security/nss/lib/dbm/src/h_page.c

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

     1 /*-
     2  * Copyright (c) 1990, 1993, 1994
     3  *	The Regents of the University of California.  All rights reserved.
     4  *
     5  * This code is derived from software contributed to Berkeley by
     6  * Margo Seltzer.
     7  *
     8  * Redistribution and use in source and binary forms, with or without
     9  * modification, are permitted provided that the following conditions
    10  * are met:
    11  * 1. Redistributions of source code must retain the above copyright
    12  *    notice, this list of conditions and the following disclaimer.
    13  * 2. Redistributions in binary form must reproduce the above copyright
    14  *    notice, this list of conditions and the following disclaimer in the
    15  *    documentation and/or other materials provided with the distribution.
    16  * 3. ***REMOVED*** - see 
    17  *    ftp://ftp.cs.berkeley.edu/pub/4bsd/README.Impt.License.Change
    18  * 4. Neither the name of the University nor the names of its contributors
    19  *    may be used to endorse or promote products derived from this software
    20  *    without specific prior written permission.
    21  *
    22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
    23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    32  * SUCH DAMAGE.
    33  */
    35 #if defined(unix)
    36 #define MY_LSEEK lseek
    37 #else
    38 #define MY_LSEEK new_lseek
    39 extern long new_lseek(int fd, long pos, int start);
    40 #endif
    42 #if defined(LIBC_SCCS) && !defined(lint)
    43 static char sccsid[] = "@(#)hash_page.c	8.7 (Berkeley) 8/16/94";
    44 #endif /* LIBC_SCCS and not lint */
    46 /*
    47  * PACKAGE:  hashing
    48  *
    49  * DESCRIPTION:
    50  *	Page manipulation for hashing package.
    51  *
    52  * ROUTINES:
    53  *
    54  * External
    55  *	__get_page
    56  *	__add_ovflpage
    57  * Internal
    58  *	overflow_page
    59  *	open_temp
    60  */
    61 #ifndef macintosh
    62 #include <sys/types.h>
    63 #endif
    65 #if defined(macintosh)
    66 #include <unistd.h>
    67 #endif
    69 #include <errno.h>
    70 #include <fcntl.h>
    71 #if defined(_WIN32) || defined(_WINDOWS) 
    72 #include <io.h>
    73 #endif
    74 #include <signal.h>
    75 #include <stdio.h>
    76 #include <stdlib.h>
    77 #include <string.h>
    79 #if !defined(_WIN32) && !defined(_WINDOWS) && !defined(macintosh)
    80 #include <unistd.h>
    81 #endif
    83 #include <assert.h>
    85 #include "mcom_db.h"
    86 #include "hash.h"
    87 #include "page.h"
    88 /* #include "extern.h" */
    90 extern int mkstempflags(char *path, int extraFlags);
    92 static uint32	*fetch_bitmap __P((HTAB *, uint32));
    93 static uint32	 first_free __P((uint32));
    94 static int	 open_temp __P((HTAB *));
    95 static uint16	 overflow_page __P((HTAB *));
    96 static void	 squeeze_key __P((uint16 *, const DBT *, const DBT *));
    97 static int	 ugly_split
    98 		    __P((HTAB *, uint32, BUFHEAD *, BUFHEAD *, int, int));
   100 #define	PAGE_INIT(P) { \
   101 	((uint16 *)(P))[0] = 0; \
   102 	((uint16 *)(P))[1] = hashp->BSIZE - 3 * sizeof(uint16); \
   103 	((uint16 *)(P))[2] = hashp->BSIZE; \
   104 }
   106 /* implement a new lseek using lseek that
   107  * writes zero's when extending a file
   108  * beyond the end.
   109  */
   110 long new_lseek(int fd, long offset, int origin)
   111 {
   112  	long cur_pos=0;
   113 	long end_pos=0;
   114 	long seek_pos=0;
   116 	if(origin == SEEK_CUR)
   117       {	
   118       	if(offset < 1)							  
   119 	    	return(lseek(fd, offset, SEEK_CUR));
   121 		cur_pos = lseek(fd, 0, SEEK_CUR);
   123 		if(cur_pos < 0)
   124 			return(cur_pos);
   125 	  }
   127 	end_pos = lseek(fd, 0, SEEK_END);
   128 	if(end_pos < 0)
   129 		return(end_pos);
   131 	if(origin == SEEK_SET)
   132 		seek_pos = offset;
   133 	else if(origin == SEEK_CUR)
   134 		seek_pos = cur_pos + offset;
   135 	else if(origin == SEEK_END)
   136 		seek_pos = end_pos + offset;
   137  	else
   138 	  {
   139 	  	assert(0);
   140 		return(-1);
   141 	  }
   143  	/* the seek position desired is before the
   144 	 * end of the file.  We don't need
   145 	 * to do anything special except the seek.
   146 	 */
   147  	if(seek_pos <= end_pos)
   148  		return(lseek(fd, seek_pos, SEEK_SET));
   150  	  /* the seek position is beyond the end of the
   151  	   * file.  Write zero's to the end.
   152  	   *
   153 	   * we are already at the end of the file so
   154 	   * we just need to "write()" zeros for the
   155 	   * difference between seek_pos-end_pos and
   156 	   * then seek to the position to finish
   157 	   * the call
   158  	   */
   159  	  { 
   160  	 	char buffer[1024];
   161 	   	long len = seek_pos-end_pos;
   162 	   	memset(&buffer, 0, 1024);
   163 	   	while(len > 0)
   164 	      {
   165 	        write(fd, (char*)&buffer, (size_t)(1024 > len ? len : 1024));
   166 		    len -= 1024;
   167 		  }
   168 		return(lseek(fd, seek_pos, SEEK_SET));
   169 	  }		
   171 }
   173 /*
   174  * This is called AFTER we have verified that there is room on the page for
   175  * the pair (PAIRFITS has returned true) so we go right ahead and start moving
   176  * stuff on.
