netwerk/srtp/src/crypto/hash/sha1.c

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

     1 /*
     2  * sha1.c
     3  *
     4  * an implementation of the Secure Hash Algorithm v.1 (SHA-1),
     5  * specified in FIPS 180-1
     6  *
     7  * David A. McGrew
     8  * Cisco Systems, Inc.
     9  */
    11 /*
    12  *	
    13  * Copyright (c) 2001-2006, Cisco Systems, Inc.
    14  * All rights reserved.
    15  * 
    16  * Redistribution and use in source and binary forms, with or without
    17  * modification, are permitted provided that the following conditions
    18  * are met:
    19  * 
    20  *   Redistributions of source code must retain the above copyright
    21  *   notice, this list of conditions and the following disclaimer.
    22  * 
    23  *   Redistributions in binary form must reproduce the above
    24  *   copyright notice, this list of conditions and the following
    25  *   disclaimer in the documentation and/or other materials provided
    26  *   with the distribution.
    27  * 
    28  *   Neither the name of the Cisco Systems, Inc. nor the names of its
    29  *   contributors may be used to endorse or promote products derived
    30  *   from this software without specific prior written permission.
    31  * 
    32  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
    33  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
    34  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
    35  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
    36  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
    37  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
    38  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
    39  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    40  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
    41  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    42  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
    43  * OF THE POSSIBILITY OF SUCH DAMAGE.
    44  *
    45  */
    48 #include "sha1.h"
    50 debug_module_t mod_sha1 = {
    51   0,                 /* debugging is off by default */
    52   "sha-1"            /* printable module name       */
    53 };
    55 /* SN == Rotate left N bits */
    56 #define S1(X)  ((X << 1)  | (X >> 31))
    57 #define S5(X)  ((X << 5)  | (X >> 27))
    58 #define S30(X) ((X << 30) | (X >> 2))
    60 #define f0(B,C,D) ((B & C) | (~B & D))              
    61 #define f1(B,C,D) (B ^ C ^ D)
    62 #define f2(B,C,D) ((B & C) | (B & D) | (C & D))
    63 #define f3(B,C,D) (B ^ C ^ D)
    65 /* 
    66  * nota bene: the variable K0 appears in the curses library, so we 
    67  * give longer names to these variables to avoid spurious warnings 
    68  * on systems that uses curses
    69  */
    71 uint32_t SHA_K0 = 0x5A827999;   /* Kt for 0  <= t <= 19 */
    72 uint32_t SHA_K1 = 0x6ED9EBA1;   /* Kt for 20 <= t <= 39 */
    73 uint32_t SHA_K2 = 0x8F1BBCDC;   /* Kt for 40 <= t <= 59 */
    74 uint32_t SHA_K3 = 0xCA62C1D6;   /* Kt for 60 <= t <= 79 */
    76 void
    77 sha1(const uint8_t *msg,  int octets_in_msg, uint32_t hash_value[5]) {
    78   sha1_ctx_t ctx;
    80   sha1_init(&ctx);
    81   sha1_update(&ctx, msg, octets_in_msg);
    82   sha1_final(&ctx, hash_value);
    84 }
    86 /*
    87  *  sha1_core(M, H) computes the core compression function, where M is
    88  *  the next part of the message (in network byte order) and H is the
