security/nss/lib/dbm/src/h_bigkey.c

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

     1 /*-
     2  * Copyright (c) 1990, 1993, 1994
     3  *	The Regents of the University of California.  All rights reserved.
     4  *
     5  * This code is derived from software contributed to Berkeley by
     6  * Margo Seltzer.
     7  *
     8  * Redistribution and use in source and binary forms, with or without
     9  * modification, are permitted provided that the following conditions
    10  * are met:
    11  * 1. Redistributions of source code must retain the above copyright
    12  *    notice, this list of conditions and the following disclaimer.
    13  * 2. Redistributions in binary form must reproduce the above copyright
    14  *    notice, this list of conditions and the following disclaimer in the
    15  *    documentation and/or other materials provided with the distribution.
    16  * 3. ***REMOVED*** - see 
    17  *    ftp://ftp.cs.berkeley.edu/pub/4bsd/README.Impt.License.Change
    18  * 4. Neither the name of the University nor the names of its contributors
    19  *    may be used to endorse or promote products derived from this software
    20  *    without specific prior written permission.
    21  *
    22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
    23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    32  * SUCH DAMAGE.
    33  */
    35 #if defined(LIBC_SCCS) && !defined(lint)
    36 static char sccsid[] = "@(#)hash_bigkey.c	8.3 (Berkeley) 5/31/94";
    37 #endif /* LIBC_SCCS and not lint */
    39 /*
    40  * PACKAGE: hash
    41  * DESCRIPTION:
    42  *	Big key/data handling for the hashing package.
    43  *
    44  * ROUTINES:
    45  * External
    46  *	__big_keydata
    47  *	__big_split
    48  *	__big_insert
    49  *	__big_return
    50  *	__big_delete
    51  *	__find_last_page
    52  * Internal
    53  *	collect_key
    54  *	collect_data
    55  */
    57 #if !defined(_WIN32) && !defined(_WINDOWS) && !defined(macintosh)
    58 #include <sys/param.h>
    59 #endif
    61 #include <errno.h>
    62 #include <stdio.h>
    63 #include <stdlib.h>
    64 #include <string.h>
    66 #ifdef DEBUG
    67 #include <assert.h>
    68 #endif
    70 #include "mcom_db.h"
    71 #include "hash.h"
    72 #include "page.h"
    73 /* #include "extern.h" */
    75 static int collect_key __P((HTAB *, BUFHEAD *, int, DBT *, int));
    76 static int collect_data __P((HTAB *, BUFHEAD *, int, int));
    78 /*
    79  * Big_insert
    80  *
    81  * You need to do an insert and the key/data pair is too big
    82  *
    83  * Returns:
    84  * 0 ==> OK
    85  *-1 ==> ERROR
    86  */
    87 extern int
    88 __big_insert(HTAB *hashp, BUFHEAD *bufp, const DBT *key, const DBT *val)
    89 {
    90 	register uint16 *p;
    91 	uint key_size, n, val_size;
    92 	uint16 space, move_bytes, off;
    93 	char *cp, *key_data, *val_data;
    95 	cp = bufp->page;		/* Character pointer of p. */
    96 	p = (uint16 *)cp;
    98 	key_data = (char *)key->data;
    99 	key_size = key->size;
   100 	val_data = (char *)val->data;
   101 	val_size = val->size;
   103 	/* First move the Key */
   104 	for (space = FREESPACE(p) - BIGOVERHEAD; key_size;
   105 	    space = FREESPACE(p) - BIGOVERHEAD) {
   106 		move_bytes = PR_MIN(space, key_size);
   107 		off = OFFSET(p) - move_bytes;
   108 		memmove(cp + off, key_data, move_bytes);
   109 		key_size -= move_bytes;
   110 		key_data += move_bytes;
   111 		n = p[0];
   112 		p[++n] = off;
   113 		p[0] = ++n;
   114 		FREESPACE(p) = off - PAGE_META(n);
   115 		OFFSET(p) = off;
   116 		p[n] = PARTIAL_KEY;
   117 		bufp = __add_ovflpage(hashp, bufp);
   118 		if (!bufp)
   119 			return (-1);
   120 		n = p[0];
   121 		if (!key_size) {
   122 			if (FREESPACE(p)) {
   123 				move_bytes = PR_MIN(FREESPACE(p), val_size);
   124 				off = OFFSET(p) - move_bytes;
   125 				p[n] = off;
   126 				memmove(cp + off, val_data, move_bytes);
   127 				val_data += move_bytes;
   128 				val_size -= move_bytes;
   129 				p[n - 2] = FULL_KEY_DATA;
   130 				FREESPACE(p) = FREESPACE(p) - move_bytes;
   131 				OFFSET(p) = off;
   132 			} else
   133 				p[n - 2] = FULL_KEY;
   134 		}
   135 		p = (uint16 *)bufp->page;
   136 		cp = bufp->page;
   137 		bufp->flags |= BUF_MOD;
   138 	}
   140 	/* Now move the data */
   141 	for (space = FREESPACE(p) - BIGOVERHEAD; val_size;
   142 	    space = FREESPACE(p) - BIGOVERHEAD) {
   143 		move_bytes = PR_MIN(space, val_size);
   144 		/*
   145 		 * Here's the hack to make sure that if the data ends on the
   146 		 * same page as the key ends, FREESPACE is at least one.