   177  */
   178 static void
   179 putpair(char *p, const DBT *key, DBT * val)
   180 {
   181 	register uint16 *bp, n, off;
   183 	bp = (uint16 *)p;
   185 	/* Enter the key first. */
   186 	n = bp[0];
   188 	off = OFFSET(bp) - key->size;
   189 	memmove(p + off, key->data, key->size);
   190 	bp[++n] = off;
   192 	/* Now the data. */
   193 	off -= val->size;
   194 	memmove(p + off, val->data, val->size);
   195 	bp[++n] = off;
   197 	/* Adjust page info. */
   198 	bp[0] = n;
   199 	bp[n + 1] = off - ((n + 3) * sizeof(uint16));
   200 	bp[n + 2] = off;
   201 }
   203 /*
   204  * Returns:
   205  *	 0 OK
   206  *	-1 error
   207  */
   208 extern int
   209 __delpair(HTAB *hashp, BUFHEAD *bufp, int ndx)
   210 {
   211 	register uint16 *bp, newoff;
   212 	register int n;
   213 	uint16 pairlen;
   215 	bp = (uint16 *)bufp->page;
   216 	n = bp[0];
   218 	if (bp[ndx + 1] < REAL_KEY)
   219 		return (__big_delete(hashp, bufp));
   220 	if (ndx != 1)
   221 		newoff = bp[ndx - 1];
   222 	else
   223 		newoff = hashp->BSIZE;
   224 	pairlen = newoff - bp[ndx + 1];
   226 	if (ndx != (n - 1)) {
   227 		/* Hard Case -- need to shuffle keys */
   228 		register int i;
   229 		register char *src = bufp->page + (int)OFFSET(bp);
   230 		uint32 dst_offset = (uint32)OFFSET(bp) + (uint32)pairlen;
   231 		register char *dst = bufp->page + dst_offset;
   232 		uint32 length = bp[ndx + 1] - OFFSET(bp);
   234 		/*
   235 		 * +-----------+XXX+---------+XXX+---------+---------> +infinity
   236 		 * |           |             |             |
   237 		 * 0           src_offset    dst_offset    BSIZE
   238 		 *
   239 		 * Dst_offset is > src_offset, so if src_offset were bad, dst_offset
   240 		 * would be too, therefore we check only dst_offset.
   241 		 *
   242 		 * If dst_offset is >= BSIZE, either OFFSET(bp), or pairlen, or both
   243 		 * is corrupted.
   244 		 *
   245 		 * Once we know dst_offset is < BSIZE, we can subtract it from BSIZE
   246 		 * to get an upper bound on length.
   247 		 */
   248 		if(dst_offset > (uint32)hashp->BSIZE)
   249 			return(DATABASE_CORRUPTED_ERROR);
   251 		if(length > (uint32)(hashp->BSIZE - dst_offset))
   252 			return(DATABASE_CORRUPTED_ERROR);
   254 		memmove(dst, src, length);
   256 		/* Now adjust the pointers */
   257 		for (i = ndx + 2; i <= n; i += 2) {
   258 			if (bp[i + 1] == OVFLPAGE) {
   259 				bp[i - 2] = bp[i];
   260 				bp[i - 1] = bp[i + 1];
   261 			} else {
   262 				bp[i - 2] = bp[i] + pairlen;
   263 				bp[i - 1] = bp[i + 1] + pairlen;
   264 			}
   265 		}
   266 	}
   267 	/* Finally adjust the page data */
   268 	bp[n] = OFFSET(bp) + pairlen;
   269 	bp[n - 1] = bp[n + 1] + pairlen + 2 * sizeof(uint16);
   270 	bp[0] = n - 2;
   271 	hashp->NKEYS--;
   273 	bufp->flags |= BUF_MOD;
   274 	return (0);
   275 }
   276 /*
   277  * Returns:
   278  *	 0 ==> OK
   279  *	-1 ==> Error
   280  */
   281 extern int
   282 __split_page(HTAB *hashp, uint32 obucket, uint32 nbucket)
   283 {
   284 	register BUFHEAD *new_bufp, *old_bufp;
   285 	register uint16 *ino;
   286 	register uint16 *tmp_uint16_array;
   287 	register char *np;
   288 	DBT key, val;
   289     uint16 n, ndx;
   290 	int retval;
   291 	uint16 copyto, diff, moved;
   292 	size_t off;
   293 	char *op;
   295 	copyto = (uint16)hashp->BSIZE;
   296 	off = (uint16)hashp->BSIZE;
   297 	old_bufp = __get_buf(hashp, obucket, NULL, 0);
   298 	if (old_bufp == NULL)
   299 		return (-1);
   300 	new_bufp = __get_buf(hashp, nbucket, NULL, 0);
   301 	if (new_bufp == NULL)
   302 		return (-1);
   304 	old_bufp->flags |= (BUF_MOD | BUF_PIN);
   305 	new_bufp->flags |= (BUF_MOD | BUF_PIN);
   307 	ino = (uint16 *)(op = old_bufp->page);
   308 	np = new_bufp->page;
   310 	moved = 0;
   312 	for (n = 1, ndx = 1; n < ino[0]; n += 2) {
   313 		if (ino[n + 1] < REAL_KEY) {
   314 			retval = ugly_split(hashp, obucket, old_bufp, new_bufp,
   315 			    (int)copyto, (int)moved);
   316 			old_bufp->flags &= ~BUF_PIN;
   317 			new_bufp->flags &= ~BUF_PIN;
   318 			return (retval);
   320 		}
   321 		key.data = (uint8 *)op + ino[n];
   323 		/* check here for ino[n] being greater than
   324 		 * off.  If it is then the database has
   325 		 * been corrupted.