    89  *  intermediate state { H0, H1, ...} (in host byte order)
    90  *
    91  *  this function does not do any of the padding required in the
    92  *  complete SHA1 function
    93  *
    94  *  this function is used in the SEAL 3.0 key setup routines
    95  *  (crypto/cipher/seal.c)
    96  */
    98 void
    99 sha1_core(const uint32_t M[16], uint32_t hash_value[5]) {
   100   uint32_t H0;
   101   uint32_t H1;
   102   uint32_t H2;
   103   uint32_t H3;
   104   uint32_t H4;
   105   uint32_t W[80];
   106   uint32_t A, B, C, D, E, TEMP;
   107   int t;
   109   /* copy hash_value into H0, H1, H2, H3, H4 */
   110   H0 = hash_value[0];
   111   H1 = hash_value[1];
   112   H2 = hash_value[2];
   113   H3 = hash_value[3];
   114   H4 = hash_value[4];
   116   /* copy/xor message into array */
   118   W[0]  = be32_to_cpu(M[0]);
   119   W[1]  = be32_to_cpu(M[1]);
   120   W[2]  = be32_to_cpu(M[2]);
   121   W[3]  = be32_to_cpu(M[3]);
   122   W[4]  = be32_to_cpu(M[4]);
   123   W[5]  = be32_to_cpu(M[5]);
   124   W[6]  = be32_to_cpu(M[6]);
   125   W[7]  = be32_to_cpu(M[7]);
   126   W[8]  = be32_to_cpu(M[8]);
   127   W[9]  = be32_to_cpu(M[9]);
   128   W[10] = be32_to_cpu(M[10]);
   129   W[11] = be32_to_cpu(M[11]);
   130   W[12] = be32_to_cpu(M[12]);
   131   W[13] = be32_to_cpu(M[13]);
   132   W[14] = be32_to_cpu(M[14]);
   133   W[15] = be32_to_cpu(M[15]);
   134   TEMP = W[13] ^ W[8]  ^ W[2]  ^ W[0];  W[16] = S1(TEMP);
   135   TEMP = W[14] ^ W[9]  ^ W[3]  ^ W[1];  W[17] = S1(TEMP);
   136   TEMP = W[15] ^ W[10] ^ W[4]  ^ W[2];  W[18] = S1(TEMP);
   137   TEMP = W[16] ^ W[11] ^ W[5]  ^ W[3];  W[19] = S1(TEMP);
   138   TEMP = W[17] ^ W[12] ^ W[6]  ^ W[4];  W[20] = S1(TEMP);
   139   TEMP = W[18] ^ W[13] ^ W[7]  ^ W[5];  W[21] = S1(TEMP);
   140   TEMP = W[19] ^ W[14] ^ W[8]  ^ W[6];  W[22] = S1(TEMP);
   141   TEMP = W[20] ^ W[15] ^ W[9]  ^ W[7];  W[23] = S1(TEMP);
   142   TEMP = W[21] ^ W[16] ^ W[10] ^ W[8];  W[24] = S1(TEMP);
   143   TEMP = W[22] ^ W[17] ^ W[11] ^ W[9];  W[25] = S1(TEMP);
   144   TEMP = W[23] ^ W[18] ^ W[12] ^ W[10]; W[26] = S1(TEMP);
   145   TEMP = W[24] ^ W[19] ^ W[13] ^ W[11]; W[27] = S1(TEMP);
   146   TEMP = W[25] ^ W[20] ^ W[14] ^ W[12]; W[28] = S1(TEMP);
   147   TEMP = W[26] ^ W[21] ^ W[15] ^ W[13]; W[29] = S1(TEMP);
   148   TEMP = W[27] ^ W[22] ^ W[16] ^ W[14]; W[30] = S1(TEMP);
   149   TEMP = W[28] ^ W[23] ^ W[17] ^ W[15]; W[31] = S1(TEMP);
   151   /* process the remainder of the array */
   152   for (t=32; t < 80; t++) {
   153     TEMP = W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16];
   154     W[t] = S1(TEMP);      
   155   }
   157   A = H0; B = H1; C = H2; D = H3; E = H4;
   159   for (t=0; t < 20; t++) {
   160     TEMP = S5(A) + f0(B,C,D) + E + W[t] + SHA_K0;
   161     E = D; D = C; C = S30(B); B = A; A = TEMP;
   162   }
   163   for (   ; t < 40; t++) {
   164     TEMP = S5(A) + f1(B,C,D) + E + W[t] + SHA_K1;
   165     E = D; D = C; C = S30(B); B = A; A = TEMP;
   166   }
   167   for (   ; t < 60; t++) {
   168     TEMP = S5(A) + f2(B,C,D) + E + W[t] + SHA_K2;
   169     E = D; D = C; C = S30(B); B = A; A = TEMP;
   170   }
   171   for (   ; t < 80; t++) {
   172     TEMP = S5(A) + f3(B,C,D) + E + W[t] + SHA_K3;
   173     E = D; D = C; C = S30(B); B = A; A = TEMP;
   174   }
   176   hash_value[0] = H0 + A;
   177   hash_value[1] = H1 + B;