   147 		 */
   148 		if (space == val_size && val_size == val->size)
   149 			move_bytes--;
   150 		off = OFFSET(p) - move_bytes;
   151 		memmove(cp + off, val_data, move_bytes);
   152 		val_size -= move_bytes;
   153 		val_data += move_bytes;
   154 		n = p[0];
   155 		p[++n] = off;
   156 		p[0] = ++n;
   157 		FREESPACE(p) = off - PAGE_META(n);
   158 		OFFSET(p) = off;
   159 		if (val_size) {
   160 			p[n] = FULL_KEY;
   161 			bufp = __add_ovflpage(hashp, bufp);
   162 			if (!bufp)
   163 				return (-1);
   164 			cp = bufp->page;
   165 			p = (uint16 *)cp;
   166 		} else
   167 			p[n] = FULL_KEY_DATA;
   168 		bufp->flags |= BUF_MOD;
   169 	}
   170 	return (0);
   171 }
   173 /*
   174  * Called when bufp's page  contains a partial key (index should be 1)
   175  *
   176  * All pages in the big key/data pair except bufp are freed.  We cannot
   177  * free bufp because the page pointing to it is lost and we can't get rid
   178  * of its pointer.
   179  *
   180  * Returns:
   181  * 0 => OK
   182  *-1 => ERROR
   183  */
   184 extern int
   185 __big_delete(HTAB *hashp, BUFHEAD *bufp)
   186 {
   187 	register BUFHEAD *last_bfp, *rbufp;
   188 	uint16 *bp, pageno;
   189 	int key_done, n;
   191 	rbufp = bufp;
   192 	last_bfp = NULL;
   193 	bp = (uint16 *)bufp->page;
   194 	pageno = 0;
   195 	key_done = 0;
   197 	while (!key_done || (bp[2] != FULL_KEY_DATA)) {
   198 		if (bp[2] == FULL_KEY || bp[2] == FULL_KEY_DATA)
   199 			key_done = 1;
   201 		/*
   202 		 * If there is freespace left on a FULL_KEY_DATA page, then
   203 		 * the data is short and fits entirely on this page, and this
   204 		 * is the last page.
   205 		 */
   206 		if (bp[2] == FULL_KEY_DATA && FREESPACE(bp))
   207 			break;
   208 		pageno = bp[bp[0] - 1];
   209 		rbufp->flags |= BUF_MOD;
   210 		rbufp = __get_buf(hashp, pageno, rbufp, 0);
   211 		if (last_bfp)
   212 			__free_ovflpage(hashp, last_bfp);
   213 		last_bfp = rbufp;
   214 		if (!rbufp)
   215 			return (-1);		/* Error. */
   216 		bp = (uint16 *)rbufp->page;
   217 	}
   219 	/*
   220 	 * If we get here then rbufp points to the last page of the big
   221 	 * key/data pair.  Bufp points to the first one -- it should now be
   222 	 * empty pointing to the next page after this pair.  Can't free it
   223 	 * because we don't have the page pointing to it.