   326 		 */
   327 		if(ino[n] > off)
   328 			return(DATABASE_CORRUPTED_ERROR);
   330 		key.size = off - ino[n];
   332 #ifdef DEBUG
   333 		/* make sure the size is positive */
   334 		assert(((int)key.size) > -1);
   335 #endif
   337 		if (__call_hash(hashp, (char *)key.data, key.size) == obucket) {
   338 			/* Don't switch page */
   339 			diff = copyto - off;
   340 			if (diff) {
   341 				copyto = ino[n + 1] + diff;
   342 				memmove(op + copyto, op + ino[n + 1],
   343 				    off - ino[n + 1]);
   344 				ino[ndx] = copyto + ino[n] - ino[n + 1];
   345 				ino[ndx + 1] = copyto;
   346 			} else
   347 				copyto = ino[n + 1];
   348 			ndx += 2;
   349 		} else {
   350 			/* Switch page */
   351 			val.data = (uint8 *)op + ino[n + 1];
   352 			val.size = ino[n] - ino[n + 1];
   354 			/* if the pair doesn't fit something is horribly
   355 			 * wrong.  LJM
   356 			 */
   357 			tmp_uint16_array = (uint16*)np;
   358 			if(!PAIRFITS(tmp_uint16_array, &key, &val))
   359 				return(DATABASE_CORRUPTED_ERROR);
   361 			putpair(np, &key, &val);
   362 			moved += 2;
   363 		}
   365 		off = ino[n + 1];
   366 	}
   368 	/* Now clean up the page */
   369 	ino[0] -= moved;
   370 	FREESPACE(ino) = copyto - sizeof(uint16) * (ino[0] + 3);
   371 	OFFSET(ino) = copyto;
   373 #ifdef DEBUG3
   374 	(void)fprintf(stderr, "split %d/%d\n",
   375 	    ((uint16 *)np)[0] / 2,
   376 	    ((uint16 *)op)[0] / 2);
   377 #endif
   378 	/* unpin both pages */
   379 	old_bufp->flags &= ~BUF_PIN;
   380 	new_bufp->flags &= ~BUF_PIN;
   381 	return (0);
   382 }
   384 /*
   385  * Called when we encounter an overflow or big key/data page during split
   386  * handling.  This is special cased since we have to begin checking whether
   387  * the key/data pairs fit on their respective pages and because we may need
   388  * overflow pages for both the old and new pages.
   389  *
   390  * The first page might be a page with regular key/data pairs in which case
   391  * we have a regular overflow condition and just need to go on to the next
   392  * page or it might be a big key/data pair in which case we need to fix the
   393  * big key/data pair.
   394  *
   395  * Returns:
   396  *	 0 ==> success
   397  *	-1 ==> failure
   398  */
   400 /* the maximum number of loops we will allow UGLY split to chew
   401  * on before we assume the database is corrupted and throw it
   402  * away.
   403  */
   404 #define MAX_UGLY_SPLIT_LOOPS 10000
   406 static int
   407 ugly_split(HTAB *hashp, uint32 obucket, BUFHEAD *old_bufp,
   408  BUFHEAD *new_bufp,/* Same as __split_page. */ int copyto, int moved)
   409 	/* int copyto;	 First byte on page which contains key/data values. */
   410 	/* int moved;	 Number of pairs moved to new page. */
   411 {
   412 	register BUFHEAD *bufp;	/* Buffer header for ino */
   413 	register uint16 *ino;	/* Page keys come off of */
   414 	register uint16 *np;	/* New page */
   415 	register uint16 *op;	/* Page keys go on to if they aren't moving */
   416     uint32 loop_detection=0;
   418 	BUFHEAD *last_bfp;	/* Last buf header OVFL needing to be freed */
   419 	DBT key, val;
   420 	SPLIT_RETURN ret;
   421 	uint16 n, off, ov_addr, scopyto;
   422 	char *cino;		/* Character value of ino */
   423 	int status;
   425 	bufp = old_bufp;
   426 	ino = (uint16 *)old_bufp->page;
   427 	np = (uint16 *)new_bufp->page;
   428 	op = (uint16 *)old_bufp->page;
   429 	last_bfp = NULL;
   430 	scopyto = (uint16)copyto;	/* ANSI */
   432 	n = ino[0] - 1;
   433 	while (n < ino[0]) {
   436         /* this function goes nuts sometimes and never returns. 
   437          * I havent found the problem yet but I need a solution
   438          * so if we loop too often we assume a database curruption error
   439          * :LJM
   440          */
   441         loop_detection++;
   443         if(loop_detection > MAX_UGLY_SPLIT_LOOPS)
   444             return DATABASE_CORRUPTED_ERROR;
   446 		if (ino[2] < REAL_KEY && ino[2] != OVFLPAGE) {
   447 			if ((status = __big_split(hashp, old_bufp,
   448 			    new_bufp, bufp, bufp->addr, obucket, &ret)))
   449 				return (status);
   450 			old_bufp = ret.oldp;
   451 			if (!old_bufp)
   452 				return (-1);
   453 			op = (uint16 *)old_bufp->page;
   454 			new_bufp = ret.newp;
   455 			if (!new_bufp)
   456 				return (-1);
   457 			np = (uint16 *)new_bufp->page;
   458 			bufp = ret.nextp;
   459 			if (!bufp)
   460 				return (0);
   461 			cino = (char *)bufp->page;
   462 			ino = (uint16 *)cino;
   463 			last_bfp = ret.nextp;
   464 		} else if (ino[n + 1] == OVFLPAGE) {
   465 			ov_addr = ino[n];
   466 			/*
   467 			 * Fix up the old page -- the extra 2 are the fields
   468 			 * which contained the overflow information.
