASSERT(mSocketTransport);
  1699     if (!mSocketTransport) {
  1700         return NS_ERROR_NOT_INITIALIZED;
  1703     nsresult rv = NS_OK;
  1704     if (gHttpHandler->TCPKeepaliveEnabledForLongLivedConns()) {
  1705         // Increase the idle time.
  1706         int32_t idleTimeS = gHttpHandler->GetTCPKeepaliveLongLivedIdleTime();
  1707         LOG(("nsHttpConnection::StartLongLivedTCPKeepalives[%p] idle time[%ds]",
  1708              this, idleTimeS));
  1710         int32_t retryIntervalS =
  1711             std::max<int32_t>((int32_t)PR_IntervalToSeconds(mRtt), 1);
  1712         rv = mSocketTransport->SetKeepaliveVals(idleTimeS, retryIntervalS);
  1713         if (NS_WARN_IF(NS_FAILED(rv))) {
  1714             return rv;
  1717         // Ensure keepalive is enabled, if current status is disabled.
  1718         if (mTCPKeepaliveConfig == kTCPKeepaliveDisabled) {
  1719             rv = mSocketTransport->SetKeepaliveEnabled(true);
  1720             if (NS_WARN_IF(NS_FAILED(rv))) {
  1721                 return rv;
  1724         mTCPKeepaliveConfig = kTCPKeepaliveLongLivedConfig;
  1725     } else {
  1726         rv = mSocketTransport->SetKeepaliveEnabled(false);
  1727         mTCPKeepaliveConfig = kTCPKeepaliveDisabled;
  1730     if (NS_WARN_IF(NS_FAILED(rv))) {
  1731         return rv;
  1733     return NS_OK;
  1736 nsresult
  1737 nsHttpConnection::DisableTCPKeepalives()
  1739     MOZ_ASSERT(mSocketTransport);
  1740     if (!mSocketTransport) {
  1741         return NS_ERROR_NOT_INITIALIZED;
  1743     LOG(("nsHttpConnection::DisableTCPKeepalives [%p]", this));
  1744     if (mTCPKeepaliveConfig != kTCPKeepaliveDisabled) {
  1745         nsresult rv = mSocketTransport->SetKeepaliveEnabled(false);
  1746         if (NS_WARN_IF(NS_FAILED(rv))) {
  1747             return rv;
  1749         mTCPKeepaliveConfig = kTCPKeepaliveDisabled;
  1751     if (mTCPKeepaliveTransitionTimer) {
  1752         mTCPKeepaliveTransitionTimer->Cancel();
  1753         mTCPKeepaliveTransitionTimer = nullptr;
  1755     return NS_OK;
  1758 //-----------------------------------------------------------------------------
  1759 // nsHttpConnection::nsISupports
  1760 //-----------------------------------------------------------------------------
  1762 NS_IMPL_ISUPPORTS(nsHttpConnection,
  1763                   nsIInputStreamCallback,
  1764                   nsIOutputStreamCallback,
  1765                   nsITransportEventSink,
  1766                   nsIInterfaceRequestor)
  1768 //-----------------------------------------------------------------------------
  1769 // nsHttpConnection::nsIInputStreamCallback
  1770 //-----------------------------------------------------------------------------
  1772 // called on the socket transport thread
  1773 NS_IMETHODIMP
  1774 nsHttpConnection::OnInputStreamReady(nsIAsyncInputStream *in)
  1776     MOZ_ASSERT(in == mSocketIn, "unexpected stream");
  1777     MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread);
  1779     if (mIdleMonitoring) {
  1780         MOZ_ASSERT(!mTransaction, "Idle Input Event While Active");
  1782         // The only read event that is protocol compliant for an idle connection
  1783         // is an EOF, which we check for with CanReuse(). If the data is
  1784         // something else then just ignore it and suspend checking for EOF -
  1785         // our normal timers or protocol stack are the place to deal with
  1786         // any exception logic.
  1788         if (!CanReuse()) {
  1789             LOG(("Server initiated close of idle conn %p\n", this));
  1790             gHttpHandler->ConnMgr()->CloseIdleConnection(this);
  1791             return NS_OK;
  1794         LOG(("Input data on idle conn %p, but not closing yet\n", this));
  1795         return NS_OK;
  1798     // if the transaction was dropped...
  1799     if (!mTransaction) {
  1800         LOG(("  no transaction; ignoring event\n"));
  1801         return NS_OK;
  1804     nsresult rv = OnSocketReadable();
  1805     if (NS_FAILED(rv))
  1806         CloseTransaction(mTransaction, rv);
  1808     return NS_OK;
  1811 //-----------------------------------------------------------------------------
  1812 // nsHttpConnection::nsIOutputStreamCallback
  1813 //-----------------------------------------------------------------------------
  1815 NS_IMETHODIMP
  1816 nsHttpConnection::OnOutputStreamReady(nsIAsyncOutputStream *out)
  1818     MOZ_ASSERT(PR_GetCurrentThread() == gSocketThread);
  1819     MOZ_ASSERT(out == mSocketOut, "unexpected socket");
  1821     // if the transaction was dropped...
  1822     if (!mTransaction) {
  1823         LOG(("  no transaction; ignoring event\n"));
  1824         return NS_OK;
  1827     nsresult rv = OnSocketWritable();
  1828     if (NS_FAILED(rv))
  1829         CloseTransaction(mTransaction, rv);
  1831     return NS_OK;
  1834 //-----------------------------------------------------------------------------
  1835 // nsHttpConnection::nsITransportEventSink
  1836 //-----------------------------------------------------------------------------
  1838 NS_IMETHODIMP
  1839 nsHttpConnection::OnTransportStatus(nsITransport *trans,
  1840                                     nsresult status,
  1841                                     uint64_t progress,
  1842                                     uint64_t progressMax)
  1844     if (mTransaction)
  1845         mTransaction->OnTransportStatus(trans, status, progress);
  1846     return NS_OK;
  1849 //-----------------------------------------------------------------------------
  1850 // nsHttpConnection::nsIInterfaceRequestor
  1851 //-----------------------------------------------------------------------------
  1853 // not called on the socket transport thread
  1854 NS_IMETHODIMP
  1855 nsHttpConnection::GetInterface(const nsIID &iid, void **result)
  1857     // NOTE: This function is only called on the UI thread via sync proxy from
  1858     //       the socket transport thread.  If that weren't the case, then we'd
  1859     //       have to worry about the possibility of mTransaction going away
  1860     //       part-way through this function call.  See CloseTransaction.
  1862     // NOTE - there is a bug here, the call to getinterface is proxied off the
  1863     // nss thread, not the ui thread as the above comment says. So there is
  1864     // indeed a chance of mTransaction going away. bug 615342
  1866     MOZ_ASSERT(PR_GetCurrentThread() != gSocketThread);
  1868     nsCOMPtr<nsIInterfaceRequestor> callbacks;
  1870         MutexAutoLock lock(mCallbacksLock);
  1871         callbacks = mCallbacks;
  1873     if (callbacks)
  1874         return callbacks->GetInterface(iid, result);
  1875     return NS_ERROR_NO_INTERFACE;
  1878 } // namespace mozilla::net
  1879 } // namespace mozilla

mercurial