   224 	 */
   226 	/* This is information from the last page of the pair. */
   227 	n = bp[0];
   228 	pageno = bp[n - 1];
   230 	/* Now, bp is the first page of the pair. */
   231 	bp = (uint16 *)bufp->page;
   232 	if (n > 2) {
   233 		/* There is an overflow page. */
   234 		bp[1] = pageno;
   235 		bp[2] = OVFLPAGE;
   236 		bufp->ovfl = rbufp->ovfl;
   237 	} else
   238 		/* This is the last page. */
   239 		bufp->ovfl = NULL;
   240 	n -= 2;
   241 	bp[0] = n;
   242 	FREESPACE(bp) = hashp->BSIZE - PAGE_META(n);
   243 	OFFSET(bp) = hashp->BSIZE - 1;
   245 	bufp->flags |= BUF_MOD;
   246 	if (rbufp)
   247 		__free_ovflpage(hashp, rbufp);
   248 	if (last_bfp != rbufp)
   249 		__free_ovflpage(hashp, last_bfp);
   251 	hashp->NKEYS--;
   252 	return (0);
   253 }
   254 /*
   255  * Returns:
   256  *  0 = key not found
   257  * -1 = get next overflow page
   258  * -2 means key not found and this is big key/data
   259  * -3 error
   260  */
   261 extern int
   262 __find_bigpair(HTAB *hashp, BUFHEAD *bufp, int ndx, char *key, int size)
   263 {
   264 	register uint16 *bp;
   265 	register char *p;
   266 	int ksize;
   267 	uint16 bytes;
   268 	char *kkey;
   270 	bp = (uint16 *)bufp->page;
   271 	p = bufp->page;
   272 	ksize = size;
   273 	kkey = key;
   275 	for (bytes = hashp->BSIZE - bp[ndx];
   276 	    bytes <= size && bp[ndx + 1] == PARTIAL_KEY;
   277 	    bytes = hashp->BSIZE - bp[ndx]) {
   278 		if (memcmp(p + bp[ndx], kkey, bytes))
   279 			return (-2);
   280 		kkey += bytes;
   281 		ksize -= bytes;
   282 		bufp = __get_buf(hashp, bp[ndx + 2], bufp, 0);
   283 		if (!bufp)
   284 			return (-3);
   285 		p = bufp->page;
   286 		bp = (uint16 *)p;
   287 		ndx = 1;
   288 	}
   290 	if (bytes != ksize || memcmp(p + bp[ndx], kkey, bytes)) {
   291 #ifdef HASH_STATISTICS
   292 		++hash_collisions;
   293 #endif
   294 		return (-2);
   295 	} else
   296 		return (ndx);
   297 }
   299 /*
   300  * Given the buffer pointer of the first overflow page of a big pair,
   301  * find the end of the big pair
   302  *
   303  * This will set bpp to the buffer header of the last page of the big pair.
   304  * It will return the pageno of the overflow page following the last page
   305  * of the pair; 0 if there isn't any (i.e. big pair is the last key in the
   306  * bucket)
   307  */
   308 extern uint16
   309 __find_last_page(HTAB *hashp, BUFHEAD **bpp)
   310 {
   311 	BUFHEAD *bufp;
   312 	uint16 *bp, pageno;
   313 	uint n;
   315 	bufp = *bpp;
   316 	bp = (uint16 *)bufp->page;
   317 	for (;;) {
   318 		n = bp[0];
   320 		/*
   321 		 * This is the last page if: the tag is FULL_KEY_DATA and
   322 		 * either only 2 entries OVFLPAGE marker is explicit there
   323 		 * is freespace on the page.
   324 		 */
   325 		if (bp[2] == FULL_KEY_DATA &&
   326 		    ((n == 2) || (bp[n] == OVFLPAGE) || (FREESPACE(bp))))
   327 			break;
   329 		/* LJM bound the size of n to reasonable limits
   330 		 */
   331 		if(n > hashp->BSIZE/sizeof(uint16))
   332 			return(0);
   334 		pageno = bp[n - 1];
   335 		bufp = __get_buf(hashp, pageno, bufp, 0);
   336 		if (!bufp)
   337 			return (0);	/* Need to indicate an error! */
   338 		bp = (uint16 *)bufp->page;
   339 	}
   341 	*bpp = bufp;
   342 	if (bp[0] > 2)
   343 		return (bp[3]);
   344 	else
   345 		return (0);
   346 }
   348 /*
   349  * Return the data for the key/data pair that begins on this page at this
   350  * index (index should always be 1).