   469 			 */
   470 			ino[0] -= (moved + 2);
   471 			FREESPACE(ino) =
   472 			    scopyto - sizeof(uint16) * (ino[0] + 3);
   473 			OFFSET(ino) = scopyto;
   475 			bufp = __get_buf(hashp, ov_addr, bufp, 0);
   476 			if (!bufp)
   477 				return (-1);
   479 			ino = (uint16 *)bufp->page;
   480 			n = 1;
   481 			scopyto = hashp->BSIZE;
   482 			moved = 0;
   484 			if (last_bfp)
   485 				__free_ovflpage(hashp, last_bfp);
   486 			last_bfp = bufp;
   487 		}
   488 		/* Move regular sized pairs of there are any */
   489 		off = hashp->BSIZE;
   490 		for (n = 1; (n < ino[0]) && (ino[n + 1] >= REAL_KEY); n += 2) {
   491 			cino = (char *)ino;
   492 			key.data = (uint8 *)cino + ino[n];
   493 			key.size = off - ino[n];
   494 			val.data = (uint8 *)cino + ino[n + 1];
   495 			val.size = ino[n] - ino[n + 1];
   496 			off = ino[n + 1];
   498 			if (__call_hash(hashp, (char*)key.data, key.size) == obucket) {
   499 				/* Keep on old page */
   500 				if (PAIRFITS(op, (&key), (&val)))
   501 					putpair((char *)op, &key, &val);
   502 				else {
   503 					old_bufp =
   504 					    __add_ovflpage(hashp, old_bufp);
   505 					if (!old_bufp)
   506 						return (-1);
   507 					op = (uint16 *)old_bufp->page;
   508 					putpair((char *)op, &key, &val);
   509 				}
   510 				old_bufp->flags |= BUF_MOD;
   511 			} else {
   512 				/* Move to new page */
   513 				if (PAIRFITS(np, (&key), (&val)))
   514 					putpair((char *)np, &key, &val);
   515 				else {
   516 					new_bufp =
   517 					    __add_ovflpage(hashp, new_bufp);
   518 					if (!new_bufp)
   519 						return (-1);
   520 					np = (uint16 *)new_bufp->page;
   521 					putpair((char *)np, &key, &val);
   522 				}
   523 				new_bufp->flags |= BUF_MOD;
   524 			}
   525 		}
   526 	}
   527 	if (last_bfp)
   528 		__free_ovflpage(hashp, last_bfp);
   529 	return (0);
   530 }
   532 /*
   533  * Add the given pair to the page
   534  *
   535  * Returns:
   536  *	0 ==> OK
   537  *	1 ==> failure
   538  */
   539 extern int
   540 __addel(HTAB *hashp, BUFHEAD *bufp, const DBT *key, const DBT * val)
   541 {
   542 	register uint16 *bp, *sop;
   543 	int do_expand;
   545 	bp = (uint16 *)bufp->page;
   546 	do_expand = 0;
   547 	while (bp[0] && (bp[2] < REAL_KEY || bp[bp[0]] < REAL_KEY))
   548 		/* Exception case */
   549 		if (bp[2] == FULL_KEY_DATA && bp[0] == 2)
   550 			/* This is the last page of a big key/data pair
   551 			   and we need to add another page */
   552 			break;
   553 		else if (bp[2] < REAL_KEY && bp[bp[0]] != OVFLPAGE) {
   554 			bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
   555 			if (!bufp)
   556 			  {
   557 #ifdef DEBUG
   558 				assert(0);
   559 #endif
   560 				return (-1);
   561 			  }
   562 			bp = (uint16 *)bufp->page;
   563 		} else
   564 			/* Try to squeeze key on this page */
   565 			if (FREESPACE(bp) > PAIRSIZE(key, val)) {
   566 			  {
   567 				squeeze_key(bp, key, val);
   569 				/* LJM: I added this because I think it was
   570 				 * left out on accident.
   571 				 * if this isn't incremented nkeys will not
   572 				 * be the actual number of keys in the db.
   573 				 */
   574 				hashp->NKEYS++;
   575 				return (0);
   576 			  }
   577 			} else {
   578 				bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
   579 				if (!bufp)
   580 			      {
   581 #ifdef DEBUG
   582 				    assert(0);
   583 #endif
   584 					return (-1);
   585 				  }
   586 				bp = (uint16 *)bufp->page;
   587 			}
   589 	if (PAIRFITS(bp, key, val))
   590 		putpair(bufp->page, key, (DBT *)val);
   591 	else {
   592 		do_expand = 1;
   593 		bufp = __add_ovflpage(hashp, bufp);
   594 		if (!bufp)
   595 	      {
   596 #ifdef DEBUG
   597 		    assert(0);
   598 #endif
   599 			return (-1);
   600 		  }
   601 		sop = (uint16 *)bufp->page;
   603 		if (PAIRFITS(sop, key, val))
   604 			putpair((char *)sop, key, (DBT *)val);
   605 		else
   606 			if (__big_insert(hashp, bufp, key, val))
   607 	          {
   608 #ifdef DEBUG
   609 		        assert(0);
   610 #endif
   611 			    return (-1);
   612 		      }
   613 	}
   614 	bufp->flags |= BUF_MOD;
   615 	/*
   616 	 * If the average number of keys per bucket exceeds the fill factor,
   617 	 * expand the table.
   618 	 */
   619 	hashp->NKEYS++;
   620 	if (do_expand ||
   621 	    (hashp->NKEYS / (hashp->MAX_BUCKET + 1) > hashp->FFACTOR))
   622 		return (__expand_table(hashp));
   623 	return (0);
   624 }
   626 /*
   627  *
   628  * Returns:
   629  *	pointer on success
   630  *	NULL on error
   631  */
   632 extern BUFHEAD *
   633 __add_ovflpage(HTAB *hashp, BUFHEAD *bufp)
   634 {
   635 	register uint16 *sp;
   636 	uint16 ndx, ovfl_num;
   637 #ifdef DEBUG1
   638 	int tmp1, tmp2;
   639 #endif
   640 	sp = (uint16 *)bufp->page;
   642 	/* Check if we are dynamically determining the fill factor */
   643 	if (hashp->FFACTOR == DEF_FFACTOR) {
   644 		hashp->FFACTOR = sp[0] >> 1;
   645 		if (hashp->FFACTOR < MIN_FFACTOR)
   646 			hashp->FFACTOR = MIN_FFACTOR;
   647 	}
   648 	bufp->flags |= BUF_MOD;
   649 	ovfl_num = overflow_page(hashp);
   650 #ifdef DEBUG1
   651 	tmp1 = bufp->addr;
   652 	tmp2 = bufp->ovfl ? bufp->ovfl->addr : 0;
   653 #endif
   654 	if (!ovfl_num || !(bufp->ovfl = __get_buf(hashp, ovfl_num, bufp, 1)))
   655 		return (NULL);
   656 	bufp->ovfl->flags |= BUF_MOD;
   657 #ifdef DEBUG1
   658 	(void)fprintf(stderr, "ADDOVFLPAGE: %d->ovfl was %d is now %d\n",
   659 	    tmp1, tmp2, bufp->ovfl->addr);
   660 #endif
   661 	ndx = sp[0];
   662 	/*
   663 	 * Since a pair is allocated on a page only if there's room to add
   664 	 * an overflow page, we know that the OVFL information will fit on
   665 	 * the page.