   178   hash_value[2] = H2 + C;
   179   hash_value[3] = H3 + D;
   180   hash_value[4] = H4 + E;
   182   return;
   183 }
   185 void
   186 sha1_init(sha1_ctx_t *ctx) {
   188   /* initialize state vector */
   189   ctx->H[0] = 0x67452301;
   190   ctx->H[1] = 0xefcdab89;
   191   ctx->H[2] = 0x98badcfe;
   192   ctx->H[3] = 0x10325476;
   193   ctx->H[4] = 0xc3d2e1f0;
   195   /* indicate that message buffer is empty */
   196   ctx->octets_in_buffer = 0;
   198   /* reset message bit-count to zero */
   199   ctx->num_bits_in_msg = 0;
   201 }
   203 void
   204 sha1_update(sha1_ctx_t *ctx, const uint8_t *msg, int octets_in_msg) {
   205   int i;
   206   uint8_t *buf = (uint8_t *)ctx->M;
   208   /* update message bit-count */
   209   ctx->num_bits_in_msg += octets_in_msg * 8;
   211   /* loop over 16-word blocks of M */
   212   while (octets_in_msg > 0) {
   214     if (octets_in_msg + ctx->octets_in_buffer >= 64) {
   216       /* 
   217        * copy words of M into msg buffer until that buffer is full,
   218        * converting them into host byte order as needed
   219        */
   220       octets_in_msg -= (64 - ctx->octets_in_buffer);
   221       for (i=ctx->octets_in_buffer; i < 64; i++) 
   222 	buf[i] = *msg++;
   223       ctx->octets_in_buffer = 0;
   225       /* process a whole block */
   227       debug_print(mod_sha1, "(update) running sha1_core()", NULL);
   229       sha1_core(ctx->M, ctx->H);
   231     } else {
   233       debug_print(mod_sha1, "(update) not running sha1_core()", NULL);
   235       for (i=ctx->octets_in_buffer; 
   236 	   i < (ctx->octets_in_buffer + octets_in_msg); i++)
   237 	buf[i] = *msg++;
   238       ctx->octets_in_buffer += octets_in_msg;
   239       octets_in_msg = 0;
   240     }
   242   }
   244 }
   246 /*
   247  * sha1_final(ctx, output) computes the result for ctx and copies it
   248  * into the twenty octets located at *output
   249  */
   251 void
   252 sha1_final(sha1_ctx_t *ctx, uint32_t *output) {
   253   uint32_t A, B, C, D, E, TEMP;
   254   uint32_t W[80];  
   255   int i, t;
   257   /*
   258    * process the remaining octets_in_buffer, padding and terminating as
   259    * necessary
   260    */
   261   {
   262     int tail = ctx->octets_in_buffer % 4;
   264     /* copy/xor message into array */
   265     for (i=0; i < (ctx->octets_in_buffer+3)/4; i++) 
   266       W[i]  = be32_to_cpu(ctx->M[i]);
   268     /* set the high bit of the octet immediately following the message */
   269     switch (tail) {
   270     case (3):
   271       W[i-1] = (be32_to_cpu(ctx->M[i-1]) & 0xffffff00) | 0x80;
   272       W[i] = 0x0;
   273       break;
   274     case (2):      
   275       W[i-1] = (be32_to_cpu(ctx->M[i-1]) & 0xffff0000) | 0x8000;
   276       W[i] = 0x0;
   277       break;
   278     case (1):
   279       W[i-1] = (be32_to_cpu(ctx->M[i-1]) & 0xff000000) | 0x800000;
   280       W[i] = 0x0;
   281       break;
   282     case (0):
   283       W[i] = 0x80000000;
   284       break;
   285     }
   287     /* zeroize remaining words */
   288     for (i++   ; i < 15; i++)
   289       W[i] = 0x0;
   291     /* 
   292      * if there is room at the end of the word array, then set the
   293      * last word to the bit-length of the message; otherwise, set that
   294      * word to zero and then we need to do one more run of the
   295      * compression algo.