   351  */
   352 extern int
   353 __big_return(
   354 	HTAB *hashp,
   355 	BUFHEAD *bufp,
   356 	int ndx,
   357 	DBT *val,
   358 	int set_current)
   359 {
   360 	BUFHEAD *save_p;
   361 	uint16 *bp, len, off, save_addr;
   362 	char *tp;
   363 	int save_flags;
   365 	bp = (uint16 *)bufp->page;
   366 	while (bp[ndx + 1] == PARTIAL_KEY) {
   367 		bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
   368 		if (!bufp)
   369 			return (-1);
   370 		bp = (uint16 *)bufp->page;
   371 		ndx = 1;
   372 	}
   374 	if (bp[ndx + 1] == FULL_KEY) {
   375 		bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
   376 		if (!bufp)
   377 			return (-1);
   378 		bp = (uint16 *)bufp->page;
   379 		save_p = bufp;
   380 		save_addr = save_p->addr;
   381 		off = bp[1];
   382 		len = 0;
   383 	} else
   384 		if (!FREESPACE(bp)) {
   385 			/*
   386 			 * This is a hack.  We can't distinguish between
   387 			 * FULL_KEY_DATA that contains complete data or
   388 			 * incomplete data, so we require that if the data
   389 			 * is complete, there is at least 1 byte of free
   390 			 * space left.
   391 			 */
   392 			off = bp[bp[0]];
   393 			len = bp[1] - off;
   394 			save_p = bufp;
   395 			save_addr = bufp->addr;
   396 			bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
   397 			if (!bufp)
   398 				return (-1);
   399 			bp = (uint16 *)bufp->page;
   400 		} else {
   401 			/* The data is all on one page. */
   402 			tp = (char *)bp;
   403 			off = bp[bp[0]];
   404 			val->data = (uint8 *)tp + off;
   405 			val->size = bp[1] - off;
   406 			if (set_current) {
   407 				if (bp[0] == 2) {	/* No more buckets in
   408 							 * chain */
   409 					hashp->cpage = NULL;
   410 					hashp->cbucket++;
   411 					hashp->cndx = 1;
   412 				} else {
   413 					hashp->cpage = __get_buf(hashp,
   414 					    bp[bp[0] - 1], bufp, 0);
   415 					if (!hashp->cpage)
   416 						return (-1);
   417 					hashp->cndx = 1;
   418 					if (!((uint16 *)
   419 					    hashp->cpage->page)[0]) {
   420 						hashp->cbucket++;
   421 						hashp->cpage = NULL;
   422 					}
   423 				}
   424 			}
   425 			return (0);
   426 		}
   428 	/* pin our saved buf so that we don't lose if 
   429 	 * we run out of buffers */
   430  	save_flags = save_p->flags;
   431 	save_p->flags |= BUF_PIN;
   432 	val->size = collect_data(hashp, bufp, (int)len, set_current);
   433 	save_p->flags = save_flags;
   434 	if (val->size == (size_t)-1)
   435 		return (-1);
   436 	if (save_p->addr != save_addr) {
   437 		/* We are pretty short on buffers. */
   438 		errno = EINVAL;			/* OUT OF BUFFERS */
   439 		return (-1);
   440 	}
   441 	memmove(hashp->tmp_buf, (save_p->page) + off, len);
   442 	val->data = (uint8 *)hashp->tmp_buf;
   443 	return (0);
   444 }
   447 /*
   448  * Count how big the total datasize is by looping through the pages.  Then
   449  * allocate a buffer and copy the data in the second loop. NOTE: Our caller
   450  * may already have a bp which it is holding onto. The caller is
   451  * responsible for copying that bp into our temp buffer. 'len' is how much
   452  * space to reserve for that buffer.
   453  */
   454 static int
   455 collect_data(
   456 	HTAB *hashp,
   457 	BUFHEAD *bufp,
   458 	int len, int set)
   459 {
   460 	register uint16 *bp;
   461 	BUFHEAD *save_bufp;
   462 	int save_flags;
   463 	int mylen, totlen;
   465 	/*
   466 	 * save the input buf head because we need to walk the list twice.
   467 	 * pin it to make sure it doesn't leave the buffer pool. 
   468 	 * This has the effect of growing the buffer pool if necessary.
   469 	 */
   470 	save_bufp = bufp;
   471 	save_flags = save_bufp->flags;
   472 	save_bufp->flags |= BUF_PIN;
   474 	/* read the length of the buffer */
   475 	for (totlen = len; bufp ; bufp = __get_buf(hashp, bp[bp[0]-1], bufp, 0)) {
   476 		bp = (uint16 *)bufp->page;
   477 		mylen = hashp->BSIZE - bp[1];
   479 		/* if mylen ever goes negative it means that the
   480 		 * page is screwed up.