   666 	 */
   667 	sp[ndx + 4] = OFFSET(sp);
   668 	sp[ndx + 3] = FREESPACE(sp) - OVFLSIZE;
   669 	sp[ndx + 1] = ovfl_num;
   670 	sp[ndx + 2] = OVFLPAGE;
   671 	sp[0] = ndx + 2;
   672 #ifdef HASH_STATISTICS
   673 	hash_overflows++;
   674 #endif
   675 	return (bufp->ovfl);
   676 }
   678 /*
   679  * Returns:
   680  *	 0 indicates SUCCESS
   681  *	-1 indicates FAILURE
   682  */
   683 extern int
   684 __get_page(HTAB *hashp,
   685 	char * p,
   686 	uint32 bucket, 
   687 	int is_bucket, 
   688 	int is_disk, 
   689 	int is_bitmap)
   690 {
   691 	register int fd, page;
   692 	size_t size;
   693 	int rsize;
   694 	uint16 *bp;
   696 	fd = hashp->fp;
   697 	size = hashp->BSIZE;
   699 	if ((fd == -1) || !is_disk) {
   700 		PAGE_INIT(p);
   701 		return (0);
   702 	}
   703 	if (is_bucket)
   704 		page = BUCKET_TO_PAGE(bucket);
   705 	else
   706 		page = OADDR_TO_PAGE(bucket);
   707 	if ((MY_LSEEK(fd, (off_t)page << hashp->BSHIFT, SEEK_SET) == -1) ||
   708 	    ((rsize = read(fd, p, size)) == -1))
   709 		return (-1);
   711 	bp = (uint16 *)p;
   712 	if (!rsize)
   713 		bp[0] = 0;	/* We hit the EOF, so initialize a new page */
   714 	else
   715 		if ((unsigned)rsize != size) {
   716 			errno = EFTYPE;
   717 			return (-1);
   718 		}
   720 	if (!is_bitmap && !bp[0]) {
   721 		PAGE_INIT(p);
   722 	} else {
   724 #ifdef DEBUG
   725 		if(BYTE_ORDER == LITTLE_ENDIAN)
   726 		  {
   727 			int is_little_endian;
   728 			is_little_endian = BYTE_ORDER;
   729 		  }
   730 		else if(BYTE_ORDER == BIG_ENDIAN)
   731 		  {
   732 			int is_big_endian;
   733 			is_big_endian = BYTE_ORDER;
   734 		  }
   735 		else
   736 		  {
   737 			assert(0);
   738 		  }
   739 #endif
   741 		if (hashp->LORDER != BYTE_ORDER) {
   742 			register int i, max;
   744 			if (is_bitmap) {
   745 				max = hashp->BSIZE >> 2; /* divide by 4 */
   746 				for (i = 0; i < max; i++)
   747 					M_32_SWAP(((int *)p)[i]);
   748 			} else {
   749 				M_16_SWAP(bp[0]);
   750 				max = bp[0] + 2;
   752 	    		/* bound the size of max by
   753 	     		 * the maximum number of entries
   754 	     		 * in the array
   755 	     		 */
   756 				if((unsigned)max > (size / sizeof(uint16)))
   757 					return(DATABASE_CORRUPTED_ERROR);
   759 				/* do the byte order swap
   760 				 */
   761 				for (i = 1; i <= max; i++)
   762 					M_16_SWAP(bp[i]);
   763 			}
   764 		}
   766 		/* check the validity of the page here
   767 		 * (after doing byte order swaping if necessary)
   768 		 */
   769 		if(!is_bitmap && bp[0] != 0)
   770 		  {
   771 			uint16 num_keys = bp[0];
   772 			uint16 offset;
   773 			uint16 i;
   775 			/* bp[0] is supposed to be the number of
   776 			 * entries currently in the page.  If
   777 			 * bp[0] is too large (larger than the whole
   778 			 * page) then the page is corrupted
   779 			 */
   780 			if(bp[0] > (size / sizeof(uint16)))
   781 				return(DATABASE_CORRUPTED_ERROR);
   783 			/* bound free space */
   784 			if(FREESPACE(bp) > size)
   785 				return(DATABASE_CORRUPTED_ERROR);
   787 			/* check each key and data offset to make
   788  			 * sure they are all within bounds they
   789  			 * should all be less than the previous
   790  			 * offset as well.
