security/nss/lib/freebl/mpi/utils/sieve.c

Wed, 31 Dec 2014 06:09:35 +0100

author
Michael Schloh von Bennewitz <michael@schloh.com>
date
Wed, 31 Dec 2014 06:09:35 +0100
changeset 0
6474c204b198
permissions
-rw-r--r--

Cloned upstream origin tor-browser at tor-browser-31.3.0esr-4.5-1-build1
revision ID fc1c9ff7c1b2defdbc039f12214767608f46423f for hacking purpose.

     1 /*
     2  * sieve.c
     3  *
     4  * Finds prime numbers using the Sieve of Eratosthenes
     5  *
     6  * This implementation uses a bitmap to represent all odd integers in a
     7  * given range.  We iterate over this bitmap, crossing off the
     8  * multiples of each prime we find.  At the end, all the remaining set
     9  * bits correspond to prime integers.
    10  *
    11  * Here, we make two passes -- once we have generated a sieve-ful of
    12  * primes, we copy them out, reset the sieve using the highest
    13  * generated prime from the first pass as a base.  Then we cross out
    14  * all the multiples of all the primes we found the first time through,
    15  * and re-sieve.  In this way, we get double use of the memory we
    16  * allocated for the sieve the first time though.  Since we also
    17  * implicitly ignore multiples of 2, this amounts to 4 times the
    18  * values.
    19  *
    20  * This could (and probably will) be generalized to re-use the sieve a
    21  * few more times.
    22  *
    23  * This Source Code Form is subject to the terms of the Mozilla Public
    24  * License, v. 2.0. If a copy of the MPL was not distributed with this
    25  * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
    27 #include <stdio.h>
    28 #include <stdlib.h>
    29 #include <limits.h>
    31 typedef unsigned char  byte;
    33 typedef struct {
    34   int   size;
    35   byte *bits;
    36   long  base;
    37   int   next;
    38   int   nbits;
    39 } sieve;
    41 void sieve_init(sieve *sp, long base, int nbits);
    42 void sieve_grow(sieve *sp, int nbits);
    43 long sieve_next(sieve *sp);
    44 void sieve_reset(sieve *sp, long base);
    45 void sieve_cross(sieve *sp, long val);
    46 void sieve_clear(sieve *sp);
    48 #define S_ISSET(S, B)  (((S)->bits[(B)/CHAR_BIT]>>((B)%CHAR_BIT))&1)
    49 #define S_SET(S, B)    ((S)->bits[(B)/CHAR_BIT]|=(1<<((B)%CHAR_BIT)))
    50 #define S_CLR(S, B)    ((S)->bits[(B)/CHAR_BIT]&=~(1<<((B)%CHAR_BIT)))
    51 #define S_VAL(S, B)    ((S)->base+(2*(B)))
    52 #define S_BIT(S, V)    (((V)-((S)->base))/2)
    54 int main(int argc, char *argv[])
    55 {
    56   sieve   s;
    57   long    pr, *p;
    58   int     c, ix, cur = 0;
    60   if(argc < 2) {
    61     fprintf(stderr, "Usage: %s <width>\n", argv[0]);
    62     return 1;
    63   }
    65   c = atoi(argv[1]);
    66   if(c < 0) c = -c;
    68   fprintf(stderr, "%s: sieving to %d positions\n", argv[0], c);
    70   sieve_init(&s, 3, c);
    72   c = 0;
    73   while((pr = sieve_next(&s)) > 0) {
    74     ++c;
    75   }
    77   p = calloc(c, sizeof(long));
    78   if(!p) {
    79     fprintf(stderr, "%s: out of memory after first half\n", argv[0]);
    80     sieve_clear(&s);
    81     exit(1);
    82   }
    84   fprintf(stderr, "%s: half done ... \n", argv[0]);
    86   for(ix = 0; ix < s.nbits; ix++) {
    87     if(S_ISSET(&s, ix)) {
    88       p[cur] = S_VAL(&s, ix);
    89       printf("%ld\n", p[cur]);