   481 		 */
   482 		if (mylen < 0) {
   483 			save_bufp->flags = save_flags;
   484 			return (-1);
   485  		}
   486 		totlen += mylen;
   487 		if (bp[2] == FULL_KEY_DATA) {		/* End of Data */
   488 			break;
   489 		}
   490 	}
   492  	if (!bufp) {
   493 		save_bufp->flags = save_flags;
   494 		return (-1);
   495 	}
   497 	/* allocate a temp buf */
   498 	if (hashp->tmp_buf)
   499 		free(hashp->tmp_buf);
   500 	if ((hashp->tmp_buf = (char *)malloc((size_t)totlen)) == NULL) {
   501 		save_bufp->flags = save_flags;
   502 		return (-1);
   503  	}
   505 	/* copy the buffers back into temp buf */
   506 	for (bufp = save_bufp; bufp ;
   507 				bufp = __get_buf(hashp, bp[bp[0]-1], bufp, 0)) {
   508 		bp = (uint16 *)bufp->page;
   509 		mylen = hashp->BSIZE - bp[1];
   510 		memmove(&hashp->tmp_buf[len], (bufp->page) + bp[1], (size_t)mylen);
   511 		len += mylen;
   512 		if (bp[2] == FULL_KEY_DATA) {
   513 			break;
   514 		}
   515 	}
   517 	/* 'clear' the pin flags */
   518 	save_bufp->flags = save_flags;
   520 	/* update the database cursor */
   521 	if (set) {
   522 		hashp->cndx = 1;
   523 		if (bp[0] == 2) {	/* No more buckets in chain */
   524 			hashp->cpage = NULL;
   525 			hashp->cbucket++;
   526 		} else {
   527 			hashp->cpage = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
   528 			if (!hashp->cpage)
   529 				return (-1);
   530 			else if (!((uint16 *)hashp->cpage->page)[0]) {
   531 				hashp->cbucket++;
   532 				hashp->cpage = NULL;
   533 			}
   534 		}
   535 	}
   536 	return (totlen);
   537 }
   539 /*
   540  * Fill in the key and data for this big pair.
   541  */
   542 extern int
   543 __big_keydata(
   544 	HTAB *hashp, 
   545 	BUFHEAD *bufp, 
   546 	DBT *key, DBT *val,
   547 	int set)
   548 {
   549 	key->size = collect_key(hashp, bufp, 0, val, set);
   550 	if (key->size == (size_t)-1)
   551 		return (-1);
   552 	key->data = (uint8 *)hashp->tmp_key;
   553 	return (0);
   554 }
   556 /*
   557  * Count how big the total key size is by recursing through the pages.  Then
   558  * collect the data, allocate a buffer and copy the key as you recurse up.
   559  */
   560 static int
   561 collect_key(
   562 	HTAB *hashp,
   563 	BUFHEAD *bufp,
   564 	int len,
   565 	DBT *val,
   566 	int set)
   567 {
   568 	BUFHEAD *xbp;
   569 	char *p;
   570 	int mylen, totlen;
   571 	uint16 *bp, save_addr;
   573 	p = bufp->page;
   574 	bp = (uint16 *)p;
   575 	mylen = hashp->BSIZE - bp[1];
   577 	save_addr = bufp->addr;
   578 	totlen = len + mylen;
   579 	if (bp[2] == FULL_KEY || bp[2] == FULL_KEY_DATA) {    /* End of Key. */
   580 		if (hashp->tmp_key != NULL)
   581 			free(hashp->tmp_key);
   582 		if ((hashp->tmp_key = (char *)malloc((size_t)totlen)) == NULL)
   583 			return (-1);
   584 		if (__big_return(hashp, bufp, 1, val, set))
   585 			return (-1);
   586 	} else {
   587 		xbp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
   588 		if (!xbp || ((totlen =
   589 		    collect_key(hashp, xbp, totlen, val, set)) < 1))
   590 			return (-1);
   591 	}
   592 	if (bufp->addr != save_addr) {
   593 		errno = EINVAL;		/* MIS -- OUT OF BUFFERS */
   594 		return (-1);
   595 	}
   596 	memmove(&hashp->tmp_key[len], (bufp->page) + bp[1], (size_t)mylen);
   597 	return (totlen);