   296      */
   297     if (ctx->octets_in_buffer < 56) 
   298       W[15] = ctx->num_bits_in_msg;
   299     else if (ctx->octets_in_buffer < 60)
   300       W[15] = 0x0;
   302     /* process the word array */
   303     for (t=16; t < 80; t++) {
   304       TEMP = W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16];
   305       W[t] = S1(TEMP);
   306     }
   308     A = ctx->H[0]; 
   309     B = ctx->H[1]; 
   310     C = ctx->H[2]; 
   311     D = ctx->H[3]; 
   312     E = ctx->H[4];
   314     for (t=0; t < 20; t++) {
   315       TEMP = S5(A) + f0(B,C,D) + E + W[t] + SHA_K0;
   316       E = D; D = C; C = S30(B); B = A; A = TEMP;
   317     }
   318     for (   ; t < 40; t++) {
   319       TEMP = S5(A) + f1(B,C,D) + E + W[t] + SHA_K1;
   320       E = D; D = C; C = S30(B); B = A; A = TEMP;
   321     }
   322     for (   ; t < 60; t++) {
   323       TEMP = S5(A) + f2(B,C,D) + E + W[t] + SHA_K2;
   324       E = D; D = C; C = S30(B); B = A; A = TEMP;
   325     }
   326     for (   ; t < 80; t++) {
   327       TEMP = S5(A) + f3(B,C,D) + E + W[t] + SHA_K3;
   328       E = D; D = C; C = S30(B); B = A; A = TEMP;
   329     }
   331     ctx->H[0] += A;
   332     ctx->H[1] += B;
   333     ctx->H[2] += C;
   334     ctx->H[3] += D;
   335     ctx->H[4] += E;
   337   }
   339   debug_print(mod_sha1, "(final) running sha1_core()", NULL);
   341   if (ctx->octets_in_buffer >= 56) {
   343     debug_print(mod_sha1, "(final) running sha1_core() again", NULL);
   345     /* we need to do one final run of the compression algo */
   347     /* 
   348      * set initial part of word array to zeros, and set the 
   349      * final part to the number of bits in the message
   350      */
   351     for (i=0; i < 15; i++)
   352       W[i] = 0x0;
   353     W[15] = ctx->num_bits_in_msg;
   355     /* process the word array */
   356     for (t=16; t < 80; t++) {
   357       TEMP = W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16];
   358       W[t] = S1(TEMP);
   359     }
   361     A = ctx->H[0]; 
   362     B = ctx->H[1]; 
   363     C = ctx->H[2]; 
   364     D = ctx->H[3]; 
   365     E = ctx->H[4];
   367     for (t=0; t < 20; t++) {
   368       TEMP = S5(A) + f0(B,C,D) + E + W[t] + SHA_K0;
   369       E = D; D = C; C = S30(B); B = A; A = TEMP;
   370     }
   371     for (   ; t < 40; t++) {
   372       TEMP = S5(A) + f1(B,C,D) + E + W[t] + SHA_K1;
   373       E = D; D = C; C = S30(B); B = A; A = TEMP;
   374     }
   375     for (   ; t < 60; t++) {
   376       TEMP = S5(A) + f2(B,C,D) + E + W[t] + SHA_K2;
   377       E = D; D = C; C = S30(B); B = A; A = TEMP;
   378     }
   379     for (   ; t < 80; t++) {
   380       TEMP = S5(A) + f3(B,C,D) + E + W[t] + SHA_K3;
   381       E = D; D = C; C = S30(B); B = A; A = TEMP;
   382     }
   384     ctx->H[0] += A;
   385     ctx->H[1] += B;
   386     ctx->H[2] += C;
   387     ctx->H[3] += D;
   388     ctx->H[4] += E;
   389   }
   391   /* copy result into output buffer */
   392   output[0] = be32_to_cpu(ctx->H[0]);
   393   output[1] = be32_to_cpu(ctx->H[1]);
   394   output[2] = be32_to_cpu(ctx->H[2]);
   395   output[3] = be32_to_cpu(ctx->H[3]);
   396   output[4] = be32_to_cpu(ctx->H[4]);
   398   /* indicate that message buffer in context is empty */
   399   ctx->octets_in_buffer = 0;
   401   return;
   402 }

mercurial