   791  			 */
   792 			offset = size;
   793 			for(i=1 ; i <= num_keys; i+=2)
   794   			  {
   795 				/* ignore overflow pages etc. */
   796 				if(bp[i+1] >= REAL_KEY)
   797 	  			  {
   799 					if(bp[i] > offset || bp[i+1] > bp[i])			
   800 						return(DATABASE_CORRUPTED_ERROR);
   802 					offset = bp[i+1];
   803 	  			  }
   804 				else
   805 	  			  {
   806 					/* there are no other valid keys after
   807 		 			 * seeing a non REAL_KEY
   808 		 			 */
   809 					break;
   810 	  			  }
   811   			  }
   812 		}
   813 	}
   814 	return (0);
   815 }
   817 /*
   818  * Write page p to disk
   819  *
   820  * Returns:
   821  *	 0 ==> OK
   822  *	-1 ==>failure
   823  */
   824 extern int
   825 __put_page(HTAB *hashp, char *p, uint32 bucket, int is_bucket, int is_bitmap)
   826 {
   827 	register int fd, page;
   828 	size_t size;
   829 	int wsize;
   830 	off_t offset;
   832 	size = hashp->BSIZE;
   833 	if ((hashp->fp == -1) && open_temp(hashp))
   834 		return (-1);
   835 	fd = hashp->fp;
   837 	if (hashp->LORDER != BYTE_ORDER) {
   838 		register int i;
   839 		register int max;
   841 		if (is_bitmap) {
   842 			max = hashp->BSIZE >> 2;	/* divide by 4 */
   843 			for (i = 0; i < max; i++)
   844 				M_32_SWAP(((int *)p)[i]);
   845 		} else {
   846 			max = ((uint16 *)p)[0] + 2;
   848             /* bound the size of max by
   849              * the maximum number of entries
   850              * in the array
   851              */
   852             if((unsigned)max > (size / sizeof(uint16)))
   853                 return(DATABASE_CORRUPTED_ERROR);
   855 			for (i = 0; i <= max; i++)
   856 				M_16_SWAP(((uint16 *)p)[i]);
   858 		}
   859 	}
   861 	if (is_bucket)
   862 		page = BUCKET_TO_PAGE(bucket);
   863 	else
   864 		page = OADDR_TO_PAGE(bucket);
   865 	offset = (off_t)page << hashp->BSHIFT;
   866 	if ((MY_LSEEK(fd, offset, SEEK_SET) == -1) ||
   867 	    ((wsize = write(fd, p, size)) == -1))
   868 		/* Errno is set */
   869 		return (-1);
   870 	if ((unsigned)wsize != size) {
   871 		errno = EFTYPE;
   872 		return (-1);
   873 	}
   874 #if defined(_WIN32) || defined(_WINDOWS) 
   875 	if (offset + size > hashp->file_size) {
   876 		hashp->updateEOF = 1;
   877 	}
   878 #endif
   879 	/* put the page back the way it was so that it isn't byteswapped
   880 	 * if it remains in memory - LJM
   881 	 */
   882 	if (hashp->LORDER != BYTE_ORDER) {
   883 		register int i;
   884 		register int max;
   886 		if (is_bitmap) {
   887 			max = hashp->BSIZE >> 2;	/* divide by 4 */
   888 			for (i = 0; i < max; i++)
   889 				M_32_SWAP(((int *)p)[i]);
   890 		} else {
   891     		uint16 *bp = (uint16 *)p;
   893 			M_16_SWAP(bp[0]);
   894 			max = bp[0] + 2;
   896 			/* no need to bound the size if max again
   897 			 * since it was done already above
   898 			 */
   900 			/* do the byte order re-swap
   901 			 */
   902 			for (i = 1; i <= max; i++)
   903 				M_16_SWAP(bp[i]);
   904 		}
   905 	}
   907 	return (0);
   908 }
   910 #define BYTE_MASK	((1 << INT_BYTE_SHIFT) -1)
   911 /*
   912  * Initialize a new bitmap page.  Bitmap pages are left in memory
   913  * once they are read in.
   914  */
   915 extern int
   916 __ibitmap(HTAB *hashp, int pnum, int nbits, int ndx)
   917 {
   918 	uint32 *ip;
   919 	size_t clearbytes, clearints;
   921 	if ((ip = (uint32 *)malloc((size_t)hashp->BSIZE)) == NULL)
   922 		return (1);
   923 	hashp->nmaps++;
   924 	clearints = ((nbits - 1) >> INT_BYTE_SHIFT) + 1;
   925 	clearbytes = clearints << INT_TO_BYTE;
   926 	(void)memset((char *)ip, 0, clearbytes);
   927 	(void)memset(((char *)ip) + clearbytes, 0xFF,
   928 	    hashp->BSIZE - clearbytes);
   929 	ip[clearints - 1] = ALL_SET << (nbits & BYTE_MASK);
   930 	SETBIT(ip, 0);
   931 	hashp->BITMAPS[ndx] = (uint16)pnum;
   932 	hashp->mapp[ndx] = ip;
   933 	return (0);
   934 }
   936 static uint32
   937 first_free(uint32 map)
   938 {
   939 	register uint32 i, mask;
   941 	mask = 0x1;
   942 	for (i = 0; i < BITS_PER_MAP; i++) {
   943 		if (!(mask & map))
   944 			return (i);
   945 		mask = mask << 1;
   946 	}
   947 	return (i);
   948 }
   950 static uint16
   951 overflow_page(HTAB *hashp)
   952 {
   953 	register uint32 *freep=NULL;
   954 	register int max_free, offset, splitnum;
   955 	uint16 addr;
   956 	uint32 i;
   957 	int bit, first_page, free_bit, free_page, in_use_bits, j;
   958 #ifdef DEBUG2
   959 	int tmp1, tmp2;
   960 #endif
   961 	splitnum = hashp->OVFL_POINT;
   962 	max_free = hashp->SPARES[splitnum];
   964 	free_page = (max_free - 1) >> (hashp->BSHIFT + BYTE_SHIFT);
   965 	free_bit = (max_free - 1) & ((hashp->BSIZE << BYTE_SHIFT) - 1);
   967 	/* Look through all the free maps to find the first free block */
   968 	first_page = hashp->LAST_FREED >>(hashp->BSHIFT + BYTE_SHIFT);
   969 	for ( i = first_page; i <= (unsigned)free_page; i++ ) {
   970 		if (!(freep = (uint32 *)hashp->mapp[i]) &&
   971 		    !(freep = fetch_bitmap(hashp, i)))
   972 			return (0);
   973 		if (i == (unsigned)free_page)
   974 			in_use_bits = free_bit;
   975 		else
   976 			in_use_bits = (hashp->BSIZE << BYTE_SHIFT) - 1;