   598 }
   600 /*
   601  * Returns:
   602  *  0 => OK
   603  * -1 => error
   604  */
   605 extern int
   606 __big_split(
   607 	HTAB *hashp,
   608 	BUFHEAD *op,	/* Pointer to where to put keys that go in old bucket */
   609 	BUFHEAD *np,	/* Pointer to new bucket page */
   610 			/* Pointer to first page containing the big key/data */
   611 	BUFHEAD *big_keyp,
   612 	uint32 addr,	/* Address of big_keyp */
   613 	uint32   obucket,/* Old Bucket */
   614 	SPLIT_RETURN *ret)
   615 {
   616 	register BUFHEAD *tmpp;
   617 	register uint16 *tp;
   618 	BUFHEAD *bp;
   619 	DBT key, val;
   620 	uint32 change;
   621 	uint16 free_space, n, off;
   623 	bp = big_keyp;
   625 	/* Now figure out where the big key/data goes */
   626 	if (__big_keydata(hashp, big_keyp, &key, &val, 0))
   627 		return (-1);
   628 	change = (__call_hash(hashp,(char*) key.data, key.size) != obucket);
   630 	if ((ret->next_addr = __find_last_page(hashp, &big_keyp))) {
   631 		if (!(ret->nextp =
   632 		    __get_buf(hashp, ret->next_addr, big_keyp, 0)))
   633 			return (-1);;
   634 	} else
   635 		ret->nextp = NULL;
   637 	/* Now make one of np/op point to the big key/data pair */
   638 #ifdef DEBUG
   639 	assert(np->ovfl == NULL);
   640 #endif
   641 	if (change)
   642 		tmpp = np;
   643 	else
   644 		tmpp = op;
   646 	tmpp->flags |= BUF_MOD;
   647 #ifdef DEBUG1
   648 	(void)fprintf(stderr,
   649 	    "BIG_SPLIT: %d->ovfl was %d is now %d\n", tmpp->addr,
   650 	    (tmpp->ovfl ? tmpp->ovfl->addr : 0), (bp ? bp->addr : 0));
   651 #endif
   652 	tmpp->ovfl = bp;	/* one of op/np point to big_keyp */
   653 	tp = (uint16 *)tmpp->page;
   656 #if 0  /* this get's tripped on database corrupted error */
   657 	assert(FREESPACE(tp) >= OVFLSIZE);
   658 #endif
   659 	if(FREESPACE(tp) < OVFLSIZE)
   660 		return(DATABASE_CORRUPTED_ERROR);
   662 	n = tp[0];
   663 	off = OFFSET(tp);
   664 	free_space = FREESPACE(tp);
   665 	tp[++n] = (uint16)addr;
   666 	tp[++n] = OVFLPAGE;
   667 	tp[0] = n;
   668 	OFFSET(tp) = off;
   669 	FREESPACE(tp) = free_space - OVFLSIZE;
   671 	/*
   672 	 * Finally, set the new and old return values. BIG_KEYP contains a
   673 	 * pointer to the last page of the big key_data pair. Make sure that
   674 	 * big_keyp has no following page (2 elements) or create an empty
   675 	 * following page.
   676 	 */
   678 	ret->newp = np;
   679 	ret->oldp = op;
   681 	tp = (uint16 *)big_keyp->page;
   682 	big_keyp->flags |= BUF_MOD;
   683 	if (tp[0] > 2) {
   684 		/*
   685 		 * There may be either one or two offsets on this page.  If
   686 		 * there is one, then the overflow page is linked on normally
   687 		 * and tp[4] is OVFLPAGE.  If there are two, tp[4] contains
   688 		 * the second offset and needs to get stuffed in after the
   689 		 * next overflow page is added.
   690 		 */
   691 		n = tp[4];
   692 		free_space = FREESPACE(tp);
   693 		off = OFFSET(tp);
   694 		tp[0] -= 2;
   695 		FREESPACE(tp) = free_space + OVFLSIZE;
   696 		OFFSET(tp) = off;
   697 		tmpp = __add_ovflpage(hashp, big_keyp);
   698 		if (!tmpp)
   699 			return (-1);
   700 		tp[4] = n;
   701 	} else
   702 		tmpp = big_keyp;
   704 	if (change)
   705 		ret->newp = tmpp;
   706 	else
   707 		ret->oldp = tmpp;
   708 	return (0);
   709 }

mercurial