    90       ++cur;
    91     }
    92   }
    94   sieve_reset(&s, p[cur - 1]);
    95   fprintf(stderr, "%s: crossing off %d found primes ... \n", argv[0], cur);
    96   for(ix = 0; ix < cur; ix++) {
    97     sieve_cross(&s, p[ix]);
    98     if(!(ix % 1000))
    99       fputc('.', stderr);
   100   }
   101   fputc('\n', stderr);
   103   free(p);
   105   fprintf(stderr, "%s: sieving again from %ld ... \n", argv[0], p[cur - 1]);
   106   c = 0;
   107   while((pr = sieve_next(&s)) > 0) {
   108     ++c;
   109   }
   111   fprintf(stderr, "%s: done!\n", argv[0]);
   112   for(ix = 0; ix < s.nbits; ix++) {
   113     if(S_ISSET(&s, ix)) {
   114       printf("%ld\n", S_VAL(&s, ix));
   115     }
   116   }
   118   sieve_clear(&s);
   120   return 0;
   121 }
   123 void sieve_init(sieve *sp, long base, int nbits)
   124 {
   125   sp->size = (nbits / CHAR_BIT);
   127   if(nbits % CHAR_BIT)
   128     ++sp->size;
   130   sp->bits = calloc(sp->size, sizeof(byte));
   131   memset(sp->bits, UCHAR_MAX, sp->size);
   132   if(!(base & 1))
   133     ++base;
   134   sp->base = base;
   136   sp->next = 0;
   137   sp->nbits = sp->size * CHAR_BIT;
   138 }
   140 void sieve_grow(sieve *sp, int nbits)
   141 {
   142   int  ns = (nbits / CHAR_BIT);
   144   if(nbits % CHAR_BIT)
   145     ++ns;
   147   if(ns > sp->size) {
   148     byte   *tmp;
   149     int     ix;
   151     tmp = calloc(ns, sizeof(byte));
   152     if(tmp == NULL) {
   153       fprintf(stderr, "Error: out of memory in sieve_grow\n");
   154       return;
   155     }
   157     memcpy(tmp, sp->bits, sp->size);
   158     for(ix = sp->size; ix < ns; ix++) {
   159       tmp[ix] = UCHAR_MAX;
   160     }
   162     free(sp->bits);
   163     sp->bits = tmp;
   164     sp->size = ns;
   166     sp->nbits = sp->size * CHAR_BIT;
   167   }
   168 }
   170 long sieve_next(sieve *sp)
   171 {
   172   long out;
   173   int  ix = 0;
   174   long val;
   176   if(sp->next > sp->nbits)
   177     return -1;
   179   out = S_VAL(sp, sp->next);
   180 #ifdef DEBUG
   181   fprintf(stderr, "Sieving %ld\n", out);
   182 #endif
   184   /* Sieve out all multiples of the current prime */
   185   val = out;
   186   while(ix < sp->nbits) {
   187     val += out;
   188     ix = S_BIT(sp, val);
   189     if((val & 1) && ix < sp->nbits) { /* && S_ISSET(sp, ix)) { */
   190       S_CLR(sp, ix);
   191 #ifdef DEBUG
   192       fprintf(stderr, "Crossing out %ld (bit %d)\n", val, ix);
   193 #endif
   194     }
   195   }
   197   /* Scan ahead to the next prime */
   198   ++sp->next;
   199   while(sp->next < sp->nbits && !S_ISSET(sp, sp->next))
   200     ++sp->next;
   202   return out;
   203 }
   205 void sieve_cross(sieve *sp, long val)
   206 {
   207   int  ix = 0;
   208   long cur = val;
   210   while(cur < sp->base)
   211     cur += val;
   213   ix = S_BIT(sp, cur);
   214   while(ix < sp->nbits) {
   215     if(cur & 1) 
   216       S_CLR(sp, ix);
   217     cur += val;
   218     ix = S_BIT(sp, cur);
   219   }
   220 }
   222 void sieve_reset(sieve *sp, long base)
   223 {
   224   memset(sp->bits, UCHAR_MAX, sp->size);
   225   sp->base = base;
   226   sp->next = 0;
   227 }
   229 void sieve_clear(sieve *sp)
   230 {
   231   if(sp->bits) 
   232     free(sp->bits);
   234   sp->bits = NULL;
   235 }

mercurial