   978 		if (i == (unsigned)first_page) {
   979 			bit = hashp->LAST_FREED &
   980 			    ((hashp->BSIZE << BYTE_SHIFT) - 1);
   981 			j = bit / BITS_PER_MAP;
   982 			bit = bit & ~(BITS_PER_MAP - 1);
   983 		} else {
   984 			bit = 0;
   985 			j = 0;
   986 		}
   987 		for (; bit <= in_use_bits; j++, bit += BITS_PER_MAP)
   988 			if (freep[j] != ALL_SET)
   989 				goto found;
   990 	}
   992 	/* No Free Page Found */
   993 	hashp->LAST_FREED = hashp->SPARES[splitnum];
   994 	hashp->SPARES[splitnum]++;
   995 	offset = hashp->SPARES[splitnum] -
   996 	    (splitnum ? hashp->SPARES[splitnum - 1] : 0);
   998 #define	OVMSG	"HASH: Out of overflow pages.  Increase page size\n"
   999 	if (offset > SPLITMASK) {
  1000 		if (++splitnum >= NCACHED) {
  1001 #ifndef macintosh
  1002 			(void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
  1003 #endif
  1004 			return (0);
  1006 		hashp->OVFL_POINT = splitnum;
  1007 		hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
  1008 		hashp->SPARES[splitnum-1]--;
  1009 		offset = 1;
  1012 	/* Check if we need to allocate a new bitmap page */
  1013 	if (free_bit == (hashp->BSIZE << BYTE_SHIFT) - 1) {
  1014 		free_page++;
  1015 		if (free_page >= NCACHED) {
  1016 #ifndef macintosh
  1017 			(void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
  1018 #endif
  1019 			return (0);
  1021 		/*
  1022 		 * This is tricky.  The 1 indicates that you want the new page
  1023 		 * allocated with 1 clear bit.  Actually, you are going to
  1024 		 * allocate 2 pages from this map.  The first is going to be
  1025 		 * the map page, the second is the overflow page we were
  1026 		 * looking for.  The init_bitmap routine automatically, sets
  1027 		 * the first bit of itself to indicate that the bitmap itself
  1028 		 * is in use.  We would explicitly set the second bit, but
  1029 		 * don't have to if we tell init_bitmap not to leave it clear
  1030 		 * in the first place.
  1031 		 */
  1032 		if (__ibitmap(hashp,
  1033 		    (int)OADDR_OF(splitnum, offset), 1, free_page))
  1034 			return (0);
  1035 		hashp->SPARES[splitnum]++;
  1036 #ifdef DEBUG2
  1037 		free_bit = 2;
  1038 #endif
  1039 		offset++;
  1040 		if (offset > SPLITMASK) {
  1041 			if (++splitnum >= NCACHED) {
  1042 #ifndef macintosh
  1043 				(void)write(STDERR_FILENO, OVMSG,
  1044 				    sizeof(OVMSG) - 1);
  1045 #endif
  1046 				return (0);
  1048 			hashp->OVFL_POINT = splitnum;
  1049 			hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
  1050 			hashp->SPARES[splitnum-1]--;
  1051 			offset = 0;
  1053 	} else {
  1054 		/*
  1055 		 * Free_bit addresses the last used bit.  Bump it to address
  1056 		 * the first available bit.
  1057 		 */
  1058 		free_bit++;
  1059 		SETBIT(freep, free_bit);
  1062 	/* Calculate address of the new overflow page */
  1063 	addr = OADDR_OF(splitnum, offset);
  1064 #ifdef DEBUG2
  1065 	(void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
  1066 	    addr, free_bit, free_page);
  1067 #endif
  1068 	return (addr);
  1070 found:
  1071 	bit = bit + first_free(freep[j]);
  1072 	SETBIT(freep, bit);
  1073 #ifdef DEBUG2
  1074 	tmp1 = bit;
  1075 	tmp2 = i;
  1076 #endif
  1077 	/*
  1078 	 * Bits are addressed starting with 0, but overflow pages are addressed
  1079 	 * beginning at 1. Bit is a bit addressnumber, so we need to increment
  1080 	 * it to convert it to a page number.
  1081 	 */
  1082 	bit = 1 + bit + (i * (hashp->BSIZE << BYTE_SHIFT));
  1083 	if (bit >= hashp->LAST_FREED)
  1084 		hashp->LAST_FREED = bit - 1;
  1086 	/* Calculate the split number for this page */
  1087 	for (i = 0; (i < (unsigned)splitnum) && (bit > hashp->SPARES[i]); i++) {}
  1088 	offset = (i ? bit - hashp->SPARES[i - 1] : bit);
  1089 	if (offset >= SPLITMASK)
  1090 		return (0);	/* Out of overflow pages */
  1091 	addr = OADDR_OF(i, offset);
  1092 #ifdef DEBUG2
  1093 	(void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
  1094 	    addr, tmp1, tmp2);
  1095 #endif
  1097 	/* Allocate and return the overflow page */
  1098 	return (addr);
  1101 /*
  1102  * Mark this overflow page as free.
  1103  */
  1104 extern void
  1105 __free_ovflpage(HTAB *hashp, BUFHEAD *obufp)
  1107 	uint16 addr;
  1108 	uint32 *freep;
  1109 	uint32 bit_address, free_page, free_bit;
  1110 	uint16 ndx;
  1112 	if(!obufp || !obufp->addr)
  1113 	    return;
  1115 	addr = obufp->addr;
  1116 #ifdef DEBUG1
  1117 	(void)fprintf(stderr, "Freeing %d\n", addr);
  1118 #endif
  1119 	ndx = (((uint16)addr) >> SPLITSHIFT);
  1120 	bit_address =
  1121 	    (ndx ? hashp->SPARES[ndx - 1] : 0) + (addr & SPLITMASK) - 1;
  1122 	if (bit_address < (uint32)hashp->LAST_FREED)
  1123 		hashp->LAST_FREED = bit_address;
  1124 	free_page = (bit_address >> (hashp->BSHIFT + BYTE_SHIFT));
  1125 	free_bit = bit_address & ((hashp->BSIZE << BYTE_SHIFT) - 1);
  1127 	if (!(freep = hashp->mapp[free_page])) 
  1128 		freep = fetch_bitmap(hashp, free_page);
  1130 #ifdef DEBUG
  1131 	/*
  1132 	 * This had better never happen.  It means we tried to read a bitmap
  1133 	 * that has already had overflow pages allocated off it, and we
  1134 	 * failed to read it from the file.
  1135 	 */
  1136 	if (!freep)
  1138 		assert(0);
  1139 		return;
  1141 #endif
  1142 	CLRBIT(freep, free_bit);
  1143 #ifdef DEBUG2
  1144 	(void)fprintf(stderr, "FREE_OVFLPAGE: ADDR: %d BIT: %d PAGE %d\n",
  1145 	    obufp->addr, free_bit, free_page);
  1146 #endif
  1147 	__reclaim_buf(hashp, obufp);
  1150 /*
  1151  * Returns:
  1152  *	 0 success
  1153  *	-1 failure
  1154  */
  1155 static int
  1156 open_temp(HTAB *hashp)
  1158 #ifdef XP_OS2
  1159  	hashp->fp = mkstemp(NULL);
  1160 #else
  1161 #if !defined(_WIN32) && !defined(_WINDOWS) && !defined(macintosh)
  1162 	sigset_t set, oset;
  1163 #endif
  1164 #if !defined(macintosh)
  1165 	char * tmpdir;
  1166 	size_t len;
  1167 	char last;
  1168 #endif
  1169 	static const char namestr[] = "/_hashXXXXXX";
  1170 	char filename[1024];
  1172 #if !defined(_WIN32) && !defined(_WINDOWS) && !defined(macintosh)
  1173 	/* Block signals; make sure file goes away at process exit. */
  1174 	(void)sigfillset(&set);
  1175 	(void)sigprocmask(SIG_BLOCK, &set, &oset);
  1176 #endif
  1178 	filename[0] = 0;
  1179 #if defined(macintosh)
  1180 	strcat(filename, namestr + 1);
  1181 #else
  1182 	tmpdir = getenv("TMP");
  1183 	if (!tmpdir)
  1184 		tmpdir = getenv("TMPDIR");
  1185 	if (!tmpdir)
  1186 		tmpdir = getenv("TEMP");
  1187 	if (!tmpdir)
  1188 		tmpdir = ".";
  1189 	len = strlen(tmpdir);
  1190 	if (len && len < (sizeof filename - sizeof namestr)) {
  1191 		strcpy(filename, tmpdir);
  1193 	len = strlen(filename);
  1194 	last = tmpdir[len - 1];
  1195 	strcat(filename, (last == '/' || last == '\\') ? namestr + 1 : namestr);
  1196 #endif
  1198 #if defined(_WIN32) || defined(_WINDOWS)
  1199 	if ((hashp->fp = mkstempflags(filename, _O_BINARY|_O_TEMPORARY)) != -1) {
  1200 		if (hashp->filename) {
  1201 			free(hashp->filename);
  1203 		hashp->filename = strdup(filename);
  1204 		hashp->is_temp = 1;
  1206 #else
  1207 	if ((hashp->fp = mkstemp(filename)) != -1) {
  1208 		(void)unlink(filename);
  1209 #if !defined(macintosh)
  1210 		(void)fcntl(hashp->fp, F_SETFD, 1);
  1211 #endif									  
  1213 #endif
  1215 #if !defined(_WIN32) && !defined(_WINDOWS) && !defined(macintosh)
  1216 	(void)sigprocmask(SIG_SETMASK, &oset, (sigset_t *)NULL);
  1217 #endif
  1218 #endif  /* !OS2 */
  1219 	return (hashp->fp != -1 ? 0 : -1);
  1222 /*
  1223  * We have to know that the key will fit, but the last entry on the page is
  1224  * an overflow pair, so we need to shift things.
  1225  */
  1226 static void
  1227 squeeze_key(uint16 *sp, const DBT * key, const DBT * val)
  1229 	register char *p;
  1230 	uint16 free_space, n, off, pageno;
  1232 	p = (char *)sp;
  1233 	n = sp[0];
  1234 	free_space = FREESPACE(sp);
  1235 	off = OFFSET(sp);
  1237 	pageno = sp[n - 1];
  1238 	off -= key->size;
  1239 	sp[n - 1] = off;
  1240 	memmove(p + off, key->data, key->size);
  1241 	off -= val->size;
  1242 	sp[n] = off;
  1243 	memmove(p + off, val->data, val->size);
  1244 	sp[0] = n + 2;
  1245 	sp[n + 1] = pageno;
  1246 	sp[n + 2] = OVFLPAGE;
  1247 	FREESPACE(sp) = free_space - PAIRSIZE(key, val);
  1248 	OFFSET(sp) = off;
  1251 static uint32 *
  1252 fetch_bitmap(HTAB *hashp, uint32 ndx)
  1254 	if (ndx >= (unsigned)hashp->nmaps)
  1255 		return (NULL);
  1256 	if ((hashp->mapp[ndx] = (uint32 *)malloc((size_t)hashp->BSIZE)) == NULL)
  1257 		return (NULL);
  1258 	if (__get_page(hashp,
  1259 	    (char *)hashp->mapp[ndx], hashp->BITMAPS[ndx], 0, 1, 1)) {
  1260 		free(hashp->mapp[ndx]);
  1261 		hashp->mapp[ndx] = NULL; /* NEW: 9-11-95 */
  1262 		return (NULL);
  1264 	return (hashp->mapp[ndx]);
  1267 #ifdef DEBUG4
  1268 int
  1269 print_chain(int addr)
  1271 	BUFHEAD *bufp;
  1272 	short *bp, oaddr;
  1274 	(void)fprintf(stderr, "%d ", addr);
  1275 	bufp = __get_buf(hashp, addr, NULL, 0);
  1276 	bp = (short *)bufp->page;
  1277 	while (bp[0] && ((bp[bp[0]] == OVFLPAGE) ||
  1278 		((bp[0] > 2) && bp[2] < REAL_KEY))) {
  1279 		oaddr = bp[bp[0] - 1];
  1280 		(void)fprintf(stderr, "%d ", (int)oaddr);
  1281 		bufp = __get_buf(hashp, (int)oaddr, bufp, 0);
  1282 		bp = (short *)bufp->page;
  1284 	(void)fprintf(stderr, "\n");
  1286 #endif

mercurial